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1. Introduction 

When dealing with empirical time series from diverse fields of application, we 
are confronted with the phenomenon of long memory or long range dependence. 
A popular way to analyze a long memory time series is to use autoregressive 
fractionally integrated moving average (ARFIMA) processes introduced by [1] 
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and [2]. The works of [1] and [2] assume that the conditional variance of the time 
series is constant over time. However, non constant variance in non-linear time 
series is a challenging modelling exercise, considered among other things by [3]. 
In particular, the stylized fact that the volatility of financial time series is non 
constant has been long recognized in literature, see for example [4] [5] and [6]. 

Thus, the methodology for modelling time series with long memory behavior has 
been extended to long memory time series with time varying conditional variance. 
See for instance, [7] who developed the ARFIMA model with generalized autore-
gressive conditional heteroskedasticity (GARCH) type innovations, and [8] examine 
the daily average PM10 concentration using a seasonal ARFIMA model with GARCH 
errors. Tong [9] analyse the nonlinear time series using GARCH models and [10] 
used GARCH models for testing market efficiency. These models do not capture 
level shifts both in mean and variance; in this paper we introduce a new class of 
ARFIMA-GARCH models with mean and volatility level shift intervention. This 
approach allows us to model mean and volatility level shifts in an ARFIMA-GARCH 
model, which are often observed in financial or economics time series. 

The model to be developed combines ideas from different strands of the statistic-
al, financial and econometric literature. Autoregressive Moving Average (ARMA) 
models are extensively discussed in [11]. The fractional differencing model in-
troduced by [12] has become a standard model for long-memory behaviour. The 
generalization towards the ARFIMA model with no periodic coefficients was in-
troduced by [1] and [2]. Statistical properties and inferences for ARFIMA and 
other long-memory processes were discussed extensively by [13], [14] and [15]. 
On the other hand, the GARCH model was developed by [16] and [4]. The sta-
tistical properties of GARCH processes are well established, see for example [17]. 

This article introduces detection of a mean and volatility level shifts innova-
tion in an ARFIMA-GARCH model. The works of [18] first applied ARFIMA- 
GARCH models to price indices then [7] derived conditions for asymptotic nor-
mality of the approximate (Gaussian) maximum likelihood (ML) estimator in the 
ARFIMA-GARCH model. This paper also extends parameter estimation for an 
ARFIMA-GARCH model to case with level shift which we will denote Level 
Shift ARFIMA (LS-ARFIMA) and Level Shift GARCH (LS-GARCH) using qua-
si-maximum likelihood estimation. 

The first concern of this paper is how one would formally address modeling 
mean and volatility level shifts in an ARFIMA-GARCH. The second concern is de-
rivation of test statistics that are useful to examine presence of level shifts in mean 
and volatility for an ARFIMA-GARCH model. The layout of the paper is organised 
as follows. Section 2 reviews some theoretical results of ARFIMA and GARCH. 
In Section 3, we introduce the class of LS-ARFIMA-LS-GARCH models. Section 4 
deals with parameter estimation in LS-ARFIMA and LS-GARCH models. Section 5 
is dedicated to the proposed procedure of level shift detection in ARFIMA-GARCH 
models. In Section 6, we perform some simulation study of the mean and volatility 
level shift detection procedure. The last section concludes with the main findings 
and limitations. Common acronyms used in this paper are given in Table 1. 
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Table 1. Common acronyms used in this paper. 

Acronym Explanation 

ARMA autoregressive moving average 

ARFIMA autoregressive fractionally integrated moving average 

GARCH generalized autoregressive conditional heteroskedasticity 

LS-ARFIMA level shift-autoregressive fractionally integrated moving average 

LS-GARCH level shift-generalized autoregressive conditional heteroskedasticity 

2. Some Theoretical Results 

This section presents some theoretical literature on ARFIMA models and GARCH 
models. An overview of ARFIMA-GARCH models is also presented. 

2.1. The ARFIMA Model 

The study of time series turned attention to incorporate long memory or long- 
range dependence characteristics. The ARFIMA(p, d, q) process, first introduced 
by [1] and [2], present this property when the differencing parameter d is in the 
interval (0, 0.5). This feature is reflected by the hyperbolic decay of its autocorrela-
tion function or by the unboundedness of its spectral density function, while in 
the ARMA model, dependency between observations decays at a geometric rate. 

Montanari et al. [19] introduced a special form of the generalized ARFIMA 
model and also considered by [20]. This formulation is able to reproduce short- 
and long-memory periodicity in the autocorrelation function of the process. Using 
the [11] notation, let { }t t

y
∈  be a stochastic process, then { }t t

y
∈  is an ARFIMA 

process given by the expression  

( )( ) ( ) ( )01 ,   for ,d
t tB B y B tφ µ θ ε− − = ∈             (1) 

where 0µ  is the mean of the process, { }t t
ε

∈  is a white noise process with ze-
ro mean and variance ( )2 2

tεσ ε=  , B is the backward-shift operator, that is, 
k

t t kB X X −= , ( )φ ⋅  and ( )θ ⋅  are the polynomials of degrees p and q, respec-
tively, defined by 

( ) ( ) ( ) ( )
1 1

1   and  1
p q

i j
i j

i j
B B B Bφ φ θ θ

= =

= + − = +∑ ∑          (2) 

where, , 1i i pφ ≤ ≤ , and , 1j j qθ ≤ ≤  are constants. 
The difference operator ( )1 dB−  is defined by means of the binomial expan-

sion ( )1 dB−  and can be expressed as: 

( ) ( ) ( )
( )0 0

1 !
1 .

