Share This Article:

Fatigue Failure of Notched Specimen—A Strain-Life Approach

Abstract Full-Text HTML Download Download as PDF (Size:1196KB) PP. 1730-1740
DOI: 10.4236/msa.2011.212231    6,857 Downloads   13,095 Views   Citations

ABSTRACT

Failure cycles of notched round specimens under strain controlled cyclic loading are predicted using strain—life relations obtained from experiment for plain fatigue round specimens. For notched specimens, maximum strain occurs at notch root and is different from applied controlled strain. The maximum strain is computed by appropriate Finite element analysis using the FE software ABAQUS. FE model and material parameters are validated by comparing the FE results and experimental results of LCF tests of round specimens. This value of maximum strain is used for prediction of failure cycles. Prediction is compared with the experimental results. The results show good matching.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Joadder, J. Shit, S. Acharyya and S. Dhar, "Fatigue Failure of Notched Specimen—A Strain-Life Approach," Materials Sciences and Applications, Vol. 2 No. 12, 2011, pp. 1730-1740. doi: 10.4236/msa.2011.212231.

References

[1] Numerous examples of fatigue failures are given in Failure analysis and Prevention, “Metals Handbook,” Vol. 10, 8th Edition, American Society for Metals, Metals Park, 1975.
[2] M. A. Miner, Journal of Applied Mechanics, Vol. 12, pp. A159-A164, c1945.
[3] “Manual on Low-Cycle Fatigue Testing,” Constant Amplitude Low-Cycle Fatigue Testing, ASTM Standard E606-80, ASTM Specical Technical Publication 465, Philadelphia, 1969.
[4] J. D. Morrow, “Internal Friction, Damping and Cyclic Plasticity,” ASTM Specical Technical Publication No. 378, Philadelphia, 1965, p.72.
[5] L. F. Jr. Coffin, “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transactions of the ASME, Vol. 76, 1954, pp. 931-950.
[6] S. S. Manson and G. R. Halford, “Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage,” International Journal of Fracture, Vol. 17, No. 2, 1981, pp. 169-192. doi:10.1007/BF00053519
[7] H. Neuber, “Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Non- linear Stress-Strain Law,” Journal of Applied Mechanics, Vol. 28, 1961, pp. 544-550. doi:10.1115/1.3641780
[8] T. H. Topper, R. M. Wetzel and J. Morrow, Journal of Materials, Vol. 4, 1969, pp. 200-209.
[9] O. H. Basquin, “The Exponential Law of Endurance Tests,” American Society for Testing and Materials Proceedings, Vol. 10, 1910, pp. 625-630.
[10] A. H. Noroozi, G. Glinka and S. Lambert, “A Two Parameter Driving Force for Fatigue Crack Growth Analysis,” International Journal of Fatigue, Vol. 27, No. 10-12, 2005, pp. 1277-1296. doi:10.1016/j.ijfatigue.2005.07.002
[11] O. P. Ostash, V. V. Panasyuk and E. M. Kostyk, “A Unified Model of Initiation and Growth of Fatigue Macrocracks. Part 1. Use of Force Parameters of Fracture Mechanics of Materials at the Stage of Initiation of a Crack,” Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 34, No. 1, 1998, pp. 7-21.
[12] K. N. Pandey and S. Chand, “Fatigue Crack Growth Model for Constant Amplitude Loading,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 27, No. 1, 2004, pp. 459-472. doi:10.1111/j.1460-2695.2004.00760.x
[13] S. K. Visvanatha, P. V. Straznicky and R. L. Hewit, “Influence of Strain Estimation Methods on Life Predictions Using the Local Strain Approach,” International Journal of Fatigue, Vol. 22, No. 8, 2000, pp. 675-681. doi:10.1016/S0142-1123(00)00042-6.
