Share This Article:

Room Temperature Synthesis of Aminocaproic Acid-Capped Lead Sulphide Nanoparticles

Abstract Full-Text HTML XML Download Download as PDF (Size:1037KB) PP. 125-130
DOI: 10.4236/msa.2012.32020    5,529 Downloads   9,590 Views   Citations


Aminocaproic acid (ACA) mixed methanolic lead acetate-thiourea (PbAc-TU) complex as precursor for fabrication of lead sulphide (PbS) nanoparticles (NPs) has been explained. The size, structure and morphology of as-prepared ACA-capped PbS NPs were systematically characterized by scanning electron microscopy (SEM), Transmission electron mi-croscopy (TEM), X-ray diffraction (XRD), Uv-vis spectroscopy and Brunauer-Emmett-Teller (BET) techniques. The obtained results show that the synthesized PbS NPs are nanocrystalline, size quantized and their agglomeration shows a mesoporous network of 8.7 nm in pore size. The binding nature of ACA molecules on PbS surface was studied by thermo gravimetric analysis (TGA), Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) techniques. Results indicate that ACA acts as a soft template that restricts the growth of PbS NPs through its binding to Pb surface via nitrogen lone pair.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Patel, F. Mighri, A. Ajji and S. Elkoun, "Room Temperature Synthesis of Aminocaproic Acid-Capped Lead Sulphide Nanoparticles," Materials Sciences and Applications, Vol. 3 No. 2, 2012, pp. 125-130. doi: 10.4236/msa.2012.32020.


