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Abstract 
In this paper, we prove an existence theory for ring-profiled optical vortex so-
litons via constrained minimization, which are considered in the context of 
an electromagnetic light wave propagating in a nonlinear media and go-
verned by a nonlinear Schrödinger type equation with square root nonlinear 
term. 
 
Keywords 
Optical Vortex Solitons, Square Root Nonliear, Constrained Minimization 

 

1. Introduction 

In optics research, a fundamental prototype situation is that the light waves are 
described by a complex-valued wave function governed by nonlinear Schrödin-
ger equations [1]-[8]. These rigorous mathematical treatments of such nonlinear 
problems provide more possibilities for the existence and properties of optical 
vortices. Our interest is motivated by the work of Lin, Belić, Petrović, Hajaiej 
and Chen [9], the mathematical analysis of Lin and Ren [10]. 

In dimensionless form, consider the following nonlinear Schrödinger equa-
tion,  

( )21 0,
2zi E E f I E⊥∂ + ∇ + =                    (1) 

where E is the evolution of the slowly varing electric field envelope propagating 
in the longitudinal z-direction; 2

⊥∇  is the Laplace operator over the transverse 
plane of coordinates ( ),x y  which is perpendicular to the z-axis. The function f 
depends on the total field intensity, I, i.e. 2I E= , and we will concentrate hen-
ceforth on the model of the self-focusing square-root nonlinearity.  

( )2

2

11 ,
1

f E
E

= −
+

                     (2) 
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which describes narrow-gap semiconductors [11] [12]. 
We focus on spatial optical solitons. Spatially localized solutions of (1), which 

do not change their intensity profile during propagation, can be described under 
the spatial soliton ansatz  

( ) ( ) ( ), , ei n zE r z u r θ αθ +=                      (3) 

where r and θ  are real polar coordinates over 2 , and 2 2r x y= + , 
( )arctan y xθ = , ( )u r  is the radial profile function which gives rise to the in-

tensity of light waves, n∈  is the winding number, and α ∈  is the wave 
propagation constant. This ansatz describe a vortex wave centered around the 
z-axis. Inserting (3) into (1) and in a square root nonlinear media, we arrive at 
the following equation  

( )
2

2

22 2 0
1

r r

n ruru u ru ru
r u

α− + − − =
+

                (4) 

Due to the presence of the vortex core, in other words, the regularity of u at 
0r = , we impose the condition ( )0 0u = . Besides, such ring-like beams remain 

localized that allows us to mathematically impose the “boundary” condition 
( ) 0u R =  for 0R >  sufficiently large, where R represents the distance from 

the vortex core. 
Therefore, in view of (4), we can get the n-vortex equation with boundary 

conditions.  

( )

( ) ( )

2

2

22 2 0
1

0 0,  0

r r

n ruru u ru ru
r u

u u R

α


− + − − =
 +
 = =

                 (5) 

In this paper, we treat (5) as a nonlinear eigenvalue problem and prove the 
existence of positive solution pairs ( ),u α  by a constrained minimization ap-
proach, with a prescribed energy flux constrained. 

2. Preliminary Setting and Main Theorems 

In this section, we give some basic notations and lemmas which will be used in 
next section. In order to approach the Equation (5), we write down the action 
functional :I Hα →   defined as  

( ) ( )
2

2 2 2 2
0

1 2 1 4 1 d
2

R
r

nI u ru u ru r u r
rα α

 
= + − − + + 

 
∫         (6) 

where 1n ≥ , H is the completion of  

[ ] ( ) ( ){ }1 0, | 0 0X u C R u u R= ∈ = =                  (7) 

equipped with the inner product  

( )
0

1, d ,  ,
R

r ru v ru v uv r u v H
r

 = + ∈ 
 ∫                   (8) 

As a Hilbert space, H may be considered as an embedded subspace of 
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( )1,2
0 RW B  which is composed of radially symmetric functions such that any 

element u H∈  enjoys the desired property ( )0 0u = , where  
( ){ }2 2 2 2: , :RB x y x y R= ∈ + ≤ . 

Lemma 2.1. From the inequalities  

( )2
2 411 1   for

4
u u u+ − ≤ ∈                    (9) 

and  
2

2 2
0 0

d d
R R uru r R r

r
≤∫ ∫                      (10) 

we get that there exists a constant 0C > , such that ( ) 2
HI u C uα ≤ . 

