Share This Article:

Commensal E. Coli Strains Uniquely Alter the ECM Topography Independent of Colonic Epithelial Cells

Abstract Full-Text HTML Download Download as PDF (Size:1534KB) PP. 70-78
DOI: 10.4236/jbnb.2012.31009    4,005 Downloads   6,306 Views   Citations


The relationship between commensal bacteria and the epithelial cells lining the colon is normally symbiotic. However, in the setting of diseases which lead to a loss of the protective mucosal layer such as inflammatory bowel disease or colon cancer, commensal bacteria gain the ability to alter both the behavior of epithelial cells as well as their surrounding extra cellular matrix (ECM). While much work has been done to understand the effects of bacteria on diseased epithelial cells in the colon, very little has been done to understand their impact on the ECM. In our previous work, we have shown that topographical changes in the ECM on the luminal side of the colon have a profound influence on the behavior of colonic epithelial cells. However, we do not understand all of the mechanisms that lead to changes in the ECM topography. This study aimed to understand the role that commensal E. coli strains play in altering the ECM topography of type-1 collagen scaffolds. To do this, 1.2 mg/ml type 1 collagen scaffolds were infected with various commensal bacterial strains. At 24 hours post-infection collagen fiber dimensions and substrate topography were determined using standard molecular biology techniques and advanced imaging. Intriguingly, all of the commensal E. coli strains showed some form of substrate degradation. Especially in the case of commensal E. coli strain HS4, maximum nano-scaled protrusions were observed. This data suggests, for the first time, that studying the effects of bacteria alone on the ECM may be critical to improving our understanding of how the cellular microenvironment changes in both health and disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Bharadwaj, V. Nekrasov, R. Vishnubhotla, C. Foster and S. Glover, "Commensal E. Coli Strains Uniquely Alter the ECM Topography Independent of Colonic Epithelial Cells," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 70-78. doi: 10.4236/jbnb.2012.31009.


