Share This Article:

The Role of Oxide Thin Layer in Inverted Structure Polymer Solar Cells

Abstract Full-Text HTML Download Download as PDF (Size:274KB) PP. 1697-1701
DOI: 10.4236/msa.2011.212226    5,465 Downloads   10,398 Views   Citations


The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO2 and Nb2O5approximately 10 nm in thickness deposited onto FTO substrates. The experimental results demonstrated that the thin oxide layer serving to separate the electron collecting electrode and the photoactive film of a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) was necessary to promote the formation of continuous uniform PCBM film to block holes in P3HT from being recombined with electrons in collecting electrode. A use of TiO2 buffer layer leads to power conversion efficiency as high as 2.8%. As for Nb2O5, in spite the fact that its conduction band is higher than the LUMO level of PCBM polymer acting as electron transport material, a power conversion of 2.7%, which was only slightly different from the 2.8% achieved for the cell employing TiO2. These experimental results suggest a tunneling mechanism for the electrons to transport from the PCBM to collecting electrode over the oxide film, instead of a diffusion through the oxide film arising from either energy or concentration difference of the photogenerated electrons.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

O. Wiranwetchayan, Z. Liang, Q. Zhang, G. Cao and P. Singjai, "The Role of Oxide Thin Layer in Inverted Structure Polymer Solar Cells," Materials Sciences and Applications, Vol. 2 No. 12, 2011, pp. 1697-1701. doi: 10.4236/msa.2011.212226.


[1] J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yuc and H.-F. Mengd, “Highly Efficient Flexible Inverted Organic Solar Cells Using Atomic Layer Deposited ZnO as Electron Selective Layer,” Journal of Materials Chemistry, Vol. 20, No. 29, 2010, pp. 862-866. doi:10.1039/b921396a
[2] S. K. Hau, H.-L. Yip, H. Ma and A. K.-Y. Jen, “High Performance Ambient Processed Inverted Polymer Solar Cells through Interfacial Modification with a Fullerene Self-Assembled Monolayer,” Applied Physics Letters, Vol. 93, No. 23, 2008, pp. 233-304. doi:10.1063/1.3028094
[3] F. Zhang , X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wanga, Z. Xu and Y. Wanga, “Recent Development of the Inverted Configuration Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, No. 7, 2011, pp. 2758-2761. doi:10.1016/j.solmat.2011.02.002
[4] J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin and C.-F. Lin, “Solution-Processed Vanadium Oxide as an Anode Interlayer for Inverted Polymer Solar Cells Hybridized with ZnO Nanorods,” Organic Electronics, Vol. 10, No. 3, 2009, pp. 1060-1065. doi:10.1016/j.orgel.2009.05.017
[5] W.-H. Baek, I. Seo, T.-S. Yoon, H. H. Lee, C. M. Yun and Y.-S. Kim, “Hybrid Inverted Bulk Heterojuntion Solar Cells with Nanoimprinted TiO2 Nanopores,” Solar Energy Materials and Solar Cells, Vol. 93, No. 9, 2009, pp. 1587-1591. doi:10.1016/j.solmat.2009.04.014
[6] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells Eith Power Conversion Efficiency of 7.4%,” Advanced Material, Vol. 22, No. 20, 2010, pp. 1-4. doi:10.1002/adma.200903528
[7] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, “An Inverted Organic Solar Cell Employing a Sol-Gel Derived ZnO Electron Selective Layer and Thermal Evaporated MoO3 Hole Selective Layer,” Applied Physics Letters, Vol. 93, No. 22, 2008, Article ID: 221107. doi:10.1063/1.3039076
[8] M. Jorgensen, K. Norrman and F. C. Krebs, “Stability/ Degradation of Polymer Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 92, No. 7, 2008, pp. 686-714. doi:10.1016/j.solmat.2008.01.005
[9] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley and J. R. Durrant, “Degrasation of Organic Solar Cells Due to Air Exposure,” Solar Energy Materials and Solar Cells, Vol. 90, No. 20, 2006, pp. 3520-3530. doi:10.1016/j.solmat.2006.06.041
[10] F. C. Krebs, J. E. Carle′, N. Cruys-Bagger, M. Andersen, M. R. Lilliedal, M. A. Hammond and S. Hvidt, “Life- times of Organic Photovoltaics: Photochemistry, Atmosphere Effects and Barrier Layers in ITO-MEHPPV,” Solar Energy Materials and Solar Cells, Vol. 86, No. 4, 2005, pp. 499-516. doi:10.1016/j.solmat.2004.09.002
[11] J. Boucle, P. Ravirajanac and J. Nelson, “Hybrid Polymermetal Oxide Thin Films for Photovoltaic Applications,” Journal of Materials Chemistry, Vol. 17, No. 30, 2007, pp. 3141-3153. doi:10.1039/b706547g
[12] S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, B. Limketkai and G. Z. Cao, “Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanorods,” Journal of Physics Chemistry, Vol. 114, 2010, pp. 21851-21855.
[13] R. Zhu, C. Y. Jiang, B. Liu and S. Ramakrishna, “Hyghly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on interfacial modification using a Metal- Free Organic Dye,” Advanced Materials, Vol. 21, No. 9, 2009, pp. 994-1000. doi:10.1002/adma.200802388
[14] J.-S. Huang, C.-Y. Chou and W.-H. Lin, “Enhancing Per- formance of Organic-Inorganic Hybrid Solar Cells Using a Fullerene Interlayer from All-Solution Processing,” Solar Energy Materials and Solar Cells, Vol. 94, No. 10, 2010, pp. 182-186. doi:10.1016/j.solmat.2009.08.019
[15] M. N. Shan, S. S. Wang, Z. Q. Bian, J. P. Liu and Y. L. Zhao, “Hybrid Inverted Organic Photovoltaic Cells Based on Nanoporous TiO2 Films and Organic Small Molecules,” Solar Energy Materials and Solar Cells, Vol. 93, No. 9, 2009, pp. 1613-1617. doi:10.1016/j.solmat.2009.04.017
[16] T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng and Y. Cao, “Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure,” Journal of Physics Chemistry, Vol. C114, 2010, pp. 6849-6853.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.