Share This Article:

Copper Nanoparticles as Modulators of Apoptosis and Structural Changes in Tissues

Abstract Full-Text HTML Download Download as PDF (Size:1589KB) PP. 97-104
DOI: 10.4236/jbnb.2012.31013    6,332 Downloads   10,073 Views   Citations

ABSTRACT

Results of research on copper nanoparticles influence on index of readiness to apoptosis and structural changes of liver, spleen, kidney tissues as well as sensomotor cerebral cortex under copper multiple introductions into organism of animals are presented in the article. It is established that copper nanoparticles distribute in organs and tissues of animals and cause specific structural changes. The increase of copper nanoparticles in organism up to toxical threshold (maximum tolerated dose) results in dystrophy and tissue necrosis. Accurate expression enhancement of Caspase 3 in micro-gliocytes (brain macrophages) has been registered seven days after one-fold intramuscular introduction of copper nanoparticles (dose 2 mg/kg of animal body weight), in liver cells - three and seven days after three-fold intramuscular introduction of copper nanoparticles (total dose was 6 mg/kg of animal body weight), in proximal kidney tubules-three hours, one, three and seven days after three-fold intramuscular introduction of copper nanoparticles (with total dose 6 mg/kg of animal body weight), in spleen cells three hours, one, three and seven days after 12-fold intramuscular introduction (with total dose 24 mg/kg of animal body weight). Received data enables us to propose using index of cells readiness to apoptosis defined by Caspase 3 expression as a criterion for copper nanoparticles introduction safety assessment.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Sizova, S. Miroshnikov, V. Polyakova, N. Gluschenko and A. Skalny, "Copper Nanoparticles as Modulators of Apoptosis and Structural Changes in Tissues," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 97-104. doi: 10.4236/jbnb.2012.31013.