! 1 !
d i i

i i

i dd
B B B

i i d

∞ ∞

= =

+ − 
− = − =  − 

∑ ∑            (3) 

The ARFIMA model is said to be stationary when 0.5 0.5d− < < , where the 
effect of shocks to tε  decays at a gradual rate to zero. The model becomes non-
stationary when 0.5d ≥  and stationary but non invertible when 0.5d ≤ − , 
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which means the time series is impossible to model for any AR process. With 
regard to the modeling of data dependencies, the ARFIMA model represents a 
short memory if 0d = , where the effect of shocks decays geometrically; and a 
unit root process is shown when 1d = . Furthermore, the model has a positive 
dependence among distance observations or the so called long memory process 
if 0 0.5d< < ; and it also has an anti-persistent property or has an intermediate 
memory if 0.5 0d− < < . 

2.2. The GARCH(r, s) Model 

The GARCH(r, s) model can be obtained from Equation (1) by letting 
[ ]1| 0t tE Fε − =  and the conditional variance, 2

1|t t tE F hε −  =   where 1tF −  is the 
σ  field generated by the past information { }1 2, ,t tε ε− −  . Let also  

( )1| ~ 0,t t tF N hε −  and 

t t tz hε =                             (4) 

where tz  is normal distributed with mean 0 and variance 1. Bollerslev [4] in-
troduced the GARCH(r, s) model which defines the conditional variance equa-
tion as follows: 

2
0

1 1

r s

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                     (5) 

where 0 0ω > , 1 1, , , , , 0r sα α β β ≥  , r and s are positive integer. Yang and 
Wang [21] applied the GARCH model based on ARIMA model in data analysis. 
Note that the GARCH model defined by (5) can be replaced by other conditional 
heteroscedastic models. 

2.3. The General ARFIMA(p, d, q)-GARCH(r, s) Model 

Let the ARFIMA(p, d, q)-GARCH(r, s) model be the discrete time series model 
of { }ty  given by the following equation: 

( )( ) ( )
( )

1
0

1

2
0

1 1

1

,   | ~ 0,

d
t t

t t t t t t

r s

t i t i i t i
i i

y B B B

z h F N h

h h

µ φ θ ε

ε ε

ω α ε β

−−

−

− −
= =

= + −

=

= + +∑ ∑

                   (6) 

The following theorem shows some properties of ARFIMA(p, d, q)-GARCH(r, s) 
models. 

Let { }ty  be generated by model (6). Suppose that all roots of ( )Bφ  and  

( )Bθ  lie outside the unit circle and 
1 1

1
r s

i j
i j
α β

= =

+ <∑ ∑ . 

1) If 1
2

d < , then { }ty  is second-order stationary and has the following re-

presentation: 

( ) ( ) ( )
( )

1
0

0

1 !
     . .

! 1 !t t i
i

i d
y B B a s

i d
µ φ θ ε

∞
−

−
=

+ −
= +

−∑           (7) 

 

DOI: 10.4236/ojs.2020.102023 344 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2020.102023


L. Dhliwayo et al. 
 

Hence { }ty  is strictly stationary and ergodic. 

2) If 1
2

d > − , then { }ty  is invertible, that is, tε  can be written as 

( ) ( ) ( )
( ) ( )1

0
0

1 !
     . .

! 1 !t t i
i

i d
B B y a s

i d
ε φ θ µ

∞
−

−
=

− −
= −

− −∑          (8) 

For proof of Theorem (2.3) see [22]. 

2.4. Variance of Variance in the Standard GARCH(1, 1) Model 

By rearranging the conditional variance Equation (5) for a GARCH(1, 1) we ob-
tain: 

( ) ( )2
0 1 1 1 1 1 1

0 1 1 1 1

t t t t

t t t

h h h

h h

ω α β α

ω γ α η
− − −

− − −

= + + + −

= + +


                (9) 

where 1 1γ α β= +  and 2 1t tzη = − . Ishida and Engle [23] have shown that the 
variance of variance is given by: 

( ) [ ] ( )2 2 2
1 1 1 1 11t t t z tVar h h E hα η κ α− − −= = −               (10) 

where zκ  denotes the conditional kurtosis of tz , which we assume to be finite 
constant. If the distribution of tz  is standard normal, then 1 2zκ − = . 

Ishida and Engle [23] further rearranged the terms in Equation (9), the condi-
tional variance equation becomes: 

( )1 1 1 1 1

0 1 1 1 1

t t t t t

t t t

h h h h

h h

ϕ τ α η

ω γ α η
− − − −

− − −

− = − +

= + +
                (11) 

where 1ϕ γ= −  determines the speed at which the conditional variance reverts 
to its long run mean ( ) ( ) 1

0 1Eτ τ ω γ −= = −  and its corresponding variance be-
comes: 

( ) ( ) 2
1 1 11t t z tVar h h hκ α− −− = −                   (12) 

Belkhouja and Mootamri [24] performed a long memory and structural change 
in the G7 inflation dynamics. The following section presents a natural extension 
of ARFIMA-GARCH models to the case with level shift. 

3. ARFIMA-GARCH Models with Level Shift 

This section presents a natural extension of the ARFIMA-GARCH models to a 
case with level shift. We start with a shift in the mean, then a shift in volatility 
and finally shift in both mean and volatility. 

3.1. The ARFIMA(p, d, q) Model with Level Shift 

The ARFIMA(p, d, q) model is written as 

( )( ) ( ) ( )01 ,    for  1, ,d
t tB B y B t nφ µ θ ε− − = =            (13) 
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where ty  is the time series at time t, 0µ  is the unconditional mean of the 
process. We assume the noise process tε  to be Gaussian, with expectation zero 
and variance 2

εσ . 
To allow for a mean level shift, after time , 2, ,t i i n= =   of the data, we write 

the sum of an unobserved ARFIMA process and the term for the mean level shift 
which we will denote as LS-ARFIMA(p, d, q) 

( )( ) ( ) ( ) 11
0 11 1d

t t ty B B B B Iµ φ θ ε µ− −−= + − + −           (14) 

where tI  is an indicator variable taking values 1 for t i= , and 0 otherwise. The 
parameter 1µ  indicates the size of the mean level shift at time t i= . The mean 
level shift is an abrupt but permanent shift by 1µ  in the series caused by an in-
tervention. 

