Share This Article:

Biological Evaluation of Tissue-Engineered Cartilage Using Thermoresponsive Poly(N-isopropylacrylamide)-Grafted Hyaluronan

DOI: 10.4236/jbnb.2012.31001    4,047 Downloads   7,432 Views   Citations

ABSTRACT

In order to contribute to the development of minimally invasive surgery techniques for autologous chondrocyte implantation, a novel self-assembling biomaterial consisting of thermoresponsive poly(N-isopropylacrylamide)-grafted hyaluronan (PNIPAAm-g-HA) has been synthesized as an injectable scaffold for cartilage tissue engineering. The aim of this study was to investigate the efficacy and cytocompatibility of PNIPAAm-g-HA to normal chondrocytes by using reverse transcription-polymerase chain reaction (RT-PCR) analysis and histochemical staining in preliminary in vitro and in vitro experiments. Hematoxylin and eosin staining showed homogeneous distribution of cells in the PNIPAAm-g-HA hydrogel in 3-dimensional in vitro cultivation. Alcian blue staining also indicated that abundant extracellular matrix formation, including acidic glycosaminoglycans, occurred in tissue-engineered cartilage over time in vitro. Cartilage-related gene expression patterns, which were tested in rabbit normal chondrocytes embedded in the hydrogel, were almost maintained for 4 weeks. Transforming growth factor-β1 (TGF-β1) stimulation enhanced the expression of SRY-related HMG box-containing gene 9 (Sox9) and type X collagen genes suggesting promotion of chondrogenic differentiation. Histochemical evaluation showed neocartilage formation following subcutaneous implantation of the chondrocyte-gel mixture in nude mice. Furthermore, TGF-β1 stimulation promoted production and maturation of the extracellular matrix of the in situ tissue engineered hyaline cartilage. These data suggested that PNIPAAm-g-HA could be a promising biomaterial, i.e., a self-assembling and injectable scaffold for cartilage tissue engineering.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Muramatsu, M. Ide and F. Miyawaki, "Biological Evaluation of Tissue-Engineered Cartilage Using Thermoresponsive Poly(N-isopropylacrylamide)-Grafted Hyaluronan," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 1-9. doi: 10.4236/jbnb.2012.31001.

