Share This Article:

Synthesis of Crystalline Ag Nanoparticles (AgNPs) from Microorganisms

Abstract Full-Text HTML Download Download as PDF (Size:2726KB) PP. 1-7
DOI: 10.4236/msa.2010.11001    8,709 Downloads   19,427 Views   Citations


Bacteria obtained from the isolates of the biodiversity of riverine coast of Ganga identified as Bacillus Koriensis, when challenged with silver nitrate solution accumulated silver nanoparticles on the surface of its cell wall. These nanoparticles showed an absorption peak at 438 nm in UV-visible spectrum corresponding to the plasmon resonance of AgNPs. The transmission electron micrographs of nanoparticles in aqueous solution showed the production of reasonably monodisperse AgNPs (average particle size: 9.92 ± 1.311 nm) by the bacteria. X-ray diffraction spectrum of the nanoparticles confirmed the formation of metallic silver.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Sharma, N. Ahmad, A. Prakash, V. Singh, A. Ghosh and B. Mehta, "Synthesis of Crystalline Ag Nanoparticles (AgNPs) from Microorganisms," Materials Sciences and Applications, Vol. 1 No. 1, 2010, pp. 1-7. doi: 10.4236/msa.2010.11001.


[1] S. Edelstein and R. C. Cammarata, “Nanomaterials: Synthesis, Properties and Applications,” Institute of Physics Publishings, 1996.
[2] P. Jauho and E. V. Buzaneva, “Frontiers in Nanoscale Science of Micron/Submicron Devices,” Kluwer Academic Publishers, 1996.
[3] S. E. Mcneil, “Nanotechnology for the Biologist,” Journal of Leukocyte Biology, Vol. 78, 2005, p. 85.
[4] A. T. Bull, M. Goodfellow and J. H. Slater, “Biodiversity as a Source of Innovation in Biotechnology,” Annual Review of Microbiology, Vol. 46, 1992, p. 219.
[5] G. Southham and T. J. Beveridge, “The Occurrence of Sulfur and Phosphorus within Bacterially Derived Crystalline and Pseudocrystalline Octahedral Gold Formed in Vitro,” Geochimica et Cosmochimica Acta, Vol. 60, 1996, p. 4369.
[6] T. J. Beveridge and R. G. E. Murray, “Sites of Metal Deposition in the Cell Wall of Bacillus Subtilis,” Journal of Bacteriology, Vol. 141, 1980, p. 876.
[7] C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus and D. R. Winge, “Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites,” Nature, Vol. 338, 1989, p. 596.
[8] T. Klaus, R. Joerger, E. Ollson and C. G. Granquist, “Lactobacillus Assisted Synthesis of Titanium Nanoparticles,” Trends Biotechnology, Vol. 19, 2001, p. 15.
[9] R. Joerger, T. Klaus and C. G. Granquist, “Biologically Produced Silvercarbon Composite Materials for Optically Functional Thin-Film Coatings,” Advanced Materials, Vol. 12, 2000, p. 407.
[10] P. Mukherjee, A. Ahmad, D. S. Mandal, S. Senapati, R. Sainkar, M. I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, “Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis,” Nano Letters, Vol. 1, 2001, p. 515.
[11] S. S. Shankar, A. Ahmad and M. Sastry, “Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles,” Biotechnology Progress, Vol. 19, 2003, p. 1627.
[12] B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, “Bio- synthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract,” Journal of Nanoscience and Nanotechnology, Vol. 5, 2005, p. 1665.
[13] K. C. Bhainsa and S. F. D’Souza, “Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigates,” Colloids and Surfaces B: Biointerfaces, Vol. 47, 2006, p. 160.
[14] M. F. Lengke, M. E. Fleet and S. Gordon, “Biosynthesis of Silver Particles Filamentous Cyanobacteria from a Silver(I) Nitrate Complex,” Langmuir, Vol. 23, 2007, p. 2694.
[15] R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones and M. O. Stone, “Biomimetic Synthesis and Patterning of Silver Nanoparticles,” Nature Materials, Vol. 1, 2002, p. 169.
[16] N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza and E. Esposito, “Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium Oxysporum Strains,” Journal of Nanobiotechnology, Vol. 3, 2005, p. 8.