The extension of (14) to k level shifts is straightforward. We define jµ  as the 
jth shift in level, compared to the previous level, where 1, ,j k=  . When we al-
low k level changes at pre-specified time t j= , we can extend (14) to 

( )( ) ( ) ( ) 11
0

1
1 1

kd
t t j t

j
y B B B B Iµ φ θ ε µ− −−

=

= + − + −∑        (15) 

The component ( ) 1
1 1k

j tj B Iµ −

=
−∑  allows the intercept of the ARFIMA 

model to fluctuate over time between 0µ  and 0 1
k

jjµ µ
=

+∑ . 

3.2. The GARCH(r, s) Model with Level Shift 

As indicated earlier, [4] introduced the GARCH(r, s) model which defines the 
conditional variance equation as follows: 

2
0

1 1

r s

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                  (16) 

To allow for a volatility level shift, denoted 1α , after time , 2, ,t i i n= =   of 
the data, we write th  as the sum of an unobserved GARCH process and the term 
of the volatility level shift which we will denote as LS-GARCH(r, s). 

( ) 12
0 1

1 1
1

r s

t i t i i t i t
i i

h h B Iω α ε β ω −
− −

= =

= + + + −∑ ∑           (17) 

where tI  is an indicator variable taking values 1 for t i= , and 0 otherwise. The 
parameter 1ω  indicates the size of the volatility level shift at time t i= . 

The extension of (17) to k volatility level shifts is straightforward. We define 

jω  as the jth shift in volatility level, compared to the previous level, where 
1, ,j k=  . When we allow k volatility level changes at pre-specified time t j= , 

we can extend (17) to 

( ) 12
0

1 1 1
1

j

r s k

t i t i i t i j t
i i j

h h B Iω α ε β ω −
− −

= = =

= + + + −∑ ∑ ∑           (18) 

The component ( ) 1
1 1

j

k
j tj B Iω −

=
−∑  governs the level shift movement of 

GARCH model intercept, that is baseline volatility, over time between 0ω  and 

0 1
k

jjω ω
=

+∑ . 
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3.3. The General ARFIMA(p, d, q)-GARCH(r, s) Model with  
Level Shift 

Extension of the ARFIMA(p, d, q)-GARCH(r, s) model to the case with level 
shift is given by the following equation which we will denote as LS-ARFIMA- 
LS-GARCH 

( )( ) ( ) ( )

( )

( )

11
0

1

1

12
0

1 1 1

1 1

,   | ~ 0,

1

kd
t t j t

j

t t t t t t

r s k

t i t i i t i j t
i i j

y B B B B I

z h F N h

h h B I

µ φ θ ε µ

ε ε

ω α ε β ω

− −−

=

−

−
− −

= = =

= + − + −

=

= + + + −

∑

∑ ∑ ∑

        (19) 

The LS-ARFIMA-LS-GARCH series is shown in Figure 1. 

4. Estimation of LS-ARFIMA-LS-GARCH Model Parameters 
4.1. Estimation of LS-ARFIMA Model Parameters 

The first step of estimation consists in estimating the ARFIMA(p, d, q) assuming 
that the conditional variance is constant over time. By rearranging Equation (14) 
for one mean level shift we have: 

( )( ) ( ) ( ) 1
0 11 1 .d

t t tB B y B B Iφ µ θ ε µ −− = + + −           (20) 

Therefore the null hypothesis of unconditional mean constancy becomes: 

0 1: 0H µ = . Let ( )2
1 0 1, , , , ,dψ µ µ φ θ σ ′′ ′=  be the approximate likelihood estima-

tor (MLE) 1ψ̂  of 1ψ  that maximizes the conditional log-likelihood: 

( )
2

2
1 2

1 1 1ln 2 ln .
2 2 2

t
tl

ε
ψ σ

σ
= − π − −                   (21) 

The partial derivatives evaluated under 0H  are given by: 

0 0

2
1 1

ˆ ˆt t t

H H

l ε ε
ψ ψσ
∂ ∂

= −
∂ ∂

                      (22) 

 

 
Figure 1. ARFIMA-GARCH time series with level shift effect. 
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( ) ( )
0

1
1

ˆˆ ˆ1 d t qt j t jt
jj j

H

y
B B

d j d
εε

φ θ− − −
=

∂∂
= − −

∂ ∂∑ ∑  

0

1
0 0

ˆˆ1 q t jt
jj

H

εε
θ

µ µ
−

=

∂∂
= − −

∂ ∂∑  

( )
0

1
1

0 1

ˆˆ 1 q t jt
t jj

H

B I
εε

θ
µ µ

− −
=

∂∂
= − − −

∂ ∂∑  

( ) ( )
0

1 1

ˆˆ1 , ,d q t jt
t t p jj

H

B y y
εε

θ
φ φ

−
− − =

∂∂
= − − −

∂ ∂∑  

( )
0

1 1

ˆˆ, , q t jt
t t q jj

H

εε
ε ε θ

θ θ
−

− − =

∂∂
= − −

∂ ∂∑  

0

2

2 2 4

ˆ1
2 2

t t

H

ε ε
σ σ σ
∂

= − +
∂

 

4.2. Estimation of LS-GARCH Parameters 

Once the LS-ARFIMA model is estimated and the residuals tε  are obtained, we 
test the alternative of LS-GARCH specification with one volatility level shift against 
the null hypothesis of GARCH model. Let us rearrange model (17) with one vo-
latility level shift: 

( ) ( ) ( ) 1
0 1 1t t t th B B h B Iω α ε β ω −= + + + −              (23) 

Therefore the null hypothesis of the unconditional variance constancy becomes: 

0 1: 0H ω = . Let ( )2 0 1, , ,ψ ω ω α β ′′ ′=  be the vector of the LS-GARCH model pa-
rameters and the quasi-likelihood function is given by: 

( )
2

2
1 1 1ln 2 ln .
2 2 2

t
t t

t

l h
h
ε

ψ = − π − −                 (24) 