[1] C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” Journal of American Chemical Society, Vol. 115, No. 19, 1993, pp. 8706-8715. doi:10.1021/ja00072a025
[2] D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang and A. P. Alivisatos, “Colloidal Nanocrystal Heterostructures with Linear and Branched Topology,” Nature, Vol. 430, No. 6966, 2004, pp. 190-195. doi:10.1038/nature02695
[3] T.-W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr and E. H. Sargent, “Efficient Excitation Transfer from Polymer to Nanocrystals,” Applied Physics Letters, Vol. 84, No. 21, 2004, pp. 4295-4297. doi:10.1063/1.1755414
[4] W. C. W. Chan and N. Shuming, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science, Vol. 281, No. 5385, 1998, pp. 2016-2018. doi:10.1126/science.281.5385.2016
[5] Y. Wang, A. Suna, W. Mahler and R. Kasowski, “PbS in Polymers. From Molecules to Bulk Solids,” Journal of Chemical Physics, Vol. 87, No. 12, 1987, pp. 7315-7322. doi:10.1063/1.453325
[6] A. A. R. Watt, D. Blake, J. H. Warner, E. H. Thomsen, E. L. Tavenner, H. Rubinsztein-Dunlop and P. Meredith, “Lead Sulfide Nanocrystal: Conducting Polymer Solar Cells,” Journal of Physics D: Applied Physics, Vol. 38, No. 12, 2005, pp. 2006-2012. doi:10.1088/0022-3727/38/12/023
[7] A. Guchhait, A. K. Rath and A. J. Pal, “To Make Polymer: Quantum Dot Hybrid Solar Cells NIR-Active by Increasing Diameter of PbS Nanoparticles,” Solar Energy Materials and Solar Cells, Vol. 95, No. 2, 2011, pp. 651-656. doi:10.1016/j.solmat.2010.09.034
[8] S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, “SolutionProcessed PbS Quantum Dot Infrared Photo-Detectors and Photo-Voltaics,” Nature Materilas, Vol. 4, No. 2, 2005, pp. 138-142. doi:10.1038/nmat1299
[9] P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty and G. E. Jabbour, “PbS Quantum-Dot Doped Glasses as Saturable Absorbers for Mode Locking of a Cr:Forsterite Laser,” Applied Physics Letters, Vol. 71, No. 12, 1997, pp. 1595-1597. doi:10.1063/1.119843
[10] Z. H. Zhang, S. H. Lee, J. J. Vittal and W. S. Chin, “A Simple Way to Prepare PbS Nanocrystals with Morphology Tuning at Room Temperature,” Journal of Physical Chemistry B, Vol. 110, No. 13, 2006, pp. 6649-6654. doi:10.1021/jp057271m
[11] D. Berhanu, K. Govender, D. Smyth-Boyle, M. Archbold, D. P. Halliday and P. O’Brien, “A Novel Soft Hydrothermal (SHY) Route to Crystalline PbS and CdS Nanoparticles Exhibiting Diverse Morphologies,” Chemical Communications, Vol. 45, No. 45, 2006, pp. 4709-4711. doi:10.1039/b612934j
[12] E. Leontidis, M. Orphanou, T. Kyprianidou-Leodidou, F. Krumeich and C. Walter, “Composite Nanotubes Formed by Self-Assembly of PbS Nanoparticles,” Nano Letters, Vol. 3, No. 4, 2003, pp. 569-572. doi:10.1021/nl034124w
[13] K. Singh, A. A. McLachlan and D. Gerrard Marangoni, “Effect of Morphology and Concentration on Capping Ability of Surfactant in Shape Controlled Synthesis of PbS Nano- and Micro-Crystals,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 345, No. 1-3, 2009, pp. 82-87. doi:10.1016/j.colsurfa.2009.04.033
[14] Z. Zhao, K. Zhang, J. Zhang, K. Yang, C. He, F. Dong and B. Yang, “Synthesis of Size and Shape Controlled PbS Nanocrystals and Their Self-Assembly,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 355, No. 1-3, 2010, pp. 114-120. doi:10.1016/j.colsurfa.2009.12.009
[15] N. B. Pendyala and K. S. R. Koteswara Rao, “Temperature and Capping Dependence of NIR Emission from PbS Nano-Microcrystallites with Different Morphologies,” Materials Chemistry and Physics, Vol. 113, No. 1, 2009, pp. 456-461. doi:10.1016/j.matchemphys.2008.07.125
[16] G. Li, C. Li, H. Tang, K. Cao and J. Chen, “Controlled Self-Assembly of PbS Nanoparticles into Macrostar-Like Hierarchical Structures,” Materials Research Bulletin, Vol. 46, No. 7, 2011, pp. 1072-1079. doi:10.1016/j.materresbull.2011.03.006
[17] S. Z. Liu, S. L. Xiong, K. Y. Bao, J. Cao and Y. T. Qian, “Shape-Controlled Preparation of PbS with Various Dendritic Hierarchical Structures with the Assistance of l-Methionine,” Journal of Physical Chemistry C, Vol. 113, No. 30, 2009, pp. 13002-13007. doi:10.1021/jp8104437
[18] T. Thongtem, S. Kaowphong and S. Thongtem, “Biomolecule and Surfactant-Assisted Hydrothermal Synthesis of PbS Crystals,” Ceramics International, Vol. 34, No. 7, 2008, pp. 1691-1695. doi:10.1016/j.ceramint.2007.05.007
[19] Z. Fan, S. Yan, B. Zhang, Y. Zhao and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-Like Hierarchical Architectures,” Journal of Physical Chemistry C, Vol. 112, No. 8, 2008, pp. 2831-2835. doi:10.1021/jp0766149
[20] X. Shen, Z. Li, Y. Cui and Y. Pang, “Glutathione-Assisted Synthesis of Hierarchical PbS via Hydrothermal Degradation and Its Application in the Pesticidal Biosensing,” International Journal of Electrochemical Scien- ce, Vol. 6, No. 8, 2011, pp. 3525-3535.
[21] T. D. Nguyen, D. Mrabet, T. T. D. Vu, C. T. Dinh and T. O. Do, “Biomolecule-Assisted Route for Shape-Controlled Synthesis of Single-Crystalline MnWO4 Nanoparticles and Spontaneous Assembly of Polypeptide-Stabilized Mesocrystal Microspheres,” CrystEngComm, Vol. 13, No. 5, 2011, pp. 1450-1460. doi:10.1039/c0ce00091d
[22] T. Chaudhuri, N. Saha and P. Saha, “Deposition of PbS Particles from a Nonaqueous Chemical Bath at Room Temperature,” Materials Letters, Vol. 59, No. 17, 2005, pp. 2191-2193. doi:10.1016/j.matlet.2005.02.064
[23] Y. Zhao, X.-H. Liao, J.-M. Hong and J.-J. Zhu, “Synthesis of Lead Sulfide Nanocrystals via Microwave and Sonochemical Methods,” Materials Chemistry and Physics, Vol. 87, No. 1, 2004, pp. 149-153. doi:10.1016/j.matchemphys.2004.05.026
[24] G. E. Muilenberg, C. D. Wager, W. M. Riggs, L. E. Devis and J. F. Moulder, “Handbook of X-Ray Photoelectron Spectroscopy,” Perking-Elmer, New York, 1979.
[25] Z. Deng, B. Peng, D. Chen, F. Tang and A. Muscat, “A New Route to Self-Assembled Tin Dioxide Nanospheres: Fabrication and Characterization,” Langmuir, Vol. 24, No. 19, 2008, pp. 11089-11095. doi:10.1021/la800984g

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.