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Abstract 
In this paper, we consider the perturbation analysis of linear time-invariant 
systems, which arise from the linear optimal control in continuous-time. We 
provide a method to compute condition numbers of continuous-time linear 
time-invariant systems. It solves the perturbed linear time-invariant systems 
via Riccati differential equations and continuous-time algebraic Riccati equa-
tions in finite and infinite time horizons. We derive the explicit expressions of 
measuring the perturbation bounds of condition numbers with respect to the 
solution of the linear time-invariant systems. Furthermore, condition num-
bers and their upper bounds of Riccati differential equations and conti-
nuous-time algebraic Riccati equations are also discussed. Numerical simula-
tions show the sharpness of the perturbation bounds computed via the pro-
posed methods. 
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1. Introduction 
Many mathematical models of physical, biological and social systems involve 
partial differential equations (PDEs). In order to understand these systems, we 
consider problems of control and optimization, leading to PDE boundary con-
trol, optimization constrained by stochastic PDEs, model order reduction and 
some related applications. 

Consider the continuous-time linear time-invariant system (CLTI) by discre-
tizing the PDE, 
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with coefficient matrices n nA ×∈ , n mB ×∈ , r nC ×∈ , state vector 
( ) nx t ∈ , control vector ( ) mu t ∈  and output vector ( ) ry t ∈ . We can 

apply the optimal control u to influence the state vector x for output vector y. 
From control theory, we seek to find the optimal control via solving the Riccati 
differential equation (RDE) in the finite time. For infinite time, we solve the 
continuous-time algebraic Riccati equation (CARE). 

We solve the (perturbed) CLTI to get the relative errors in the exact solutions 
via RDEs and CAREs in the finite and infinite time horizons respectively. For 
solving RDEs, Leipnik [1] used the canonical form of the self-adjoint RDEs to 
obtain a convenient explicit solution. Rusnak [2] proposed an almost analytic 
representation for the solution of the nonhomogeneous and homogeneous, time 
invariant, and time variant RDEs to discuss the behavior of the optimal 
estimator on a finite time interval. For solving CAREs, it has been an extremely 
active area of research in various years. Laub [3] proposed the Schur method. 
Byers [4] suggested a stable symplectic orthogonal method as well as the matrix 
sign function method [5]. Guo and Lancaster [6] applied the Newton’s method. 
Benner and Byers [7] adopted a modified Newton’s method for solving CAREs 
that used exact line search to improve the convergence behavior of Newton’s 
method. Furthermore, Chu et al. [8] used the SDA. 

Perturbation analysis considers the sensitivity of the solution to the small 
perturbations in the input data of a problem. A condition number, which is a 
measurement of the sensitivity, is important in the numerical computation. 
Furthermore, perturbation bounds are usually discussed. Kenney and Hewer 
studied the sensitivity of the RDEs developed by Byers [9] in [10]. Konstantinov 
and Pelova presented linear and nonlinear methods for estimating the sensitivity 
of the solution to RDEs in [11]. Konstantinov et al. [12] [13] proposed new 
methods to improve the sensitivity estimate of RDEs in 2-norm. For the 
sensitivity analysis of the linear differential system, we refer papers [14] [15] [16] 
and their references therein. For the perturbation analysis and perturbation 
bounds of CAREs, please see [9] [10] [17] [18] [19] [20] [21]. In this paper, it is 
the first to consider the perturbation analysis of CLTI via RDEs and CAREs. 

The paper is organized as follows. We introduce the CLTI, solve the perturbed 
CLTI with only one perturbed coefficient matrix via RDEs, discuss the sensitivity 
of the RDEs, compute condition numbers and perturbation bounds of the CLTI 
via RDEs and apply backward differentiation formula (BDF) to solve differential 
Lyapunov matrix equation (DLE) in Section 2. Section 3 discusses the CLTI via 
CAREs, the sensitivity of the CAREs, condition numbers and perturbation bounds 
of the CLTI via CAREs. The illustrative numerical examples are presented in 
Section 4. Section 5 concludes the paper. 

