Share This Article:

Global Warming and the Power-Laws of Ecology

DOI: 10.4236/acs.2012.21002    5,456 Downloads   10,019 Views   Citations

ABSTRACT

A model based on Watson’s power law for the species-area relationship predicts that full global warming, projected up to the year 2050, could provoke the disappearance of roughly one-quarter of existing species. Here, an alternative approach is worked out, based on the combination of two ecology laws: Taylor and Watson’s power laws, where the former relates species variability with their mean abundance. Just how severely global warming would affect not only the number but the diversity of the surviving species is addressed by this approach, while at the same time giving indications for the post-disaster fate of the remaining species (extinction or recovery).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Arruda-Neto, M. Bittencourt-Oliveira, A. Castro, T. Rodrigues, J. Harari, J. Mesa and G. Genofre, "Global Warming and the Power-Laws of Ecology," Atmospheric and Climate Sciences, Vol. 2 No. 1, 2012, pp. 8-13. doi: 10.4236/acs.2012.21002.

References

[1] A. M. Kilpatrick and A. R. Ives, “Species Interactions can Explain Taylor’s Power Law for Ecological Time Series,” Nature, Vol. 422, No. 6927, 2003, pp. 65-68. doi:10.1038/nature01471
[2] S. L. Pimm, G. J. Russel, J. L. Gitleman and T. M. Brooks, “The Future of Biodiversity,” Science, Vol. 269, No. 5222, 1995, pp. 347-350. doi:10.1126/science.269.5222.347
[3] J. H. Lawton and R. M. May, “Extinction Rates,” Oxford University Press, Oxford, 1995.
[4] J. A. Pounds and R. Puschendorf, “Clouded Futures,” Nature, Vol. 427, 2004, pp. 107-109. doi:10.1038/427107a
[5] C. D. Thomas, “Extinction Risk from Climate Change,” Nature, Vol. 427, No. 8, 2004, pp. 145-148. doi:10.1038/nature02121
[6] M. L. Rosenzweig, “Species Diversity in Time and Space,” Cambridge University Press, Cambridge, 1995. doi:10.1017/CBO9780511623387
[7] B. C. Emerson and N. Kolm, “Species Diversity Can Drive Speciation,” Nature, Vol. 434, No. 7036, 2005, pp. 1015-1017. doi:10.1038/nature03450
[8] L. R. Taylor, I. P. Woiwod and J. N. Perry, “The Density Dependence of Spatial Behavior and the Rarity of Randomness,” Journal of Animal Ecology, Vol. 47, 1978, pp. 383-406. doi:10.2307/3790
[9] L. R. Taylor and I. P. Woiwod, “Temporal Stability as a Density-Dependent Species Characteristic,” Journal of Animal Ecology, Vol. 49, No. 1, 1980, pp. 209-224. doi:10.2307/4285
[10] L. R. Taylor and I. P. Woiwod, “Comparative Synoptic Dynamics: Relationships between Interspecific and Intraspecific Spatial and Temporal Variance-Mean Population Parameters,” Journal of Animal Ecology, Vol. 51, No. 3, 1982, pp. 879-906. doi:10.2307/4012
[11] A. M. Kilpatrick and A. R. Ives, “Species Interactions Can Explain Taylor’s Power Law for Ecological Time Series,” Nature, Vol. 422, No. 6927, 2003, pp. 65-68. doi:10.1038/nature01471
[12] T. M. Brooks, S. L. Pimm and N. J. Collar, “Deforestation Predicts the Number of Threatened Birds in Insular Southeast Asia,” Conservation Biology, Vol. 11, No. 2, 1997, pp. 382-394. doi:10.1046/j.1523-1739.1997.95493.x
[13] T. M. Brooks, S. L. Pimm and J. O. Oyugi, “Time Lag between Deforestation and Bird Extinction in Tropical Forest Fragments,” Conservation Biology, Vol. 13, No. 5, 1999, pp. 1140-1150. doi:10.1046/j.1523-1739.1999.98341.x
[14] F. W. Preston, “The Canonical Distribution of Commonness and Rarity: Part I,” Ecology, Vol. 43, No. 2, 1962, pp. 185-215. doi:10.2307/1931976
[15] J. Chave, H. C. Muller-Landau and S. A. Levin, “Comparing Classical Community Models: Theoretical Consequences for Patterns of Diversity,” American Naturalist, Vol. 159, No. 1, 2002, pp. 1-23. doi:10.1086/324112
[16] M. Tokeshi, “Coexistence: Ecological and Evolutionary Perspectives,” Blackwell Science, Oxford, 1999.
[17] C. Borrvall, R. Ebenman and T. Jonsson, “Biodiversity Lessens Risk of Cascading Extinction in Model Food Webs,” Ecology Letters, Vol. 3, No. 2, 2000, pp. 131- 136. doi:10.1046/j.1461-0248.2000.00130.x
[18] S. L. Pimm, “Complexity and Stability: Another Look at MacArthur’s Original Hypothesis,” Oikos, Vol. 33, No. 3, 1979, pp. 351-357. doi:10.2307/3544322
[19] S. L. Pimm, “Food Web Design and the Effect of Species Deletion,” Oikos, Vol. 35, 1980, pp. 139-149. doi:10.2307/3544422
[20] D. Tilman, D. Wedin and J. Knops, “Productivity and Sustainability Influenced by Biodiversity in Grassland Ecosystems,” Nature, Vol. 379, No. 6567, 1996, pp. 718-720. doi:10.1038/379718a0
[21] D. Tilman, J. Knops, D. Wedin, P. Reich, M. Ritchie and E. Siemann, “The Influence of Functional Diversity and Composition on Ecosystems Processes,” Science, Vol. 277, No. 5330, 1997, pp.1300-1302. doi:10.1126/science.277.5330.1300
[22] S. P. Hubbell, “The Unified Neutral Theory of Biodiversity and Biogeography,” Princeton University Press, Princeton, 2001.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.