The partial derivatives evaluated under 0H  are given by: 

0 0

2

2 20

ˆ ln1 1ˆ2
t t t

tH H

l h
h
ε

ψ ψ
 ∂ ∂

= − 
∂ ∂  

                         (25) 

( )
0

1

0 1
0 0

ˆln ˆ ˆ1 s t jt
t jj

H

hh h β
ω ω

− −
=

 ∂∂
= + 

∂ ∂  
∑  

( ) ( )
0

1 1
0 1

1 1

ˆln ˆ ˆ1 s t jt
t t jj

H

hh h B I β
ω ω

− − −
=

 ∂∂
= − + 

∂ ∂  
∑  

( ) ( )
0

1 2
0 1 1

ˆln ˆ ˆ, , s t jt
t t t r jj

H

hh h ε ε β
α α

− −
− − =

 ∂∂ ′= + 
∂ ∂  

∑  

( ) ( )
0

1

0 1 1

ˆln ˆ ˆ, , s t jt
t t t s jj

H

hh h h h β
β β

− −
− − =

 ∂∂ ′= + 
∂ ∂  

∑  
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Under the null hypothesis, the “hats” indicates the maximum likelihood esti-
mator and 0̂th  denotes the conditional variance estimated at time t. 

5. Level Shift Detection in ARFIMA-GARCH 
5.1. Mean Level Shift Detection in ARFIMA-GARCH 

The mean level shift detection test was previously derived by [25] for ARFIMA(p, 
d, q) models assuming conditional variance is constant over time. For our pur-
pose a natural extension of the level shift detection test of the mean for a realiza-
tion of time series { }ty  satisfying LS-ARFIMA-LS-GARCH model was proposed. 
In order to derive the test statistic, let us rewrite model (15), with only one mean 
level change: 

( ) ( )( ) ( )1 11
0 1 1    where 1t t t t ty x B I x B B Bµ µ φ θ ε− −−= + + − = −      (26) 

The hypothesis to be tested is 

0 1 1 1: 0   against    : 0H Hµ µ= ≠                   (27) 

which is based on 1 2, , , ny y y  a realization of time series { }ty  satisfying 
ARFIMA-GARCH model with mean level shift. 

Extension of [26] test statistics can be written as: 

( ) ( ){ } ( )
( )

( )
( )

1 1

1 1

ˆ ˆ1
max 1 , , max , ,

1
n n n

n
T T T n

h h n

µ µ  = =  
  

          (28) 

where ( ) ( )1ˆ i ii y y nµ = −  is the estimated intervention or impact at time t i=  

and ( )iy n  is the sample mean of 1 2, , , ny y y  a time series and ( )1h i  is an 

estimate of the standard error of ( )1ˆ iµ . 

Model (26) can be rewritten as: 

( ) ( ) ( )0 11 1 1t t tB y B B x Iµ µ− = − + − +  

This implies transforming the series by differencing once. Thus if 1 0µ = , 
( ) ( )1 1t tB y B x− = − . The intervention parameter 1µ  can be estimated using 
various methods like the maximum likelihood estimation and least square estima-
tion. The least square estimate of 1µ  if the mean intervention is at time t i=  is 
given by 

( ) ( ) ( )2
1 2

2

1
ˆ 1 1 ,   2,3, ,

n
t tt

i in
tt

B y I
B y B x i n

I
µ =

=

−
= = − = − =∑

∑
       (29) 

The distribution of the statistics is discussed in great detail in [25] for ARFIMA(p, 
d, q) assuming conditional variance is constant over time. This is based on the 
fact that it is originally normally distributed and then transformed to the Gam-
ma distribution both of which belong to the Domain of Attraction of the Gumbel 
distribution with normalizing constants: 
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1) Normal Distribution: 

( )
( )( ) ( )

( )
( )

ln ln ln 4
2ln   and  1 2ln

2 2ln
n n

n
d n c n

n

+ π
= − =        (30) 

2) Gamma Distribution: 

( ) ( )( ) ( )2ln ln ln 2ln   and  2n nd n n c= − − Γ π =            (31) 

The maximum domain of attraction of the Gumbel is shown to some extent in 
[27] and in greater detail in [28]. 

Let { }ty  be a time series satisfying the level shift model 

( ) ( ) 11 1t t tB y B x Iµ− = − +                    (32) 

Assume that the stationary component of the model { }tx  is a Gaussian time 

series with mean zero and autocovariance function ( ){ }x kγ  such that 

( )
1

x

k

k
kδ

γ∞

=

< ∞∑                          (33) 

Let also the test statistics be given by 
2

n n
n

n

T dC
c
−

=                          (34) 

Then under 0 1: 0H µ = , the statistics nC  satisfies 

( ) ( )( )exp e ,   asxD
nC F x nλ δ− −→ = − →∞             (35) 

where D signifies convergence in distribution. Here, Rλ∈  is location parame-
ter and δ  is scale parameter. The location parameter is also the mode of the 
distribution. Inverse of the ( )F x  in Equation (35), is given by: 

( )( )ln lnx Fλ δ= − −                      (36) 

Thus a test of hypothesis can be conducted by comparing the test statistic nC  
in Equation (34) with an appropriate critical value. The largest ( )2

nT i  statistic is 
considered an intervention at the α  significance if the nC  value exceeds the 
critical value. 

5.2. Volatility Level Shift Detection in ARFIMA-GARCH Model 

The second step is a natural extension of mean level shift detection in ARFIMA- 
GARCH model to volatility level shift detection in ARFMA-GARCH model. Af-
ter estimating the LS-ARFIMA model and the residuals tε  are obtained, we test, 
the alternative hypothesis of LS-GARCH volatility level shift against the null 
hypothesis of GARCH model. Let us rewrite model (18) with one volatility level 
shift: 

( ) 1 2
0 1

1 1
1    where

r s

t t t t i t i i t i
i i

h g B I g hω ω α ε β−
− −

= =

= + + − = +∑ ∑       (37) 
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The hypothesis tested is 

0 1 1 1: 0   against    : 0H Hω ω= ≠                (38) 

which is based on 1 2, , , nh h h  a realization of time series { }th  from a GARCH 
model with level shift. 