2. Solving Continuous-Time Linear Time-Invariant System  
Via Riccati Differential Equation 

In order to guarantee the existence and uniqueness of the state and output 
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vectors, respectively in the CLTI (1), we assume that the condition ( )det 0nrI A− ≠  
holds, for some r. The linear-quadratic regulator (LQR) problem for finite time 
horizon seeks the optimal control ( )u t  to minimize the cost function:   

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 1 10

, , d ,
t

J u Q t y t y t u t Ru t t x t Q x tΤ Τ Τ ≡ + + ∫  

for some 0R >  and 1 0Q ≥ . The optimal control is given by   

( ) ( ) ( ) [ ]1
1, 0, ,u t R B X t x t t t− Τ= − ∈                  (2) 

with ( )X t  being the solution to the RDE:   

( ) ( ) ( ) ( ) ( ) ( )1 1, ,X t A X t X t A H X t GX t X t QΤ= − − − + =        (3) 

where 1G BR B− Τ≡  and H C CΤ≡ . 
In this paper, the Bernoulli substitution technique is applied to solve RDEs 

(3), then we can take the optimal control ( )u t  (2) into the CLTI (1) and solve 
the ordinary differential equation (ODE) to get the state vector ( )x t . Furthermore, 
the output vector ( )y t  can be also obtained. Please refer to Weng and Phoa 
[22] about the details of solving the CLTI (1) via RDEs (3). 

2.1. Sensitivity of the Riccati Differential Equation 

As we solve the CLTI (1) by applying RDEs (3), then the sensitivity of RDEs (3) 
is studied. We first derive two kinds of condition numbers and perturbation 
bounds before we present the sensitivity of CLTI (1). 

The RDEs (3) study nonlinear matrix differential equations arising in optimal 
control, optimal filtering, H∞ -control of linear-time varying systems, 
differential games, etc.; see, e.g. [23] [24] [25] [26]. Moreover, there is a variety 
of methods in the literature to compute the solution of RDEs (3); see, e.g. [27] 
[28] [29]. 

First, we transform from the RDEs (3) with terminal condition into initial 
value condition. Let ( ) ( )1P t X t t= − , then for 10 t t≤ ≤    

( ) ( ) ( ) ( ) ( ) ( ) 1, 0 .P t H A P t P t A P t GP t P QΤ= + + − =            (4) 

Suppose we add some small perturbations only to coefficient matrix A in the 
RDEs (3) due to some applications like electric circuit simulation and multibody 
dynamics [30]. Other two coefficient matrices B and C in the CLTI (1) are 
treated similarly step by step. The solution to perturbed Riccati differential 
equation (pRDE) is ( ) ( ) ( )P t P t P t= + ∆ , then we get   

( ) ( ) ( ) ( ) ( ) ( ) 1 1, 0 ,P t H A P t P t A P t GP t P Q QΤ= + + − = + ∆

              (5) 

where A A A= + ∆  is the perturbed coefficient matrix. 
Dropping the second and high-order terms in (5) yields  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,g gP t A t P t P t A t A P t P t AΤ Τ∆ = ∆ + ∆ + ∆ + ∆         (6) 

( ) ( ) ( )1 10 ,0 , .P Q t t Ag t A P t GΤ∆ = ∆ ≤ ≤ ≡ −              (7) 
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Let gΦ  satisfy   

( ) ( ) ( ) ( ) 1, 0 , 0 .g g g gt A t t I t tΦ = Φ Φ = ≤ ≤               (8) 

Define   

( ) ( ) ( ) ( ) ( ) ( )1 1
0

d
t

g g g g gZ t s Z s s t s− − −Τ ΤΩ = Φ Φ Φ Φ∫             (9) 

for any continuous matrix function ( )Z Z s= , [ ]0,s t∈ . By variation method, 
( )P t∆  in (6) can be solved   

( ) ( ) ( ) ( )1 ,g g gP t t Q t AΤ∆ = Φ ∆ Φ + Θ ∆                (10) 

where   

( ) ( ) ( )( )1 .g gZ Z P t P t Z− ΤΘ ≡ Ω +                  (11) 

Since we only perturb the coefficient matrix A, we modify the condition 
theory of Rice [31] into   

( ) ( )
( ) 1 1sup | , .A X t

C t A A Q Q
X t

 ∆ = ∆ ≤ ∆ ≤ 
  

  


 

Taking the limit as   goes to zero, the condition number is defined:   

( )
0

lim .A A
RDEK C t

→
= 

 

That is,   

( )
( )

1
1 10

1

limsup | , .A
RDE

P t t
K A A Q Q

P t t→

 ∆ − = ∆ ≤ ∆ ≤ −  
 


       (12) 

The following theorem describes the condition numbers of RDEs using 2- and 
∞ -norm.  

