Share This Article:

On Conjugation Partitions of Sets of Trinucleotides

Abstract Full-Text HTML XML Download Download as PDF (Size:185KB) PP. 107-112
DOI: 10.4236/am.2012.31017    5,304 Downloads   8,028 Views   Citations

ABSTRACT

We prove that a trinucleotide circular code is self-complementary if and only if its two conjugated classes are complement of each other. Using only this proposition, we prove that if a circular code is self-complementary then either both its two conjugated classes are circular codes or none is a circular code.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Bussoli, C. Michel and G. Pirillo, "On Conjugation Partitions of Sets of Trinucleotides," Applied Mathematics, Vol. 3 No. 1, 2012, pp. 107-112. doi: 10.4236/am.2012.31017.

References

[1] J. Berstel and D. Perrin, “Theory of Codes, Vol. 117, (Pure and Applied Mathematics),” Academic Press, London, 1985.
[2] J.-L. Lassez, “Circular codes and synchronization,” International Journal of Computer & Information Sciences, Vol. 5, 1976, pp. 201-208.
[3] F. H. C. Crick, J. S. Griffith and L. E. Orgel, “Codes without commas,” Proceedings of the National Academy of Sciences of the USA, Vol. 43, 1957, pp. 416-421. doi:10.1073/pnas.43.5.416
[4] S. W. Golomb, B. Gordon and L. R. Welch, “Comma-Free codes,” Canadian Journal of Mathematics, Vol. 10, No. 2, 1958, pp. 202-209. doi:10.4153/CJM-1958-023-9
[5] S. W. Golomb, L. R. Welch and M. Delbrück, “Construction and Properties of Comma-Free Codes,” Biologiske Meddel Danske Vidensk Selsk, Vol. 23, 1958, pp. 1-34.
[6] D. G. Arquès and C. J. Michel, “A Complementary Circular Code in the Protein Coding Genes,” Journal of Theoretical Biology, Vol. 182, No. 1, 1996, pp. 45-58. doi:10.1006/jtbi.1996.0142
[7] A. J. Koch and J. Lehman, “About A symmetry of the Genetic Code,” Journal of Theoretical Biology, Vol. 189, No. 2, 1997, pp. 171-174. doi:10.1006/jtbi.1997.0503
[8] M.-P. Béal and J. Senellart, “On the Bound of the Synchronization Delay of a Local Automaton,” Theoretical Computer Science, Vol. 205, No. 1-2, 1998, pp. 297-306. doi:10.1016/S0304-3975(98)80011-X
[9] F. Bassino, “Generating Function of Circular Codes,” Advances in Applied Mathematics, Vol. 22, No. 1, 1999, pp. 1-24. doi:10.1006/aama.1998.0613
[10] N. ?tambuk, “On Circular Coding Properties of Gene and Protein Sequences,” Croatica Chemica Acta, Vol. 72, No. 4, 1999, pp. 999-1008.
[11] R. Jolivet and F. Rothen, “Peculiar Symmetry of DNA Sequences and Evidence Suggesting Its Evolutionary Origin in a Primeval Genetic Code,” First European Workshop Exo-/Astro-Biology, Noordwijk, 21-23 May 2001, pp. 173- 176.
[12] G. Frey and C. J. Michel, “Circular Codes in Archaeal Genomes,” Journal of Theoretical Biology, Vol. 223, No. 4, 2003, pp. 413-431. doi:10.1016/S0022-5193(03)00119-X
[13] C. Nikolaou and Y. Almirantis, “Mutually Symmetric and Complementary Triplets: Difference in Their Use Distinguish Systematically between Coding and Non-Coding Genomic Sequences,” Journal of Theoretical Biology, Vol. 223, No. 4, 2003, pp. 477-487. doi:10.1016/S0022-5193(03)00123-1
[14] E. E. May, M. A. Vouk, D. L. Bitzer and D. I. Rosnick, “An Error-COrrecting Framework for Genetic Sequence Analysis,” Journal of the Franklin Institute, Vol. 341, No. 1-2, 2004, pp. 89-109. doi:10.1016/j.jfranklin.2003.12.009
[15] G. Frey and C. J. Michel, “Identification of Circular Codes in Bacterial Genomes and Their Use in a Factorization Method for Retrieving the Reading Frames of Genes,” Computational Biology and Chemistry, Vol. 30, No. 2, 2006, pp. 87-101. doi:10.1016/j.compbiolchem.2005.11.001
[16] J.-L. Lassez, R. A. Rossi and A. E. Bernal, “Crick’s Hypothesis Revisited: The Existence of a Universal Coding Frame,” Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia (AINA'07), Niagara Falls, Vol. 2, 21-23 May 2007, pp. 745-751.
[17] G. Pirillo, “A characterization for a Set of Trinucleotides to be a Circular Code,” In: C. Pellegrini, P. Cerrai, P. Freguglia, V. Benci and G. Israel, Eds., Determinism, Holism, and Complexity, Kluwer, Boston, 2003.
[18] C. J. Michel, G. Pirillo and M. A. Pirillo, “Varieties of Comma-Free Codes,” Computers & Mathematics with Applications, Vol. 55, No. 5, 2008, pp. 989-996. doi:10.1016/j.camwa.2006.12.091
[19] G. Pirillo, “A Hierarchy for Circular Codes,” Theoretical Informatics and Applications, Vol. 42, No. 4, 2008, pp. 717-728.
[20] M. V. José, T. Govezensky, J. A. García and J. R. Bobadilla, “On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes,” PLoS ONE, Vol. 4, No. 2, 2009, p. e4340. doi:10.1371/journal.pone.0004340
[21] G. Pirillo, “Some Remarks on Prefix and Suffix Codes,” Pure Mathematics and Applications, Vol. 19, No. 2-3, 2008, pp. 53-60.
[22] G. Pirillo, “Non Sharing Border Codes,” Advances in Applied Mathematics, Vol. 3, No. 2, 2010, pp. 215-223.
[23] L. Bussoli, C. J. Michel and G. Pirillo, “On Some Forbidden Configurations for Self-Complementary Trinucleotide Circular Codes,” Journal for Algebra Number Theory Academia, Vol. 2, 2011, pp. 223-232.
[24] G. Pirillo and M. A. Pirillo, “Growth Function of Self-Complementary Circular Codes,” Biology Forum, Vol. 98, 2005, pp. 97-110.
[25] C. J. Michel, G. Pirillo and M. A. Pirillo, “A Relation between Trinucleotide Comma-Free Codes and Trinucleotide Circular Codes,” Theoretical Computer Science, Vol. 401, No. 1-3, 2008, pp. 17-25. doi:10.1016/j.tcs.2008.02.049

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.