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Abstract 
In this paper, a new CG method has been introduced to solve nonlinear equa-
tions systems. This method achieved the conditions of descent and global 
convergence, using the exact line search. The numerical results were good 
compared to other methods in terms of the number of iterations and the 
number of functions evaluation. 
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1. Introduction 

The conjugate gradient method is one of the important ways to find the mini-
mum value of a function for unconstrained optimization. 

The conjugate gradient method is widespread because its requirements are a 
small memory. Unconstrained optimization problem can be expressed as fol-
lows:  

( )min nx R
f x

∈
                         (1) 

where : nf R R→  is a continuous and derivative function. The CG method 
generates frequent updates in this format. 

1 1, 2,3, , 4k k k kx x d kα+ = + =                   (2) 

where xk is the current iteration point, 0kα >  is the positive step size using the 
“exact line search” as shown by the following:  

( )0mink k k kf x dαα α>= +                    (3) 
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and dk is the search direction, which we get as follows:  

1

for 0
for 1

k
k

k k k

g k
d

g d kβ −

− =
= − + ≥

                  (4) 

where k is integer and that gk is the gradient of the function f(x) and that βk is 
the coefficient of the conjugate gradient associated with the function f(x) at the 
point xk. 

Some of the known conjugation methods are: 
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The coefficient gradient coefficient k Rβ ∈  is a numerical constant, which 
determines the difference in different CG methods when 1,k kg g−  denote the 
gradient of a function f(x) at points 1,k kx x− , respectively. 

The above methods are known as: 
Fletcher and Reeves (FR) [1], Polka and Ribiere (PR) [2], Hestenes and Steifel 

(HS) [3], Dai and Yuan (DY) [4], Liu and Story (LS) [5], Conjugate Descent (CD) 
by Fletcher [6]. 

These aforementioned methods behave strictly convex quadratic functions in 
a behavior that is completely different from what they do in non-quadratic gen-
eral functions. In any case, most of these methods examine the properties of 
universal approach in the field of conjugated gradient. 

However, in recent years, there have been many attempts that have been di-
rected towards building new formulas for CG methods with good numerical 
performance and achieving the characteristics of global convergence. 

2. The New Conjugate Gradient and Its Algorithm 

It is well known that the methods of numerical optimization are iterative me-
thods and there is no specific method suitable for all types of problems. Each 
method has its advantages and new features as well as some of the characteristics 
that are not good and are efficient for some types of problems and not efficient 
for other types of problems. 

The new coefficient of gradient is 

( )

T

T
1 1

ME k k
k

k k k

g g
g d d

β
− −

=
+

                        (5) 

New method algorithm 
Step (1): Set 0 00, , 0d g k> = − =  and choose an initial value X0 
Step (2): Calculate MEβ  from (5) 
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Step (3): Calculate 1
ME

k k k kd g dβ −= − +  
In the case if 0kg = , stop 
Step (4): Calculate ( )0mink k kf x dαα α>= +  
Step (5): Calculate the new point with the following iterative formula: 

1k k k kx x dα+ = +                         (6) 

Step (6): Test if it is 

( ) ( )1k kf x f x+ <  

And also 
kg ≤   Stop 

Otherwise, go to step (1) with k = k + 1 
The coefficient kβ  is chosen in such a way that 1kd +  is G-conjugate to 

0 1 2, , , , kd d d d . 
Lemma (1) 
In the conjugate direction algorithm  

T
1 0 for all , 0 1 and 0 .k ig d k k n i k+ = ≤ ≤ − ≤ ≤  

Proposition: In the conjugate gradient algorithm the direction 0 1 1, , , nd d d −  
are G-conjugate.  

Proof: By using induction  
We first show  

T
0 1 0d Gd =  
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 by Lemma (1) and ELS we get =zero 

Now we assume that T
1 0k kd Gd− =  is correct. And we prove that T

1 0k kd Gd + =  
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By Lemma (1) and ELS we get T
1 0k kd Gd + = . 

The fulfillment of the descent condition T 0k kg d < . 

The new method is shown as follows: 
T T T

1
M

k k k k k kg d g g g dβ −= − +  

By ELS, we get   
2T T 0k k k k kg d g g g= − = − <  

So T 0k kg d < . 

Thus the descent condition is held. 

3. Global Convergence 

An analysis of the overall convergence using the Exact Line search (ELS) demon-
strates according to the following hypotheses: 

1) In the neighborhood N of L the function f(x) is continuous, derivative, bound 
and defined at the level set ( ) ( ){ }0,L x f x f x= ≤ , when x0 is an initial point. 

