Share This Article:

Dielectric spectroscopy of diglycidyl ether of bisphenol-A at glass transition temperature

Abstract Full-Text HTML Download Download as PDF (Size:361KB) PP. 136-141
DOI: 10.4236/ns.2012.42020    3,120 Downloads   5,746 Views   Citations
Author(s)    Leave a comment

ABSTRACT

We used broadband dielectric spectroscopy in the frequency range from 10–2 Hz up to 107 Hz and we found dynamics of the primary α- and intermolecular Johari-Goldstein (JG) β-processes are strongly correlated in diglycidyl ether of bisphenol-A over a wide temperature from 193 to 283K and pressure P range from 0.1 to 600 MPa. Analysing the temperature and pressure behavior of the α - and (JG) β-processes, a clear correlation has been found between the structural relaxation time, the Johari-Goldstein relaxation time and the dispersion of the structural relaxation. These results support the idea that the Johari-Goldstein relaxation acts as a precursor of the structural relaxation and therefore of the glass transition phenomenon.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sharifi, S. (2012) Dielectric spectroscopy of diglycidyl ether of bisphenol-A at glass transition temperature. Natural Science, 4, 136-141. doi: 10.4236/ns.2012.42020.

References

[1] Sharifi, S. (2011) Temperature dependence of the activation volume of secondary relaxation in glass formers. ISRN Materials Science, 460751.
[2] Sharifi, S. and Asl, J.M. (2011) Secondary relaxation inside the glass. ISRN Materials Science, 201, 764874.
[3] Sharifi, S. (2011) Activation volume of secondary relaxation. Materials Sciences and Applications, 2, 624-628. doi:10.4236/msa.2011.26084
[4] Ngai, K.L. (2003) an extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. Journal of Physics: Condensed Matter, 15, S1107. doi:10.1088/0953-8984/15/11/332
[5] Grzybowska, K., Grzybowski, A., Ziolo, J., Paluch, M. and Capaccioli, S. (2006) Dielectric secondary relaxations in polypropylene glycols. Journal of Chemical Physics, 125, 044904. doi:10.1063/1.2219112
[6] Sharifi, S., Capaccioli, S., Lucchesi, M., Rolla, P. and Prevosto, D. (2011) Temperature and pressure dependence of secondary process in an epoxy system. Journal of Chemical Physics, 134, 044510. doi:10.1063/1.3518972
[7] Dlubek, G., Kilburn, D. and Alam, M.A. (2005) Temperature and pressure dependence of α-relaxation and free volume in poly(vinyl acetate). Macromolecular Chemistry and Physics, 206, 818-826. doi:10.1002/macp.200400495
[8] Tyagi, M., Aleg, A. and Colmenero, J. (2007) Broadband dielectric study of oligomer of poly(vinyl acetate): A detailed comparison of dynamics with its polymer analog. Physical Review E, 75, 061805. doi:10.1103/PhysRevE.75.061805
[9] Paluch, M., Patkowski, A. and Fisher, E.W. (2000) Temperature and Pressure Scaling of the α Relaxation Process in Fragile Glass Formers: A Dynamic Light Scattering Study. Physical Review Letters, 85, 2140-2143. doi:10.1103/PhysRevLett.85.2140
[10] Comez, L., Fioretto, D., Palmieri, L., Verdini, L., Rolla, P.A., Gapinski, J., Pakula, T., Patkowski, A., Steffen, W. and Fischer, E.W. (1999) Light-scattering study of a supercooled epoxy resin. Physical Review E, 60, 3086-3096. doi:10.1103/PhysRevE.60.3086
[11] Zorn, R., Arbe, A., Colmenero, J., Frick, B., Richter, D. and Buchenau, U. (1995) Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. Physical Review E, 52, 781-795. doi:10.1103/PhysRevE.52.781
[12] Colmenero, J., Arbe, A. and Alegria, A. (1993) Crossover from Debye to non-Debye dynamical behavior of the α relaxation observed by quasielastic neutron scattering in a glass-forming polymer. Physical Review Letters, 71, 2603-2606. doi:10.1103/PhysRevLett.71.2603
[13] Kessairi, K., Capaccioli, S., Prevosto, D., Lucchesi, M., Sharifi, S. and Rolla, P.A. (2008) Interdependence of primary and johari-goldstein secondary relaxations in glass-forming systems. Journal of Physical Chemistry B, 1112, 4470.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.