For convenience, we define the “energy” functional as  

( )
2

2 2
0

1 4 1 d
2

R
r

uu ru r u r
r

ε
 

= + + + 
 

∫                (11) 

Now, we state our main theorem in this paper. 
Theorem 2.2. For any parameters 1n ≥ , consider the n-vortex Equation (5) 

with boundary conditions, describing ring-profile vortex solitons in a square-root 
nonlinear media, with the prescribed energy flux ( ) 0 0uΦ = Φ > , and 0R > . 

1) There exists a solution pair ( ),u α  with ( ) 0u r > , ( )0,r R∈  and α ∈ . 

2) For [ ]0,r R∈ , the energy flux ( ) 0
1
4

uΦ = Φ ≤ , and there exists no non-

trivial solution, if 2 22 0n r α+ > . 

3. Existence of Vortices via Constrained Minimization 

In this section, we consider the wave propagation constant α  as a Lagrange 
multiplier, we prove the existence of solution of the Equation (5) with con-
strained minimization approach. 

We rewrite the n-vortex Equation (5) as  

( )

( ) ( )

2

2

22 2
1

0 0,  0

r r

n ruru u ru ru
r u

u u R

α


− + − =
 +
 = =

               (12) 

Define the function I and the soliton energy flux as  

( )
2

2 2 2 2
0

1 2 4 1 d
2

R
r

nI u ru u ru r u r
r

 
= + − + + 

 
∫  

( ) 2 2 2
0 0 0

d d 2 d
R R

u ru r ru rθ
π

Φ = = π∫ ∫ ∫  

Thus, to get a solution of (12), it suffices to show that a solution to the follow-
ing exists:  

( ) ( ){ }0 0min | , , 0I u u u∈Λ Φ = Φ Φ >                (13) 

where the nonempty admissible class Λ  is defined by  

https://doi.org/10.4236/apm.2020.104011


W. K. Chen 
 

 
DOI: 10.4236/apm.2020.104011 177 Advances in Pure Mathematics 
 

( ) [ ] ( ) ( ) ( ){ } is absolutely continuous over 0, , 0 0,u r R u u R uεΛ = = = < ∞ (14) 

with ( )uε  being defined by (11). 
The proof of Theorem 2.2. 1) Using the energy flux 0Φ , we have  

( )
2

2 2 0
0 0

1 d d
2 2

R R
r

uI u ru r n r
r

  Φ
≥ + −  π 

∫ ∫                (15) 

Let { }mu  be a minimizing sequence of (13). Then (15) gives the bound  
2

2
,0 0

d d
R R m

m r
u

ru r r C
r

+ ≤∫ ∫                      (16) 

where 0C >  is a constant independent of m. We know the fact that the distri-
butional derivative of u must satisfy rru u≤ , and the functionals I and Φ  
are even. Thus, we may assume that the sequence { }mu  consists of non-negative 
valued functions. Therefore, it is clear that we may view these functions as ra-
dially symmetric over the disk RB  and vanishing on its boundary. Moreover, 
with (16) and (10), it can be seen that { }mu  belongs in ( )1,2

0 RW B  under the 
reduced norm,  

2 2 2
0 0

d d
R R

ru ru r ru r= +∫ ∫                       (17) 

Therefore, { }mu  is bounded in ( )1,2
0 RW B . Without loss of generality, we get 

the weak convergence of { }mu  to an element ( )1,2
0 Ru W B∈ . Using the com-

pact embedding ( ) ( )1,2
0

p
R RW B L B→  for 1p ≥ , mu u→  strongly in 

( )p
RL B  as m →∞ . Hence, u is radially symmetric as well with ( ) 0u R = . 

In view of (16) and Fatou’s lemma, Let ( ), ,X µΣ  be a measure space and 
[ ){ }: 0,nf X → ∞  a sequence of nonnegative measurable functions. Then the 

function liminfn nf→∞  is measurable and  

liminf d liminf dn nX Xn n
f fµ µ→∞ →∞

≤∫ ∫                    (18) 

we have  
2 2

,0 0
d liminf d

R R
r m rm

ru r ru r
→∞

≤∫ ∫                      (19) 

22

0 0
d liminf d

R R m

m

uu r r
r r→∞

≤∫ ∫                      (20) 

2 2
0 0

2 1 d liminf 2 1 d
R R

mm
r u r r u r

→∞
+ ≤ +∫ ∫                (21) 