[14] M. Knop, R. Jones, L. Molent and C. Wang, “On the Glinka and Neuber Methods for Calculating Notch Tip Strains under Cyclic Load Spectra,” International Journal of Fatigue, Vol. 22, No. 9, 2000, pp. 743-755. doi:10.1016/S0142-1123(00)00061-X
[15] J.-Y. Lim, S.-G. Hong and S.-B. Lee, “Application of Local Stress-Strain Approaches in the Prediction of Fatigue Crack Initiation Life for Cyclically Non-Stabilized and Non-Masing Steel,” International Journal of Fatigue, Vol. 27, No. 10-12, 2005, pp. 1653-1660. doi:10.1016/j.ijfatigue.2005.07.014
[16] F. Ding, M. L. Feng and Y. Y. Jiang, “Modeling of Fatigue Crack Growth from a Notch,” International Journal of Plasticity, Vol. 23, No. 7, 2007, pp. 1167-1188. doi:10.1016/j.ijplas.2006.10.010
[17] R. Tovo and P. Livieri, “An Implicit Gradient Application to Fatigue of Sharp Notches and Weldments,” Engineering Fracture Mechanics, Vol. 74, No. 4, 2007, pp. 515- 526. doi:10.1016/j.engfracmech.2006.06.009
[18] D. Kujawski and S. Stoychev, “Internal Stress Effects on Fatigue Crack Initiation at Notches,” International Journal of Fatigue, Vol. 29, 2007, pp. 1744-1750. doi:10.1016/j.ijfatigue.2006.12.004
[19] B. Atzori, P. Lazzarin and G. Meneghetti, “Fatigue Strength Assessment of Welded Joints: From the Integration of Paris’ Law to a Synthesis Based on the Notch Stress Intensity Factors of the Uncracked Geometries,” Engineering Fracture Mechanics, Vol. 75, No. 3-4, 2008, pp. 364-378. doi:10.1016/j.engfracmech.2007.03.029
[20] M. Benedetti, V. Fontanari, G. Lutjering and J. Albrecht, “The Effect of Notch Plasticity on the Behaviour of Fatigue Cracks Emanating from Edge-Notches in High Strength β-Titanium Alloys,” Engineering Fracture Mechanics, Vol. 75, No. 2, 2008, pp. 169-187. doi:10.1016/j.engfracmech.2007.03.037
[21] M. T. Whittaker, S. J. Williams and W. J. Evans, “Prediction of Fatigue Initiation Lives in Notched Ti 6246 Specimens,” International Journal of Fatigue, Vol. 30, No. 4, 2008, pp. 623-634. doi:10.1016/j.ijfatigue.2007.05.013
[22] W. J. Evans, R. Lancaster, A. Steele, M. Whittaker and N. Jones, “Plain and Notched Fatigue in Nickel Single Crystal alloys,” International Journal of Fatigue, Vol. 31, No. 10, 2009, pp. 1709-1718. doi:10.1016/j.ijfatigue.2009.03.010
[23] S. Giancane, R. Nobile, F. W. Panella and V. Dattoma, “Fatigue Life Prediction of Notched Components Based on a New Nonlinear Continuum Damage Mechanics Model,” Procedia Engineering, Vol. 2, No. 1, 2010, pp. 1317-1325. doi:10.1016/j.proeng.2010.03.143
[24] G.-Q. Sun and D.-G. Shang, “Prediction of Fatigue Life- time under Multiaxial Cyclic Loading Using Finiteelement Analysis,” Materials & Design, Vol. 31, No. 1, 2010, pp. 126-133. doi:10.1016/j.matdes.2009.06.046
[25] Y. Yamashita, Y. Ueda, H. Kuroki and M. Shinozaki, “Fatigue Life Prediction of Small Notched Ti-6Al-4V Specimens Using Critical Distance,” Engineering Fracture Mechanics, Vol. 77, 2010, pp. 1439-1453. doi:10.1016/j.engfracmech.2010.04.001
[26] D. Leidermark, J. Moverareab, K. Simonssona, S. Sjostrom and S. Johansson, “Fatigue Crack Initiation in a Notched Single-Crystal Superalloy Component,” Procedia Engineering, Vol. 2, No. 1, 2010, pp. 1067-1075. doi:10.1016/j.proeng.2010.03.115
[27] Z. L. Gao, B. X. Qiu, X. G. Wang and Y. Jiang, “An Investigation of Fatigue of a Notched Member,” International Journal of Fatigue, Vol. 32, No. 12, 2010, pp. 1960-1969. doi:10.1016/j.ijfatigue.2010.07.005

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.