[17] D. Fortin and T. J. Beveridge, “From Biology to Biotechnology and Medical Application,” In: E. Baeuerlein, Ed., Biomineralisation, Wiley-VCH, Verlag, 2000, p. 294.
[18] A. O. Summers and S. Silver, “Microbial Transformations of Metals,” Annual Review of Microbiology, Vol. 32, 1978, p. 637.
[19] D. A. Rouch, B. T. O. Lee and A. P. Morby, “Under- standing Cellular Responses to Toxic Agents: A Model for Mechanism-Choice in Bacterial Metal Resistance,” Journal of Industrial Microbiology, Vol. 14, 1995, p. 132.
[20] J. T. Trevors, “Silver Resistance and Accumulation in Bacteria,” Enzyme and Microbial Technology, Vol. 9, 1987, p. 331.
[21] T. J. Beveridge, M. N. Hughes, H. Lee, K. T. Leung, R. K. Poole, I. Savvaidis, S. Silver and J. T. Trevor, “Metal- Microbe Interactions: Contemporary Approaches,” Advances in Microbial Physiology, Vol. 38, 1977, p. 177.
[22] T. Klaus, R. Joerger, E. Ollson and C.-G. Granqvist, “Silver-Based Crystalline Nanoparticles, Microbially Fabricated,” Proceedings of the National Academy of Sciences, USA, Vol. 96, 1999, p. 13611.
[23] A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar and M. Sastry, “Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp.,” Journal of the American Chemical Society, Vol. 124, 2002, p. 12108.
[24] A. Ahmad, M. I. Khan, S. Senapati, R. Kumar and M. Sastry, Langmuir, Vol. 19, 2003, p. 3550.
[25] V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad and M. Sastry, “Fungus-Mediated Biosynthesis of Silica and Titania Particles,” Journal of Materials Chemistry, Vol. 15, 2005, p. 2583.
[26] D. P. Cunningham and L. L. Lundie, “Precipitation of Cadmium by Clostridium Thermoaceticum,” Applied and Environment Microbiology, Vol. 59, 1993, p. 7.
[27] D. Mandal, M. E. Bolander, D. Mukhopadya, G. Sarkar and P. Mukherjee, “The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application,” Applied Microbiology and Biotechnology, Vol. 69, 2006, p. 485.
[28] U. Kreibig and M. Vollmer, In: U. Gonser, R. M. Osgood, M. B. Panish, H. Sakaki, Eds., Optical Properties of Metal Clusters, Springer, Berlin, 1995, pp. 207-234.
[29] R. M. Slawson, M. I. Van Dyke, H. Lee and J. T. Trevors, “Germanium and Silver Resistance, Accumulation, and Toxicity in Microorganisms,” Plasmid, Vol. 27, 1992, p. 72.
[30] A. Gupta, K. Matsui, L. Jeng-Fan and S. Silver, “Molecular Basis for Resistance to Silver Cations in Salmonella,” Nature Medicine, Vol. 5, 1999, p. 183.
[31] P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale and M. Sastry, “Synthesis of Aqueous Au Core−Ag Shell Nanoparticles Using Tyrosine as a pH-Dependent Reducing Agent and Assembling Phase-Transferred Silver Nanoparticles at the Air−Water Interface,” Langmuir, Vol. 20, 2004, p. 7825.
[32] S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, “Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings,” Chemistry of Materials, Vol. 17, 2005, p. 566.
[33] The XRD patterns were indexed with reference to the crystal structures from the ASTM chart card No.04-0783.
[34] A. Gole, C. Dash, V. Ramachandran, S. R. Sainkar, A. B. Mandale, M. Rao and M. Sastry, “Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity,” Langmuir, Vol. 17, 2001, p. 1674.
[35] S. Mandal, S. Phadtare and M. Sastry, “Interfacing Biology with Nanoparticles,” Current Applied Physics, Vol. 5, 2005, p. 118.
[36] M. Sastry, A. Ahmad, M. IslamKhan and R. Kumar, “Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete,” Current Science, Vol. 85, 2003, p. 162.
[37] N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar and R. H. Balasubramanya, “Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus,” Materials Letters, Vol. 61, 2007, p. 1413.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.