Therefore, from (10) and (19)-(21), we get  

( ) ( )liminf mm
I u I u

→∞
≤  

Following as in [13]. Let { }mu  be a sequence in ( )1,2 ,W R  where ( )0, Rε ∈ . 
It is clear that for any ( )0, R∈ , { }mu  is bounded in ( )1,2 ,W R . We may get 
that mu u→  uniformly over [ ], R  as m →∞  applying the compact em-
bedding ( ) [ ]1,2 , ,W R C R→  . Thus, we have for any pair ( )1 2 1 2, 0, ,r r R r r∈ < , 
with (16),  
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( ) ( ) ( )( ) ( )

( )

2 2

1 1

2

1

1 221 2
2 2 2

2 1 ,

1 22
1 2

2 d d

2 d

r r m
m m m rr r

r m
r

u r
u r u r ru r r r

r

u r
C r

r

 
− ≤   

 

 
≤   

 

∫ ∫

∫

      (22) 

Taking m →∞ , we get  

( ) ( ) ( )2

1

1 22
2 2 1 2

2 1 2 d
r

r

u r
u r u r C r

r
 

− ≤   
 
∫              (23) 

Since ( )
2

0,u L R
r
∈ , the right-hand side of (23) tends to zero as 1 2, 0r r → . 

Hence,  

( )2
0 0

lim 0
r

u rζ
→

= =  

As a consequence, the boundary condition ( )0 0u =  is achieved. With (13), 
u is a solution to (13), and there is a real number α  such that ( ),u α  satisfies 
(12). 

Moreover, we may suppose that there is a point ( )0 0,r R∈  such that 
( )0 0u r = , then ( )0 0ru r =  since 0r  is a minimum point for the function 
( )u r . By the uniqueness theorem of the initial value problem of ordinary diffe-

rential equations, we have ( ) 0u r =  for all ( )0,r R∈ , thus contradicting the 
fact ( ) 0 0uΦ = Φ > . Hence, ( ) 0u r >  for all ( )0,r R∈ . 

2) We establish  

( ) ( ){ }
0

liminf 0rr
ru r u r

→
=                    (24) 

Suppose otherwise that (24) is not valid, equivalently,  
( ) ( ){ }0liminf 0r rru r u r→ ≠ , then there is a 0 0>  and ( ]0 0,r R∈  so that 

( ) ( ) 0rru r u r ≥   for all ( )00,r r∈ . However,  

( )0 0 0 0

1 22 1 2
20

0 0 0 0
d d d d

r r r r
r r

ur u u r r ru r
r r

 
∞ = ≤ ≤  

 
∫ ∫ ∫ ∫
          (25) 

which contradicts with ( )uε < ∞ . So, (24) is valid. From (24), we can find a se-
quence { }jr  such that 0jr →  as j →∞  and  

( ) ( ){ }lim 0j j r jj
r u r u r

→∞
=                        (26) 

Multiplying (5) by u, integrating over ,jr R   , letting j →∞ . Appealing to 
(26), we obtain  

2 2
2 2 2 2

0 0 2

2d 2 2 d
1

R R
r

n ruru r u ru ru r
r u

α
  − = + − + 
 + 

∫ ∫           (27) 

Using ( )2
2 411 1

4
u u+ − ≤ , we have that  

2 2
2 2 2 2

0 0 2

2 2
2 2 4 2 4

20 0 0

2d 2 2 d
1

2 2 d 2 d 2 d

R R
r

R R R

n ruru r u ru ru r
r u

n nu ru ru r ru r ru r
r r

α

α α

  − = + − + 
 + 
   

≥ + − ≥ + −   
   

∫ ∫

∫ ∫ ∫
(28) 
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We may treat u as a radially symmetric function defined over 2  with its 
support contained in the disk RB . Hence, from the classical G N−  inequality 
over 2 , we deduce  

4 2 2
0 0 0

d 4 d d
R R R

rru r ru r ru r≤ π∫ ∫ ∫  

with ( ) 0uΦ = Φ , we have  

( )
2

2 2
0 20 0

4 1 d 2 d 0
R R

r
nru r ru r
r

α
 

Φ − − + ≥ 
 

∫ ∫  

Therefore, when 
2

0 2

1 , 2 0
4

n
r

αΦ ≤ + >  for ( ]0,r R∈ , 0u ≡ . as claimed. 

4. Conclusion 

Through the prove of the theorem 2.2, we get that the existence of positive solu-
tion pairs ( ),u α  by a constrained minimization approach. In other words, we 
get the existence of ring-profiled optical vortex solitons propagating in a 
square-root nonlinear media. Moreover, we obtain that there is no nontrivial 
small-energy-flux solution satisfying ( ) 0 1 4uΦ = Φ ≤ , if 2 22 0n r α+ >  for 

[ ]0,r R∈ . 
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