References

[1] M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson and L. Peterson, “Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation,” New England Journal of Medicine, Vol. 331, No. 14, 1994, pp. 889-895. doi:10.1056/NEJM199410063311401
[2] J. B. Richardson, B. Caterson, E. H. Evans, B. A. shton and S. Roberts, “Repair of Human Articular Cartilage after Implantation of Autologous Chondrocytes,” Journal of Bone and Joint Surgery (Br), Vol. 81, No. 6, 1999, pp. 1064-1068. doi:10.1302/0301-620X.81B6.9343
[3] M. Ochi, Y. Uchio, K. Kawasaki, S. Wakitani and J. Iwasa, “Transplantation of Cartilage-Like Tissue Made by Tissue Engineering in the Treatment of Cartilage Defects of the Knee,” Journal of Bone and Joint Surgery (Br), Vol. 84, No. , 2002, pp. 571-578. doi:10.1302/0301-620X.84B4.11947
[4] H. Tohyama, K. Yasuda, A. Minami, T. Majima, N. Iwasaki, T. Muneta, I. Sekiya, K. Yagishita, S. Takahashi, K. Kurokouchi, Y. Uchio, J. Iwasa, M. Deie, N. Adachi, K. Sugawara and M. Ochi, “Atelocollagen-Associated Autologous Chondrocyte Implantation for the Repair of Chondral Defects of the Knee: A Prospective Multicenter Clinical Trial in Japan,” Journal of Orthopedic Science, Vol. 14, No. 5, 2009, pp. 579-588. doi:10.1007/s00776-009-1384-1
[5] J. B. Moseley Jr., A. F. Anderson, J. E. Browne, B. R. Mandelbaum, L. J. Micheli, F. Fu and C. Erggelet, “Long-Term Durability of Autologous Chondrocyte Implantation. A Multicenter, Observational Study in US Patients,” American Journal of Sports and Medicine, Vol. 38, No. 2, 2010, pp. 238-246. doi:10.1177/0363546509348000
[6] M. Sit-tinger, D. Reitzel, M. Dauner, H. Hierlemann, C. Hammer, E. Kastenbauer, H. Planck, G. R. Burmester and J. Bujia, “Resorbable Polyesters in Cartilage Engineering: Affinity and Biocompatibility of Polymer Fiber Structures to Chondrocytes,” Journal of Biomedical Materials Research, Vol. 33, No. 2, 1996, pp. 57-63. doi:10.1002/(SICI)1097-4636(199622)33:2<57::AID-JBM1>3.0.CO;2-K
[7] B. Grigolo, L. Roseti, M. Fiorini, M. Fini, G. Giavaresi, N. N. Aldini, R. Giardino and A. Facchini, “Transplantation of Chondrocytes Seeded on a Hyaluronan Derivative (Hyaff-11) into Cartilage Defects in Rabbits,” Biomatrrials, Vol. 22, No. 17, 2001, pp. 2417-2424. doi:10.1016/S0142-9612(00)00429-4
[8] P. Brun, G. Abatangelo, M. Radice, V. Zacchi, D. Guidolin, D. D. Gordini and R. Cortivo, “Chondrocyte Aggregation and Reorganization into Three-Dimentional Scaffolds,” Journal of Biomedical Materials Research, Vol. 46, No. 3, 1999, pp. 337-346. doi:10.1002/(SICI)1097-4636(19990905)46:3<337::AID-JBM5>3.0.CO;2-Q
[9] L. A. Solchage, J. E. Dennis, V. M. Goldberg and A. I. Caplan, “Hyaluronic Acid-Based Polymers as Cell Carriers for Tissue-Engineered Repair of Bone and Cartilage,” Journal of Orthopedic and Research, Vol. 17, No. 2, 1999, pp. 205-213. doi:10.1002/jor.1100170209
[10] Z. Gugala and S. Gogolewski, “In Vitro Growth and Activity of Primary Chondrocytes on a Resorbable Polylactide three-Dimentional Scaffold,” Journal of Biomedical Materials Research, Vol. 49, No. 2, 2000, pp. 183-191. doi:10.1002/(SICI)1097-4636(200002)49:2<183::AID-JBM5>3.0.CO;2-D
[11] J. Kisiday, M. Jin, B. Kurz, H. Hung, S. Zhang and A. J. Grodzinsky, “Self-Assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division: Implications for Cartilage Tissue Repair,” Proceedings of the National Academy of Science, Vol. 99, No. 15, 2002, pp. 9996-10001. doi:10.1073/pnas.142309999
[12] M. Jasionowski, K. Krzyminski, W. Chrisler, L. M. Markille, J. Morris and A. Gutowska, “Thermally-Reversible gel for 3-D Cell Culture of Chondrocytes,” Journal of Materials Science: Materials in Medicine, Vol. 15, No. 5, 2004, pp. 575-582. doi:10.1023/B:JMSM.0000026379.24560.a2
[13] M. Ochi, N. Adachi, H. Nobuto, S. Yanada, Y. Ito and M. Agung, “Articular Cartilage Repair Using Tissue Engineering Technique—Novel Approach with Minimally Invasive Procedure,” Artificial Organs, Vol. 28, No. 1, 2004, pp. 28-32. doi:10.1111/j.1525-1594.2004.07317.x
[14] R. C. Pereira, M. Scaranari, P. Castagnola, M. Grandizio, H. S. Azevedo, R. L. Reis, R. Cancedda and D. Gentili, “Novel Injectable Gel (System) as a Vehicle for Human Articular Chondrocytes in Cartilage Tissue Regeneration,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 3, No. 2, 2009, pp. 97-106. doi:10.1002/term.145