2) The gradient is Lipschitz condition when there is a constant number L > 0 so 
that 

( ) ( ) , for all ,g x g y L x y x y N− ≤ − ∈  

According to these assumptions we have the following taken by Zoutendijk [7].  
Lemma 2: Assuming assumption 1) is correct, we consider the conjugate re-

gression methods formulated in formula (3), where dk is the descent search direc-
tion, kα  fulfills the exact line search of the minimization rules, so the following 
condition defined by the Zoutendijk condition is held: 

( )2T

2
0

k k

k k

g d

d

∞

=

< ∞∑                         (7) 

From Lemma (2), we can obtain a convergence theorem of the conjugate gra-
dient CG method using 

( )

T

T
1 1

ME k k
k

k k k

g g
g d d

β
− −

=
+

                     (8) 

Theorem 1: Suppose that the assumption 1) is satisfied. Consider every CG 
method in the form (4), where kα  is obtained by the exact minimization rules. 
Then either 

( )2T

2
0

lim 0 or k k
kk k k

g d
g

d

∞

→∞ =

= < ∞∑                  (9) 

Proof. By contradiction, if theorem 1 is not true, there exists a constant 0c >  
such that 

kg c≥                            (10) 
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1k k k kd g dβ −= − +  

1k k k kd g dβ −+ =  

Squaring both sides 
2 2 2 2T

12k k k k k kd g d g dβ −+ + =  

2 2 2 2T
1 2k k k k k kd d g d gβ −= − −                 (11) 

But 2T
k k kg d c g= − . 

Dividing both sides of (11) by ( )2T
k kg d  given 
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But note that 2 2
0 0

1 1
d g

= , then from (12) we get 
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From (10) and (13) we get 

( )2T

2
0

k k

k k

g d

d

∞

=

= ∞∑  

This contradicts the Zoutendijk condition in lemma (2) which completes the 
proof.                                                            □ 

4. Numerical Results 

In this section we consider the numerical solution for this research. The conju-
gate gradient method of ME, Dai and Yuan, and Fletcher and Reeves were tested. 
Some test problems considered in Andrei [8]. We are selected based on the 
number of iteration and number of function evaluation (Table 1 and Table 2). 
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Table 1. Comparison of the algorithms for n = 100. 

FR DY ME  

Nof NoI Nof NoI Nof NoI F 

35 19 34 18 24 13 F1 

2025 2001 114 68 70 37 F2 

64 32 21 10 13 5 F3 

25 15 28 17 30 19 F4 

2103 2001 694 389 105 61 F5 

31 15 17 8 21 11 F6 

98 63 98 63 59 37 F7 

26 11 22 9 29 13 F8 

65 40 58 38 27 15 F9 

2355 2001 3735 1977 526 295 F10 

24 13 24 13 20 11 F11 

218 121 134 86 72 41 F12 

1202 69 150 28 104 53 F13 

1066 671 962 619 430 285 F14 

57 34 567 40 137 67 F15 

33 20 19 10 23 14 F16 

25 12 15 7 17 8 F17 

743 439 759 486 395 234 F18 

7 3 9 3 7 32 F19 

31 15 17 8 21 11 F20 

11 9 11 9 7 5 F21 

10,244 7604 7488 3906 2137 1267 Total 

 
Table 2. Comparison of the algorithms for n = 1000. 

F/R DY ME  

Nof NoI Nof NoI Nof NoI F 

65 38 65 38 31 14 F1 

2005 2001 292 179 210 137 F2 

129 77 29 15 28 13 F3 

3531 127 19 11 25 13 F4 

2073 2001 878 436 229 139 F5 

17 8 15 7 13 6 F6 

105 67 105 67 66 41 F7 

125 16 21 8 35 15 F8 

68 43 59 39 42 27 F9 

2066 2001 3773 2001 2012 2001 F10 
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Continued 

25 14 25 14 21 12 F11 

634 345 345 220 190 112 F12 

1967 98 642 45 136 66 F13 

2897 2001 3140 2001 2240 1925 F14 

3616 142 4477 157 130 63 F15 

35 19 18 9 28 17 F16 

23 11 15 7 17 8 F17 

2851 2001 3126 2001 2098 2001 F18 

9 4 11 4 9 23 F19 

17 8 15 7 13 6 F20 

11 9 11 9 8 6 F21 

22,269 11,031 17,081 7275 7581 6645 Total 

5. Conclusion 

A new kind of parameter in the conjugate gradient method for large scale un-
constrained optimization problems is proposed. Numerical results are detected 
that the new method is superior in practice with competitive DY and FR me-
thods.  
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A List of Test Function 

F1 Extended Trigonometric Function. 
F2 Diagonal 2 function. 
F3 Extended Tridiagonal −1 function.  
F4 Extended Three Exponential Terms.  
F5 Generalized PSC1 function.  
F6 Extended PSC1 Function.  
F7 Extended Block Diagonal BD1 function.  
F8 Extended Quadratic Penalty QP1 function.  
F9 Extended Tridiagonal −2 function.  
F10 Nondquar (CUTE).  
F11 DIXMAANC (CUTE).  
F12 DIXMAANE (CUTE).  
F13 EDENSCH function (CUTE).  
F14 STAIRCASE S1/F52 VARDIM function (CUTE).  
F15 ENGVAL1 (CUTE).  
F16 DENSCHNA (CUTE).  
F17 DENSCHNB (CUTE).  
F18 DIGGSB1 (CUTE).  
F19 Diagonal 7. 
F20 SINCOS.  
F21 HIMMELBG (CUTE).  
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