[1] J. H. Cummings, “Dietary Carbohydrates and the Colonic Microflora,” Current Opinion in Clinical Nutrition and Metabolic Care, Vol. 1, No. 5, 1998, pp. 409-414. doi:10.1097/00075197-199809000-00007
[2] J. H. Cummings and G. T. Macfarlane, “The Control and Consequences of Bacterial Fermentation in the Human Colon,” The Journal of Applied Bacteriology, Vol. 70, No. 6, 1991, pp. 443-459. doi:10.1111/j.1365-2672.1991.tb02739.x
[3] N. M. de Roos and M. B. Katan, “Effects of Probiotic Bacteria on Diarrhea, Lipid Metabolism, and Carcinogenesis: A Review of Papers Published between 1988 and 1998,” The American journal of Clinical Nutrition, Vol. 71, No. 2, 2000, pp. 405-411.
[4] J. Y. Lim and H. J. Donahue, “Cell Sensing and Response to Micro- and Nano-structured Surfaces Produced by Chemical and Topographic Patterning,” Tissue engineering, Vol. 13, No. 8, 2007, pp. 1879-1891. doi:10.1089/ten.2006.0154
[5] K. Anselme, “Osteoblast Adhesion on Biomaterials,” Biomaterials, Vol. 21, No. 7, 2000, pp. 667-681. doi:10.1016/S0142-9612(99)00242-2
[6] K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley and L. Ploux, “The Interaction of Cells and Bacteria with Surfaces Structured at the Nanometre Scale,” Acta Biomaterialia, Vol. 6, No. 10, 2010, pp. 3824-3846. doi:10.1016/j.actbio.2010.04.001
[7] J. J. Mancuso, A. M. Larson, T. G. Wensel and P. Saggau, “Multiphoton Adaptation of a Commercial Low-Cost Confocal Microscope for Live Tissue Imaging,” Journal of Biomedical Optics, Vol. 14, No. 3, 2009, p. 034048. doi:10.1117/1.3139850
[8] D. R. Eyre, M. A. Weis and J. J. Wu, “Advances in Collagen Cross-Link Analysis,” Methods, Vol. 45, No. 1, 2008, pp. 65-74. doi:10.1016/j.ymeth.2008.01.002
[9] C. S. Ranucci and P. V. Moghe, “Substrate Microtopography Can Enhance Cell Adhesive and Migratory Responsiveness to Matrix Ligand Density,” Journal of Biomedical Materials Research, Vol. 54, No. 2, 2001, pp. 149-161. doi:10.1002/1097-4636(200102)54:2<149::AID-JBM1>3.0.CO;2-O
[10] M. Lampin, C. Warocquier, C. Legris, M. Degrange and M. F. Sigot-Luizard, “Correlation between Substratum Roughness and Wettability, Cell Adhesion, and Cell Migration,” Journal of Biomedical Materials Research, Vol. 36, No. 1, 1997, pp. 99-108. doi:10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E
[11] T. W. Chung, D. Z. Liu, S. Y. Wang and S. S. Wang, “Enhancement of the Growth of Human Endothelial Cells by Surface Roughness at Nanometer Scale,” Biomaterials, Vol. 24, No. 25, 2003, pp. 4655-4661. doi:10.1016/S0142-9612(03)00361-2
[12] Y. W. Fan, F. Z. Cui, S. P. Hou, Q. Y. Xu, L. N. Chen and I. S. Lee, “Culture of Neural Cells on Silicon Wafers with Nano-Scale Surface Topograph,” Journal of Neuro-science Methods, Vol. 120, No. 1, 2002, pp. 17-23. doi:10.1016/S0165-0270(02)00181-4
[13] A. Thapa, D. C. Miller, T. J. Webster amnd K. M. Haberstroh, “Nano-Structured Polymers Enhance Bladder Smooth Muscle Cell Function,” Biomaterials, Vol. 24, No. 17, 2003, pp. 2915-2926. doi:10.1016/S0142-9612(03)00123-6
[14] “ISO 4287 I: Geometrical Product Specifications (GPS) —Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters,” 1997.
[15] “ISO 4288 I: Geometrical Product Specifications (GPS) —Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture,” 1996.
[16] M. Krystek, “Die Digitale Implementierung des Profilfilters Nach DIN EN ISO 11562,” 2004.
[17] C. Instruments, “Spacial Fil-ering of Surface Profile Data,” 2004.
[18] M. Chen, D. Q. Le, A. Baatrup, J. V. Nygaard, S. Hein, L. Bjerre, M. Kassem, X. Zou and C. Bunger, “Self-Assembled Composite Matrix in a Hierarchical 3-D Scaffold for Bone Tissue Engineering,” Acta Biomaterialia, Vol. 7, No. 5, 2011, pp. 2244-2255. doi:10.1016/j.actbio.2010.12.031
[19] G. Wang, X. Liu, H. Zreiqat and C. Ding, “Enhanced Effects of Nano-Scale Topography on the Bioactivity and Osteoblast Behaviors of Micron Rough ZrO2 Coatings,” Colloids and Surfaces B: Biointerfaces, Vol. 86, No. 2, 2011, pp. 267-274. doi:10.1016/j.colsurfb.2011.04.006
[20] H. Zhu, B. Cao, Z. Zhen, A. A. Laxmi, D. Li, S. Liu and C. Mao, “Controlled Growth and Differentiation of MSCs on Grooved Films Assembled from Monodisperse Biological Nanofibers with Genetically Tunable Surface Chemistries,” Biomaterials, Vol. 32, No. 21, 2011, pp. 4744-4752. doi:10.1016/j.biomaterials.2011.03.030
[21] T. K. Teh, S. L. Toh and J. C. Goh, “Aligned Hybrid Silk Scaffold for Enhanced Differentiation of Mesenchymal Stem Cells into Ligament Fibroblasts,” Tissue Engineering Part C, Methods, Vol. 17, No. 6, 2011, pp. 517-526.
[22] V. J. Mukhatyar, M. Salmeron-Sanchez, S. Rudra, S. Mukhopadaya, T. H. Barker, A. J. Garcia and R. V. Bellamkonda, “Role of Fibronectin in Topographical Guidance of Neurite Extension on Electrospun Fibers,” Biomaterials, Vol. 32, No. 16, 2011, pp. 3958-3968. doi:10.1016/j.biomaterials.2011.02.015
[23] N. Yang, R. Mosher, S. Seo, D. Beebe and A. Friedl, “Syndecan-1 in Breast Cancer Stroma Fibroblasts Regulates Extracellular Matrix Fiber Organization and Carcinoma Cell Motility,” The American Journal of Pathology, Vol. 178, No. 1, 2011, pp. 325-335. doi:10.1016/j.ajpath.2010.11.039
[24] M. J. Poellmann, P. A. Harrell, W. P. King, A. J. W. Johnson, “Geometric Microenvironment Directs Cell Morphology on Topographically Patterned Hydrogel Substrates,” Acta Biomaterialia, Vol. 6, No. 9, 2010, pp. 3514-3523. doi:10.1016/j.actbio.2010.03.041
[25] C. J. Bettinger, R. Langer and J. T. Borenstein, “Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function,” Angewandte Chemie, Vol. 48, No. 30, 2009, pp. 5406-5415. doi:10.1002/anie.200805179
[26] M. J .Biggs, R. G. Richards, N. Gadegaard, R. J. McMurray, S. Affrossman, C. D. Wilkinson, R. O. Oreffo and M. J. Dalby, “Interactions with Nanoscale Topography: Adhesion Quantification and Signal Transduction in Cells of Osteogenic and Multipotent Lineage,” Journal of Biomedical Materials Research Part A, Vol. 91, No. 1, 2009, pp. 195-208.
[27] K. Hotary, X. Y. Li, E. Allen, S. L. Stevens and S. J. Weiss, “A Cancer Cell Metalloprotease Triad Regulates the Basement Membrane Transmigration Program,” Genes & Development, Vol. 20, No. 19, 2006, pp. 2673-2686. doi:10.1101/gad.1451806
[28] A. S. Andersson, F. Backhed, A. von Euler, A. Richter- Dahlfors, D. Sutherland and B. Kasemo, “Nanoscale Features Influence Epithelial Cell Morphology and Cytokine Production,” Biomaterials, Vol. 24, No. 20, 2003, pp. 3427-3436. doi:10.1016/S0142-9612(03)00208-4
[29] I. Vlodavsky and Y. Friedmann, “Molecular Properties and Involvement of Heparanase in Cancer Metastasis and Angiogenesis,” The Journal of Clinical Investigation, Vol. 108, No. 3, 2001, pp. 341-347.
[30] E. H. Lo, X. Wang and M. L. Cuzner, “Extracellular Proteolysis in Brain Injury and Inflammation: Role for Plasminogen Activators and Matrix Metalloproteinases,” Journal of Neuroscience Research, Vol. 69, No. 1, 2002, pp. 1-9. doi:10.1002/jnr.10270
[31] R. Fuller, “Probiotics in Human Medicine,” Gut, Vol. 32, 1991, pp. 439-442. doi:10.1136/gut.32.4.439

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.