The derivation is based on the statistics 

( ) ( ){ }
( )

( )
( )

( )
1 1

1 1

max 1 , ,

ˆ ˆ1
max , ,

ˆ ˆ1

n n nT T T n

n

Var Var n

ω ω

ω ω

=

 
 = … 

        



            (39) 

where ( ) ( )1ˆ i ii h h nω = −  is the estimated intervention or impact at time t i=   
and ( )ih n  is the sample mean of 1 2, , , nh h h  a time series of unconditional va-

riance. ( )1ˆVar iω    is an estimate of the standard error of ( )1ˆ iω . 

Model (37) can be rewritten as 

( ) ( ) ( )0 11 1 1t t tB h B B g Iω ω− = − + − +             (40) 

Thus if 1 0ω = , ( ) ( )1 1t tB h B g− = − . The intervention parameter 1ω  can be 
estimated using various methods like the maximum likelihood estimation and 
least square estimation. The least square estimate of 1ω  if the volatility inter-
vention is at time t i=  is 

( ) ( ) ( )2
1 2

2

1
ˆ 1 1 ,   2,3, ,

n
t tt

i in
tt

B h I
B h B g i n

I
ω =

=

−
= = − = − =∑

∑
      (41) 

Thus from Equation (12), ( ) [ ] ( ) 2
1 1 1 1ˆ 1t t z tVar t Var h h hω κ α− −  = − = −  . 

Similarly just like the mean level shift test statistic, the distribution of the sta-
tistics is based on the fact that it is originally normally distributed and then trans-
formed to the Gamma distribution both of which belong to the Domain of At-
traction of the Gumbel distribution with normalizing constants: 

1) Normal Distribution: 

( )
( )( ) ( )

( )
( )

ln ln ln 4
2ln   and  1 2ln

2 2ln
n n

n
d n c n

n

+ π
= − =       (42) 

2) Gamma Distribution: 

( ) ( )( ) ( )2ln ln ln 2ln   and  2n nd n n c= − − Γ π =          (43) 

The maximum domain of attraction of the Gumbel is shown to some extent in 
[27] and in greater detail in [28]. 

Let { }th  be a time series satisfying the volatility level shift model 

( ) ( ) ( )0 11 1 1t t tB h B B g Iω ω− = − + − +             (44) 

For any realization 1 2, , , nh h h  of this time series, let 
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2
n n

n
n

T dC
c
−

=                            (45) 

Then under 0 1: 0H ω = , the statistics nC  satisfies 

( ) ( )( )exp e ,   asxD
nC F x nλ δ− −→ = − →∞               (46) 

where D signifies convergence in distribution. Thus a test of hypothesis can be 
conducted by comparing the test statistic nC  Equation (45) with an appropriate 
critical value. The largest ( )2

nT i  statistic is considered as volatility intervention 
at the α  level of significance if the test statistic nC  value exceeds the critical 
value. 

5.3. Mean and Volatility Level Shift Detection in ARFIMA-GARCH 

Summary of the detection procedure is presented below: 
1) Plot the data to get a picture of the type of series and possible level shift in 

the data. 
2) Assume that the underlying ARFIMA-GARCH series { }ty  contains no 

level shift and use maximum likelihood procedure to estimate its parameters. 
3) The first test is performed to check the mean level shift which can be con-

ducted as follows: 
a) State the hypothesis being tested, which is 

0 1 1 1: 0   against    : 0H Hµ µ= ≠                   (47) 

b) Compute the residuals, the impact 1µ  and the test statistics like the popu-
lar [26]’s likelihood ratio test statistics given by 

( ) ( ){ } ( )
( )

( )
( )

1 1

1 1

ˆ ˆ1
max 1 , , max , ,

1
n n n

n
T T T n

h h n

µ µ  = =  
  

   

where ( )1ˆ iµ  is the estimated intervention or impact at time t i= , ( )1h i  is 
an estimate of the standard error of ( )1ˆ iµ . Then compute the statistics: 

2
n n

n
n

T dC
c
−

=  

c) Determine the critical values to use in the test. 
d) Determine whether observations are level shifts and remove each from 

the series by subtracting the value of the impact , 1, ,i i kµ =   then apply the 
ARFIMA-GARCH modeling procedure to obtain the adequate model. 

4) The second test is performed to check the volatility level shift which can be 
conducted as follows: 

a) State the hypothesis being tested, which is 

0 1 1 1: 0   against    : 0H Hω ω= ≠               (48) 

b) Compute the residuals, the impact 1ω  and the test statistics like the pop-
ular [26]’s likelihood ratio test statistics given by 
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( ) ( ){ } ( )
( )

( )
( )

1 1

1 1

ˆ ˆ1
max 1 , , max , ,

ˆ ˆ1
n n n

n
T T T n

V V n

ω ω

ω ω

 
 = =  

        

   

where ( )1ˆ iω  is the estimated volatility intervention or impact at time t i= ,  

( )1ˆV iω    is an estimate of the standard error of ( )1ˆ iω . Then compute the 

statistics: 

2
n n

n
n

T dC
c
−

=  

c) Determine the critical values to use in the test. 
d) Determine whether observations are level shifts and remove each from the 

series by subtracting the value of the impact [ ], 1, ,i i kω =   then apply the 
ARFIMA-GARCH modeling procedure to obtain the adequate model. 

6. Simulation Study of the Level Shift Detection Procedure 

To appreciate the procedure we derived a simulation study consisting of simula-
tion of critical values for mean and volatility level shift, simulating different sizes 
of mean and volatility level shift impact, performing detection test and conduct-
ing the power of the mean level shift detection procedure. 