References

[1] J. B. Wright, K. Lam, A. G. Buret, M. E. Olson and R. E. Burrell, “Early Healing Events in a Porcine Model of Contaminated Wounds: Effects of Nanocrystalline Silver on Matrix Metal loproteinases, Cell Apoptosis, and Healing,” Wound Repair and Regeneration, Vol. 10, No. 3, 2002, pp. 141-151. doi:10.1046/j.1524-475X.2002.10308.x
[2] N. N. Glushchenko, O. A. Bogoslovskaya and I. P. Olkhovskaya, “Physical and Chemical Laws of Biological Effect of Superfine Metal Powders,” Chemical Physics, Vol. 21, No. 4, 2002, pp. 79-86.
[3] T. A. Baytukalov, N. N. Glushchenko, O. A. Bogoslovskaya, I. P. Olkhovskaya, G. E. Folmanis and I. P. Arsentieva, “Wound Healing Composition and Method of Preparation,” RF Patent No. 2296571, 2007,
[4] T. A. Baytukalov, N. N. Glushchenko, O. A. Bogoslovskaya, I. P. Olkhovskaya, I. O. Leipunsky, A. N. Zhigach and E. A. Shafranovsky, “Drug Accelerating Wound Healing,” RF Patent No.2306141, 2007.
[5] “Publications for 1977-2010 Years on the Web Site of the Laboratory.” http://www. nanobiology.narod.ru
[6] A. A. Shvedova and V. E. Kagan, “The Role of Nanotoxicology in Realizing the ‘Helping without Harm’ Paradigm of Nanomedicine: Lessons from Studies of Pulmonary Effects of Single-Walled Carbon Nanotubes,” Journal of Internal Medicine, Vol. 276, No. 1, 2010, pp. 106-118.
[7] H. S. Sharma, S. Hussain, J. Schlager, S. F. Ali and A. Sharma, “Influence of Nanoparticles on Blood-Brain Barrier Permeability and Brain Edema Formation in Rats,” Acta Neurochirurgica Supplementum, Vol. 106, 2010, pp. 359-364. doi:10.1007/978-3-211-98811-4_65
[8] Z. Yang, Z. W. Liu, R. P. Allaker, P. Reip, J. Oxford, Z. Ahmad and G. Ren, “A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System,” Journal of the Royal Society Interface, Vol. 7, Supplement 4, 2010, pp. 411-422.
[9] J. Wang, M. F. Rahman, H. M. Duhart, G. D. Newport, T. A. Patterson, R. C. Murdock, S. M. Hussain, J. J. Schlager and S. F. Ali, “Expression Changes of Dopaminergic System-Related Genes in PC12 Cells Induced by Manganese, Silver, or Copper Nanoparticles,” Neurotoxicology, Vol. 30, No. 6, 2009, pp. 926-933. doi:10.1016/j.neuro.2009.09.005
[10] M. Y. Liao, R. H. Lei, C. Q. Wu, B. H. Yang, H. Z. Ma, C. Shi, Q. J. Wang, Q. X. Wang and Y. Yuan “Integrated Metabolomic Analysis of the Nano-Sized Copper Particle-Induced Hepatotoxicity and Nephrotoxicity in Rats: A Rapid in Vivo Screening Method for Nanotoxicity,” Toxicology and Applied Pharmacology, Vol. 232, No. 2, 2008, pp. 292-301. doi:10.1016/j.taap.2008.06.026
[11] H. L. Karlsson, P. Cronholm, J. Gustafsson and L. M?ller, “Copper Oxide Nanoparticles are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes,” Chemical Research in Toxicology, Vol. 21, No. 9, 2008, pp. 1726-1732. doi:10.1021/tx800064j
[12] Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma and L. Wan, “Acute Toxicological Effects of Copper Nanoparticles in Vivo,” Toxicology Letters, Vol. 163, No. 2, 2006, pp. 109-120. doi:10.1016/j.toxlet.2005.10.003
[13] A. R. Murray, E. Kisin, S. S. Leonard, S. H. Young, C. Kommineni, V. E. Kagan, V. Castranova and A. A. Shvedova, “Oxidative Stress and Inflammatory Response in Dermal Toxicity of Single-Walled Carbon Nanotubes,” Toxicology, Vol. 257, No. 3, 2009, pp. 161-171. doi:10.1016/j.tox.2008.12.023
[14] G. G. Onishchenko, “The Concept of Toxicological Studies, Estimated Risk Methodology, Methods of Identification and Quantification of Nanomaterials,” Resolution 79, Registered in the Russian Ministry of Justice, Registration No. 10528, 2007.
[15] M. Ya. Gen and A. V. Miller, “Author’s Certificate of the USSR No. 814432,” Bulletin of Discoveries, No. 11, 1981, pp. 25-28.
[16] А. N. Zhigach, I. О. Leipunsky, М. L. Kuskov, N. I. Stoenko and V. B. Storozhev, “Facility for Producing and Studying Physical and Chemical Properties of Metal Nanoparticles,” Instruments and Experimental Techniques, No. 6, 2000, pp.122-125.
[17] E. Peirce, “Histochemistry, Theoretical and Applied,” Churchill, Moscow, 1962, pp. 962-968.
[18] A. A. Rakhmetova, T. P. Alekseeva, O. A. Bogoslovskaya, I. O. Leipunsky, I. P. Olkhovskaya, A. N. Zhigach and N. N. Glushchenko, “Wound Healing Properties of Copper Nanoparticles Depending on Their Physical and Chemical Characteristics,” Russian Nanotechnology, Vol. 5, No. 3-4, 2010, pp. 102-111.
[19] N. N. Glushchenko, I. P. Olkhovskaya, T. V. Pleteneva, L. D. Fatkullina, Yu. A. Ershov and Yu. I. Fedorov, “The Biological Effect of Superfine Metal Powders,” Izvestiya АN, No.3, 1989, pp. 415-418.
[20] О. А. Bogoslovskaya, Е. А. Sizova, V. S. Polyakova, S. А. Miroshnikov, I. О. Leipunsky, I. P. Olkhovskaya and N. N. Glushchenko, “The Study of Safe Introduction of Copper Nanoparticles with Different Physical-Chemical Characteristics into Organisms of Animals,” Bulletin of OSU, No. 2, 2009, pp. 124-128.
[21] V. А. Galitsky, “The Emergence of Eukaryotic Cells and the Origin of Apoptosis,” Cytology, Vol. 47, No. 2, 2005, pp. 103-108.
[22] А. V. Kudrin and А. А. Zhavoronkov, “The Role of Minor Constituences and Calcium in the Regulation of Apoptosis,” Successes of Modern Biology, 1998, pp.7-15.
[23] N. I. Kaletina and G. I. Kaletin, “Minor Constituences— Biological Controls,” Academy of Science, No. 1, 2007, pp. 50-60.
[24] O. A. Bogoslovskaya, L. A. Volodina, I. O. Leipunsky, А. N. Zhigach, T. P. Alekseeva, А. А. Rakhmetova, М. N. Ovsyannikova, I. P. Olkhovskaya and N. N. Glushchenko, “The Effect of Copper Nanoparticles-Components of Particulate Matters of Thermal Power Plants Smoke Carryovers on Bacterial Cells,” Izvestiya AN, No. 2, 2010, pp. 105-108.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.