Theorem 2.1. Using the notations given above, we can derive the explicit 
expressions and perturbation bounds for two kinds of condition numbers of the 
RDEs according to only perturbed matrix A  

( )
1

2_
1

,A
RDE

mK
P t t

=
−

                       (13) 

( )
2

_ 1
1

, 0 ,A
RDE

mK t t
P t t∞

∞

= ≤ ≤
−

                  (14) 

where  

( ) 2
1 1 1 ,g gm t t Q A= Φ − + Θ  

( ) 2
2 1 1 .g gm t t Q A

∞ ∞∞ ∞
= Φ − + Θ  

Proof. According to the above definition about the condition number of 
RDEs (12), we take 2-norm in (10) and substitute t into 1t t− , then obtain   

( ) ( ) 2
1 1 1 .g gP t t t t Q A∆ − ≤ Φ − ∆ + Θ ∆  

For   sufficiently small, with A A∆ , 1 1Q Q∆ ≤  , we can get   
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( ) ( ) 2
1 1 1 .g gP t t t t Q A∆ − ≤ Φ − + Θ   

Divide by ( )1P t t−  to get   

( )
( )

( )
( )

2
1 11

1 1

.g gt t Q AP t t
P t t P t t

Φ − + Θ∆ −
≤

− −
 

From (12), let 0→  give   

( )
1

2_ 1
1

, 0 .A
RDE

mK t t
P t t

≤ ≤ ≤
−

 

Analogously, we take ∞ -norm in (10) and change t into 1t t− , then obtain   

( )
( )

( )
( )

2
1 11

1 1

.g gt t Q AP t t
P t t P t t

∞ ∞∞ ∞ ∞

∞ ∞

Φ − + Θ∆ −
≤

− −
 

Let 0→ , we can get   

( )
2

_ 1
1

, 0 .A
RDE

mK t t
P t t∞

∞

≤ ≤ ≤
−

 

In order to compute two kinds of condition numbers and perturbation bounds 
of the RDEs efficiently, we let ( )l lF F t=  be the solution to the differential 
Lyapunov matrix equation (DLE)   

( ) ( ) ( ), 0 0, 0,2,l
l g l l g lF A t F F A t P F lΤ= + + = =           (15) 

where ( )gA t  is defined in (7) and ( )P P t=  is the solution of RDEs (4). We 
assume that ( )gA tΤ  is a c-stable matrix and therefore (15) has a unique 
symmetric solution ( ) ( )l lF t F tΤ=  [32]. The following theorem is the connection 
between DLE (15) and partial condition numbers (13) and (14).  

Theorem 2.2. For 1
g
−Ω , gΘ , and lF  as in (9), (11), and (15), respectively,   

1 1
2 20 22 .g F FΘ ≤  

Proof. For m mZ ×∈ , we let u and v be unit left and right singular vectors of 
( )g ZΘ  such that   

( ) ( ) .g gZ u Z vΤΘ = Θ  

Using (9) and (11), we can obtain  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0

1
0

1
0

d ,

d ,

2 d .

t
g g g g g

t
g g g g

t
g g g g

Z u t s Z P s P s Z s t v s

u t s Z P s P s Z s t v s

Z u t s P s s t v s

Τ − Τ −Τ Τ

Τ − Τ −Τ Τ

Τ − −Τ Τ

Θ = Φ Φ + Φ Φ

≤ Φ Φ + Φ Φ

≤ Φ Φ Φ Φ

∫

∫

∫

 

Applying the Cauchy-Schwarz inequality [21], we get   

( ) ( ) ( ) ( ) ( ) ( )
1 1

2 222 21
0 0

2 d d .
t t

g g g g gZ Z u t s s P s s t v sΤ − −Τ Τ   Θ ≤ Φ Φ Φ Φ      ∫ ∫  

We can express the solution lF  to (15) explicitly using (8)   
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( ) ( ) ( ) ( ) ( ) ( )1
0

d .
t l

l g g g gF t t s P s s t s− −Τ Τ= Φ Φ Φ Φ∫  

However, 

( ) ( ) ( ) ( ) ( ) ( )
21 1

0 0
d d

t t
g g g g g gu t s s u t s s t suΤ − Τ − −Τ ΤΦ Φ = Φ Φ Φ Φ∫ ∫       (16) 

0 0 ,u F u FΤ⇒ ≤                         (17) 

where u is a unit vector. Moreover,  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22