6.1. Critical Values for Mean Level Shift Detection Test 

Simulation of the critical values was done using R software. An assumption that 
there are mean level shifts was made, then simulations conducted. This is based 
on an estimate of the statistic nC  as shown in Equation (34) with norming 
constants given in Equation (31). 

The critical values for the 10%, 5% and 1% level of significance are presented in 
Table 2. As the sample size n, increases, the critical values converges. It can also be 
observed that for different values of long memory parameter ( )0, 0.5d ∈  the crit-
ical values varies but not significantly. For anti-pesistent parameter ( )0.5, 0d ∈ −  
the critical values are the same, they only increase with the sample size n as de-
picted in Table 3. Samples of sizes 100, 500, 1,000, 5,000, 10,000, 20,000 and 
50,000 were used. It can be noted that, for example, at 5% level of significance 
with 0.0d =  the critical value ranges from 4.0390 for a sample of size 100 to 
5.1190 for a sample of size 50,000. Similarly at 5% level of significance with 

0.1d = , the critical value ranges from 4.1342 for a sample of size 100 to 4.9377 
for a sample of size 50,000. We can conclude without loss of generality that at 
5% level of significance the critical value converges to a Gumbel critical value of 
5.1702, given in Equation (35) with 2.1λ =  and 1δ =  as the sample size in-
creases. Using 2.1λ =  and 1δ = , the 10% and 1% level of significance for the 
Gumbel critical values are 4.4504 and 6.8001 respectively. The simulated critical 
values in Table 2 can be observed to be converging to Gumbel critical values as 
the sample size increases. 
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Table 2. Critical values for mean level shifts using ( 10000r = , AR 0.6= , MA 0.2= , 0 0.1α = , 1 0.3α =  and 0.3β = ). 

n α α  0d =  0.1d =  0.2d =  0.3d =  0.4d =  

100 10% 3.2696 3.1051 2.9734 2.9750 2.9805 

 5% 4.0390 3.8715 3.7017 3.7497 3.7682 

 1% 5.8189 5.7323 5.5161 5.4073 5.2964 

500 10% 3.5775 3.3900 3.3009 3.2663 3.2311 

 5% 4.4122 4.1790 4.0486 3.9502 3.9976 

 1% 6.3285 6.0363 5.8687 5.6095 5.6986 

1,000 10% 3.7314 3.5081 3.4206 3.3245 3.3185 

 5% 4.5490 4.3108 4.2207 4.1038 4.0990 

 1% 6.3031 6.1391 5.7147 5.8760 5.7313 

5,000 10% 3.9483 3.7847 3.6439 3.6160 3.5036 

 5% 4.7155 4.5783 4.4396 4.3262 4.2897 

 1% 6.6114 6.3562 6.2494 5.9959 5.9833 

10,000 10% 4.0949 3.8871 3.7579 3.6174 3.6262 

 5% 4.8897 4.6576 4.5000 4.3393 4.3337 

 1% 6.6178 6.4573 6.2892 6.0755 5.9562 

20,000 10% 4.1804 3.9571 3.8567 3.7411 3.7332 

 5% 4.9806 4.7187 4.6338 4.5600 4.5402 

 1% 6.7149 6.4485 6.4418 6.2476 6.3332 

50,000 10% 4.3269 4.1342 3.9570 3.8526 3.8739 

 5% 5.1190 4.9377 4.6882 4.6208 4.6640 

 1% 6.7830 6.6396 6.2536 6.4134 6.3391 

 
Table 3. Critical values for mean level shifts using ( 10000r = , AR 0.6= , MA 0.2= , 0 0.1α = , 1 0.3α =  and 0.3β = ). 

n α  0.0d =  0.1d = −  0.2d = −  0.3d = −  0.4d = −  

100 10% 3.2696 3.2865 3.2884 3.2626 3.2436 

 5% 4.0390 4.0229 4.0952 4.0574 4.0556 

 1% 5.8189 5.9099 5.8328 6.0107 5.8000 

500 10% 3.5775 3.5126 3.5874 3.6187 3.5995 

 5% 4.4122 4.3355 4.4011 4.4700 4.4322 

 1% 6.3285 6.1218 6.1148 6.2525 6.1946 

1,000 10% 3.7314 3.7101 3.7431 3.7431 3.6815 

 5% 4.5490 4.5165 4.5359 4.5329 4.4728 

 1% 6.3031 6.4385 6.3633 6.2887 6.2068 

5,000 10% 3.9483 3.9699 3.9467 3.9659 3.9751 

 5% 4.7155 4.8739 4.7202 4.7767 4.7581 

 1% 6.6114 6.6898 6.5888 6.5661 6.6130 
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10,000 10% 4.0949 4.0612 4.0680 4.0834 4.0707 

 5% 4.8897 4.8223 4.8846 4.8707 4.8286 

 1% 6.6178 6.6805 6.7916 6.7117 6.5539 

20,000 10% 4.1804 4.2230 4.1278 4.2206 4.2452 

 5% 4.9806 5.0617 4.8998 4.9738 5.0493 

 1% 6.7149 6.7940 6.7940 6.7136 6.8014 

50,000 10% 4.3269 4.3737 4.3578 4.3045 4.3737 

 5% 5.1190 5.2264 5.1389 5.0943 5.2264 

 1% 6.7830 7.0419 6.8585 6.9424 7.0419 

 
Figure 2 shows the graph of critical values for detecting mean level shift using 

5% level of significance. It can be depicted from the graph that the critical values 
depend on the fractional differencing parameter d and sample size. As the sam-
ple size increases the critical value appears to be converging. The same scenario 
is also the case for 1% and 10% level of significance. 

6.2. Mean Level Shift Detection Test 

Before conducting the test it should be clear that the position of the mean level 
shift impact i.e. point t i=  is not known. The level shift impact 1µ  is tested 
for significance using the hypotheses 0 1: 0H µ =  versus 1 1: 0H µ ≠ . An ob-
servation corresponding to the maximum ( )2

nT i  is considered a level shift at 
α  level of significance if the nC  statistic exceeds the critical value for given d 
and sample size n. 