[15] N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki and Y. Sakurai, “Thermo-Responsive Polymeric Surfaces; Control of Attachment and Detachment of Cultured Cells,” Macromo-lecular Chemistry, Rapid Communication, Vol. 11, No. 11, 1990, pp. 571-576. doi:10.1002/marc.1990.030111109
[16] O. H. Kwon, A. Kikuchi, M. Yamato, Y. Sakurai and T. Okano, “Rapid Cell Sheet Detachment from Poly(N-isopro-pylacrylamide)-Grafted Porous Cell Culture Membranes,” Journal of Biomedical Materials Research, Vol. 50, No. 1, 2000, pp. 82-89. doi:10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7
[17] J. P. Chen and T. H. Cheng, “Thermo-Responsive Chito-san-Graft-Poly(N-isopropylacrylamide) Injectable Hydrogel for Cultivation of Chondrocytes and Meniscus Cells,” Macromolecular Bioscience, Vol. 6, No. 12, 2006, pp. 1026-1039. doi:10.1002/mabi.200600142
[18] K. H. Park, P. D. Lee and K. Na, “Transplantation of Poly(N-isopropylacrylamide-co-vinylimidazole) Hydrogel Constructs Composed of Rabbit Chondrocytes and Growth Factor-Loaded Nanoparticles for Neocartilage Formation,” Biotechnology Letters, Vol. 31, No. 3, 2009, pp. 337-346. doi:10.1007/s10529-008-9871-6
[19] T. Yatabe, S. Mochizuki, M. Takizawa, M. Chijiiwa, A. Okada, T. Kimura, Y. Fujita, H. Matsumoto, Y. Toyama and Y. Okada, “Hyaluronan Inhibits Expression of ADAMTS4 (Aggrecanase-1) in Human Osteoarthritic Chondrocytes,” Annals of the Rheumatic Diseases, Vol. 68, No. 6, 2009, pp. 1051-1058. doi:10.1136/ard.2007.086884
[20] L. Y. W. Bourguig-non, E. Gilad, K. Peyrollier, A. Brightman and R. A. Swanson, “Hyaluronan-CD44 Interaction Stimulates Rac1 Signaling and PKNγ kinase Activation Leading to Cytoskeleton Function and Cell Migration in Astrocytes,” Journal of Neurochemistry, Vol. 101, No. 4, 2007, pp. 1002-1017. doi:10.1111/j.1471-4159.2007.04485.x
[21] R. A. And-hare, N. Takahashi, W. Knudson and C. B. Knudson, “Hyaluronan Promotes the Chondrocyte Response to BMP-7,” Osteoarthritis Cartilage, Vol. 17, No. 7, 2009, pp. 906-916. doi:10.1016/j.joca.2008.12.007
[22] M. Fuente, B. Seijo and M. J. Alonso, “Novel Hyaluronan-Based Nanocarriers for Transmucosal Delivery of Macro-molecules,” Macromolecular Bioscience, Vol. 8, No. 5, 2008, pp. 441-450. doi:10.1002/mabi.200700190
[23] C. B. Knudson, “Hyaluronan and CD44: Strategic Players for Cell-Matrix Interactions during Chondrogenesis and Matrix Assembly,” Birth Defects Research (Part C), Vol. 69, No. 2, 2003, pp. 174-196.
[24] G. Lisignoli, S. Cristino, A. Piacentini, C. Cavallo, A. J. Caplan and A. Facchini, “Hyaluronan-Based Polymer Scaffold Modulates the Expression of Inflammatory and Degradative Factors in Mesenchymal Stem Cells: Involvement of Cd44 and Cd54,” Journal of Cellular Physiology, Vol. 207, No. 2, 2006, pp. 364-373. doi:10.1002/jcp.20572
[25] Y. Hirose, T. Amiya, Y. Hirokawa and T. Tanaka, “Phase Transition of Submicron Gel Beads,” Macromolecules, Vol. 20, No. 6, 1987, pp. 1342-1344. doi:10.1021/ma00172a029
[26] S. Ohya, Y. Nakayama and T. Matsuda, “Thermoresponsive Artificial Extracellular Matrix for Tissue Engineering: Hyaluronic Acid Bioconjugated with Poly(N-isopropyl-acrylamide) Grafts,” Biomacromolecules, Vol. 2, No. 3, 2001, pp. 856-963. doi:10.1021/bm010040a
[27] K. Kawasaki, M. Ochi, Y. Uchio, N. Adachi and M. Matsusaki, “Hyaluronic Acid Enhances Proliferation and Chondroitin Sulfate Synthesis in Cultured Chondrocytes Embedded in Collagen Gels,” Journal of Cellular Physiology, Vol. 179, No. 2, 1999, pp. 142-148. doi:10.1002/(SICI)1097-4652(199905)179:2<142::AID-JCP4>3.0.CO;2-Q
[28] P. Franzen, P. ten Dijke, H. Ichijo, H. Yamashita, P. Schulz, C. H. Heldin and K. Miyazono, “Cloning a TGF Beta Type I Receptor That Forms a Heteromeric Complex with the TGF Beta Type II Receptor,” Cell, Vol. 75, No. 4, 1993, pp. 681-692. doi:10.1016/0092-8674(93)90489-D
[29] G. Lagna, A. Hata, A. Hemmati-Brivanlou and J. Massague, “Partnership between DPC4 and SMAD Proteins in TGF-β signaling Pathways,” Letters to Nature, Vol. 383, 1996, pp. 832-836. doi:10.1038/383832a0
[30] Y. Zhang, X. H. Feng, R. Y. Wu and R. Derynck, “Receptor-Associated Mad Homologues Synergize as Effectors of the TGF-β Response,” Letters to Nature, Vol. 383, 1996, pp. 168-172. doi:10.1038/383168a0
[31] J. Massaous and A. Hata, “TGF-Beta Signaling through the Smad Pathway,” Trends in Cell Biology, Vol. 7, No. 5, 1997, pp. 187-192. doi:10.1016/S0962-8924(97)01036-2
[32] A. Nakao, M. Afrakhte, A. Moren, T. Nakayama, J. L. Christian, R. Heuchel, S. Itoh, M. Kawabata, N. E. Heldin, C. H. Heldin and P. T. Dijke, “Identification of Smad 7, a TGFβ-Inducible Antagonist of TGF-β Signaling,” Nature, Vol. 389, No. 6651, 1997, pp. 631-635.
[33] K. Johnson, H. Kirkpatrick, A. Comer, F. M. Hoffmann and A. Laughon, “Interaction of Smad Complexes with Tripartite DNA-Binding Sites,” Journal of Biological Chemistry, Vol. 274, No. 29, 1999, pp. 20709-20716. doi:10.1074/jbc.274.29.20709
[34] T. Furumatsu, M. Tsuda, N. Taniguchi, Y. Tajima and H. Asahara, “Smad3 Induces Chindrogenesis through the Activation of SOX9 via CREB-Binding Protein/p300 Recruitment,” Journal of Biological Chemistry, Vol. 280, No. 9, 2005, pp. 8343-8350. doi:10.1074/jbc.M413913200
[35] P. Makkar, P. R. M. Metpally, S. Sangadara and B. V. B. Reddy, “Modeling and Analysis of MH1 Domain of Smads and Their Interaction with Promoter DNA Sequence Motif,” Journal of Molecular Graphics & Modeling, Vol. 27, No. 7, 2009, pp. 803-812. doi:10.1016/j.jmgm.2008.12.003
[36] B. Qiao, S. R. Padilla and P. D. Benya, “Transforming Growth Factor (TGF)-β-Activated Kinase 1 Mimics and Mediates TGF-β-Induced Stimulation of Type II Collagen Synthesis in Chondrocytes Independent of Col2a1 Transcription and Smad3 Signaling,” Journal of Biological Chemistry, Vol. 280, No. 17, 2005, pp. 17562-17571. doi:10.1074/jbc.M500646200
[37] L. M. Gunnell, J. H. Jonason, A. E. Loiselle, A. Kohn, E. M. Schwarz, M. J. Hilton and R. J. O’keefe, “TAK1 Regulates Cartilage and Joint Development via the MAPK and BMP Signaling Pathways,” Journal of Bone and Mineral Research, Vol. 25, No. 8, 2010, pp. 1784-1797. doi:10.1002/jbmr.79
[38] C. M. Ferguson, E. M. Schwarz, P. R. Reynolds, J. E. Puzas, R. N. Rosier and R. J. O’keefe, “Smad2 and 3 Mediate Transforming growth Factor-β1-Induced Inhibition of Chondrocyte Maturation,” Endocrinology, Vol. 141, No. 12, 2000, pp. 4728-4735. doi:10.1210/en.141.12.4728
[39] X. Yang, L. Chen, X. Xu, C. Li, C. Huang and C. X. Deng, “TGF-β/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Are Required for Maintaining Articular Cartilage,” Journal of Cellular Biology, Vol. 153, No. 1, 2001, pp. 35-46. doi:10.1083/jcb.153.1.35
[40] H. Kempf, A. Ionescu, A. M. Udager and A. B. Lassar, “Prochondrogenic Signals Induce a Competence for Runx2 to Activate Hypertrophic Chondrocyte Gene Expression,” Developmental Dynamics, Vol. 236, No. 7, 2007, pp. 1954-1962. doi:10.1002/dvdy.21205
[41] D. Presti and J. E. Scott, “Hyaluronan-Mediated Protective Effect against Cell Damage Caused by Enzymatically Produced Hydroxyl (OH-) Radicals Is Dependent on Hyaluronan Molecular Mass,” Cell Biochemistry and Function, Vol. 12, No. 4, 1994, pp. 281-288. doi:10.1002/cbf.290120409
[42] K. S. Santangelo, A. L. Johnson, A. S. Ruppert and A. L. Bertone, “Effects of Hyaluronan Treatment on Lipopolysaccharide-Challenged Fibroblast-Like Synovial Cells,” Arthritis Research & Therapy, Vol. 9, No. 1, 2007, pp. R1-R11. doi:10.1186/ar2104
[43] Y. Y. Liu, C. H. Lee, R. Dedaj, H. Zhao, H. Mrabat, A. Sheidlin, O. Syrkina, P. M. Huang, H. G. Garg, C. A. Hales and D. A. Quinn, “High-Molecular-Weight Hyaluronan—A Possible New Treatment for Sepsis-Induced Lung Injury: A Preclinical Study in Mechanically Ventilated Rats,” Critical Care, Vol. 12, No. 4, 2008, pp. R102-R112. doi:10.1186/cc6982
[44] T. Pauloin, M. Dutot, F. Joly, J. M. Warnet and P. Rat, “High Molecular Weight Hyaluronan Decreases UVB-Induced Apotosis and Inflammation in Human Epithelial Corneal Cells,” Molecular Vision, Vol. 15, 2009, pp. 577- 583.
[45] G. M. Campo, A. Avenoso, S. Campo, A. D. Ascola, P. Traina, C. A. Rugolo and A. Calatroni, “Differential Effects of Molecular Mass Hyaluronan on Lipopolysaccharide-Induced Damage in Chondrocytes,” Innate Immunity, Vol. 16, No. 1, 2010, pp. 48-63. doi:10.1177/1753425909340419

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.