For illustration purposes, mean level shift of sizes 5 thµ =  and 10 th  are 
introduced in an ARFIMA-GARCH(1, 0.2, 1) (1, 1) time series model with 
AR 0.6= , MA 0.2= , 0.3α = , 0.25β =  and sample size of 10000n =  with 
intervention at point 5000i =  using R program. The resulting test statistics that 
occurs at point 4,999 due to differencing are 7.8405nC =  and 27.1754nC =  
respectively. These are greater than the critical values 3.7579, 4.5000 and 6.2892 
at 10%, 5%α =  and 1% level of significance respectively, implying the rejection 
of 0H  at all level of significance. 

6.3. Power of the Mean Level Shift Detection Test 

The probability of correctly detecting a mean level shift is the power of the test. 
Table 4 shows the frequency (denoted Freq) with which the location of a mean 
level shift is correctly detected, the probability (denoted Prob) of correctly de-
tecting the mean level shift in the form of the statistics ˆ

nC . Power of the mean 
level shift detection test involves samples of size n, different mean level shift im-
pact 1µ ’s, 95% Gumbel critical value of 5.1348. The underlying model used is 
ARFIMA(1, d, 1)-GARCH(1, 1) with AR 0.6= , MA 0.2= , 0 0.1ω = , 1 0.3α = , 

1 0.3β = , 0.2d =  for 10,000 replications. 
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Figure 2. Critical value (5%) for detecting mean level shift. 
 

Table 4. Power of the mean level shift detection test using ( 10000r = , AR 0.6= , MA 0.2= , 0 0.1α = , 1 0.3α = , 0.3β = , 
0.2d =  and 95% Gumbel critical value of 5.1348). 

1µ  
th  2 th  3 th  4 th  5 th  6 th  7 th  8 th  

n = 100         

Freq 191 492 1 890 5 137 8 357 9 739 9 978 10 000 

Prob 0.0678 0.2590 0.4669 0.9813 1.0000 1.0000 1.0000 1.000 

ˆ
nC  1.1100 1.7991 2.3724 6.0735 13.0371 17.4898 10.4253 30.8862 

n = 1,000         

Freq 251 516 1 678 4 727 8 266 9 790 9 995 10 000 

Prob 0.0897 0.2736 0.7684 0.9517 0.9981 1.0000 1.0000 1.0000 

ˆ
nC  1.2197 1.8407 3.4341 5.1058 8.4128 24.3315 15.2128 29.5363 

n = 10,000         

Freq 349 774 2 435 6 319 9 541 9 994 10 000 10 000 

Prob 0.2792 0.4755 0.9868 0.8990 0.9988 1.0000 1.0000 1.0000 

ˆ
nC  1.8563 2.3964 6.4260 4.3404 8.8156 12.5498 16.5698 26.7614 

 
Table 4 depicts the probability of correctly detecting a mean level shift is high 

as long as the mean level shift ˆ
nC  is significantly different from the 95% Gum-

bel critical value of 5.1348 but it is low as long as the resulting level shift is low. 
The frequencies of the detection of mean level shift approaches 10 000 as the size 
of mean level shift increases. 
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Figure 3 is a graph showing the power of the detection test of mean level shift 
using 95% Gumbel critical value of 5.1348. This is the general behaviour for 90% 
and 99% Gumbel critical value. 

6.4. Critical Values for Volatility Level Shift Detection Test 

As with critical values for the mean level shift, similar simulation of the critical 
values for the volatility level shift was done using R programs. An assumption 
that there are volatility level shifts was made, then simulations conducted. This is 
based on an estimate of the statistic nC  as shown in Equation (45) with norm-
ing constants given in Equation (43). 

The critical values for the 10%, 5% and 1% level of significance are presented 
in Table 5. As the sample size n, increases, the critical values slowly converges. It 
can also be observed that for different values of long memory parameter 

( )0, 0.5d ∈  the critical values varies but not significantly. For anti-pesistent pa-
rameter ( )0.5, 0d ∈ −  the critical values are the same, they only increase with 
the sample size n as depicted in Table 6. Samples of sizes 100, 500, 1,000, 5,000, 
10,000, 20,000 and 50,000 were used. It can be noted that, for example, at 5% 
level of significance with 0.0d =  the critical value ranges from 5.8953 for a sam-
ple of size 100 to 67.6419 for a sample of size 50,000. We can conclude without 
loss of generality that the simulated critical values in Table 5 can be observed to 
be diverging critical values as the sample size increases. 

Figure 4 shows the graph of critical values for detecting volatility level shift 
using 5% level of significance. Unlike the mean level shift, it can be depicted 
from the graph that the critical values do not depend on the fractional diffe-
rencing parameter d. But as the sample size increases the critical value appears to 
be diverging. The same scenario is also the case for 1% and 10% level of signi-
ficance. 

 

 
Figure 3. Power of the level shift detection procedure.  
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Table 5. Critical values for volatility level shifts using ( 10000r = , AR 0.6= , MA 0.2= , 0 0.1α = , 1 0.3α =  and 0.3β = ). 

n α  0d =  0.1d =  0.2d =  0.3d =  0.4d =  

100 10% 3.6582 3.7604 3.5579 3.6815 3.6603 

 5% 5.8953 6.1064 5.8003 5.7904 5.8381 

 1% 12.6589 12.5134 13.7865 12.9361 13.3118 

500 10% 7.8762 8.1762 7.9626 8.2954 8.0637 

 5% 11.6656 11.7909 12.1844 12.0447 11.7591 

 1% 23.8624 25.2815 25.8811 24.0450 24.5703 

1,000 10% 11.0332 10.9712 11.2518 11.4327 11.2209 

 5% 15.7878 16.1100 16.2858 16.1257 16.1505 

 1% 30.3888 32.6443 33.3903 31.3055 32.9398 

5,000 10% 21.6356 22.1738 22.2093 22.1011 21.7998 

 5% 30.1309 29.7765 29.7067 29.1700 29.8191 

 1% 57.5182 56.5253 51.5002 56.0019 54.7722 

10,000 10% 28.9310 28.6193 28.9583 29.2728 28.3075 

 5% 38.5022 37.2838 37.8952 38.4157 37.2962 

 1% 64.9144 68.7209 68.0323 68.8051 68.2281 

20,000 10% 37.9433 37.2058 37.0357 37.8052 37.0132 

 5% 48.9679 48.6394 48.5380 49.4719 49.1459 

 1% 84.9527 82.4076 80.5673 86.2474 83.3416 

50,000 10% 51.7280 52.6568 51.5697 50.8732 51.9408 

 5% 67.6419 68.0185 67.0430 66.3581 69.0306 

 1% 114.7755 116.1880 119.2706 115.2127 119.8323 

100,000 10% 65.8681 65.5515 65.9760 65.1466 66.6319 

 5% 83.9845 84.1396 86.4056 82.9548 86.1579 

 1% 148.4967 142.1744 143.9268 141.1822 147.3558 

 
Table 6. Critical values for volatility level shifts using ( 10000r = , AR 0.6= , MA 0.2= , 0 0.1α = , 1 0.3α =  and 0.3β = ). 

n α  0d =  0.1d = −  0.2d = −  0.3d = −  0.4d = −  

100 10% 3.6582 3.7769 3.6860 3.8035 3.7577 

 5% 5.8953 6.1048 6.1547 6.1189 6.1132 

 1% 12.6589 13.4891 13.9148 13.3196 13.3694 

500 10% 7.8762 8.0239 8.2833 8.1952 8.2330 

 5% 11.6656 12.1334 12.0662 11.7553 12.0480 

 1% 23.8624 24.8997 24.0587 24.9745 22.7606 

1,000 10% 11.0332 11.1450 11.3055 11.1477 10.7323 

 5% 15.7878 15.6398 15.9193 15.6644 15.5776 

 1% 30.3888 31.8784 30.2050 15.6644 31.9759 
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Continued 

5,000 10% 21.6356 21.6703 22.2743 21.6456 21.8549 

 5% 30.1309 28.7835 29.8158 28.6908 29.4122 

 1% 57.5182 55.4737 54.7683 50.9280 56.5341 

10,000 10% 28.9310 28.9176 29.1411 28.8159 28.9125 

 5% 38.5022 38.2453 38.9251 38.4272 38.3793 

 1% 64.9144 70.1031 69.5237 70.9082 70.2986 

20,000 10% 37.9433 37.6648 37.6448 37.2528 37.8225 

 5% 48.9679 48.9763 50.1476 48.8909 49.0337 

 1% 84.9527 89.0566 88.8139 86.6354 90.3910 

50,000 10% 51.7280 51.7868 52.7127 51.6432 51.6855 

 5% 67.6419 67.3734 69.3968 66.3510 67.0463 

 1% 114.7755 121.3809 124.0272 120.0173 115.1223 

 

 
Figure 4. Critical value (5%) for detecting volatility level shift. 

6.5. Volatility Level Shift Detection Test 

Before conducting the volatility level shift test it should be clear that the position 
of the volatility level shift impact i.e. point t i=  is not known. The volatility 
level shift impact 1ω  is tested for significance using the hypotheses 0 1: 0H ω =  
versus 1 1: 0H ω ≠ . An observation corresponding to the maximum ( )2

nT i  is 
considered a volatility level shift at %α  level of significance if the nC  statistic 
exceeds the critical value for a given fractional differencing d and a sample size n. 

For illustration purposes, volatility level shift of sizes ( )1 5 tVar hω =  and 
( )10 tVar h  are introduced in an ARFIMA-GARCH(1, 0.2, 1) (1, 1) time series 
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model with AR 0.6= , MA 0.2= , 0.3α = , and 0.25β =  of 10000n =  at 
point 5000i =  using R program. The resulting test statistic occurring at point 4 
999 due to differencing are 82.5055nC =  and 222.6902nC =  respectively. 
These are greater than the critical values 28.9583, 37.8952 and 68.0323 at 

10%, 5%α =  and 1% level of significance respectively, implying the rejection of 

0H  at all level of significance. 

7. Conclusions 

In this study, we derive and extend level shift detection test to the case of 
ARFIMA-GARCH models, the resulting models were denoted as LS-ARFIMA- 
LS-GARCH models. The derivation was in both the mean and volatility, such 
that a natural extension to LS-ARFIMA-LS-GARCH models was established. Then 
parameter estimation of LS-ARFIMA-LS-GARCH models was derived. Step by 
step detection procedure for level shift was also suggested and presented. Finally 
a simulation study of the critical values was performed using sample sizes of up-to 
50 000 for mean level shift detection test and up to 100 000 for volatility level 
shift detection test. Some concluding remarks can be summarized as follows: 

1) A natural extension of level shift models in ARFIMA-GARCH models (de-
noted LS-ARFIMA-LS-GARCH models) was established. 

2) Level shift detection tests for both the mean and volatility in models with 
ARFIMA-GARCH using step by step procedure were established. 

3) Parameter estimation of LS-ARFIMA-LS-GARCH models was derived us-
ing quasi-maximum likehood estimation. 

4) The simulation study shows that critical values of the mean level shift de-
tection test converges to Gumbel whereas the critical values of volatility level shift 
detection test diverge. 

5) Power of the test was also conducted and results for mean level shift shows 
that the probability of correctly detecting a mean level shift is high as long as the 
mean level shift impact is significantly different from the 95% Gumbel critical 
values of 5.1348. 

6) It was observed that critical values of volatility level shift detection proce-
dure fail to converge to a Gumbel distribution. Further derivation and establish-
ment of the normalizing constants of the test statistics and distribution which 
converges is still work in progress. 
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