0

1 2
0

2 2

d

d

,

t
g g

t
g g g g

P s s t v s

v t s P s s t sv

v F v F

−Τ Τ

Τ − −Τ Τ

Τ

Φ Φ

= Φ Φ Φ Φ

= ≤

∫

∫            (18) 

where v is a unit vector. Combining (17) and (18), we have   

( )
1 1
2 20 22 .g Z Z F FΘ ≤  

Thus,   
1 1
2 20 22 .g F FΘ ≤  

2.2. Sensitivity of the CLTI via RDEs 

In this subsection, we discuss the perturbation analysis of the CLTI (1) using 
RDEs (3) and derive two kinds of condition numbers. Furthermore, we also 
present their perturbation bounds. 

Suppose we introduce some small perturbation A∆  only to coefficient 
matrix A and the state vector to the perturbed system is ( ) ( ) ( )x t x t x t= + ∆ , 
then the perturbed CLTI is   

( ) ( ) ( ) ( ) 0 0, 0 .x t Ax t Bu t x x x= + = + ∆

                   (19) 

We can replace the perturbed optimal control   

( ) ( ) ( )1 ,u t R B X t x t− Τ= − 

   

and obtain   

( ) ( ) ( ) ( ),x t Ax t GX t x t= − 

                      (20) 

where A A A= + ∆  is the perturbed coefficient matrix and  
( ) ( ) ( )X t X t X t= + ∆  is the solution of perturbed Riccati differential equation 

(pRDE):   

( ) ( ) ( ) ( ) ( ) ( )1 1 1, , 0 .X t H A X t X t A X t GX t X t Q t tΤ= − − − + ≡ ≤ ≤

             (21) 

Dropping the second and higher-order terms in (20) yields  

( ) ( )( ) ( ) ( ) ( ) ( )( ),x t A GX t x t Ax t G X t x t∆ = − ∆ + ∆ − ∆            (22) 

( ) 0 10 , 0 ,x x t t∆ = ∆ ≤ ≤  

where the pRDEs (21) are solved. Let dΦ  satisfy   

( ) ( ) ( ) ( ) 1, 0 , 0 ,d d d dt A t t I t tΦ = Φ Φ = ≤ ≤              (23) 
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where   

( ) ( ).dA t A GX t≡ −                       (24) 

Define   

( ) ( ) ( ) ( ) ( ) ( )1 1
0

d
t

d d d d dZ t s Z s s t s− − −Τ ΤΩ = Φ Φ Φ Φ∫            (25) 

for any continuous matrix function ( )Z Z s= , [ ]0,s t∈ . By variation method, 
we can solve (22) and get   

( ) ( ) ( )( ) ( ) ( )( )1 1
0 .d d dx t t x Ax t G X t x t− −∆ = Φ ∆ +Ω ∆ −Ω ∆         (26) 

The above relation discusses a first-order perturbation ( )x t∆  in the state 
vector corresponding to the perturbation A∆ . Based on the perturbation analysis 
for 10 t t≤ ≤ , we modify the condition theory of Rice [31] into   

( ) ( )
( ) ( ) ( ) 0 0sup | , , .A x t

K t A A X t X t x x
x t

 ∆ = ∆ ≤ ∆ ≤ ∆ ≤ 
  

   


 

Taking the limit as   goes to zero, we can get the condition number   

( ) ( )
0

lim .A AK t K t
→

= 
 

The following theorem describes the condition numbers of the CLTI (1) via 
RDEs and perturbation bounds in 2- and ∞ -norm according to only perturbed 
matrix A.  

Theorem 2.3. Using the notations given above, we can derive the explicit 
expressions and perturbation bounds for two kinds of condition numbers of the 
CLTI (1) via RDEs  

( )
1

2_ ,A
CLTI RDE

uK
x t− =  

( )
2

_ 1, 0 ,A
CLTI RDE

uK t t
x t∞ −

∞

= ≤ ≤  

where  

( ) ( ) ( )( )1
1 0 ,d du t x x t A G X t−= Φ + Ω +  

( ) ( ) ( )( )1
2 0 .d du t x x t A G X t−

∞ ∞ ∞∞ ∞ ∞∞
= Φ + Ω +  

Proof. We can investigate condition numbers in 2- and ∞ -norm according 
to only perturbed matrix A  defined by  

( )
( ) ( ) ( )2_ 0 00

limsup | , , ,A
CLTI RDE

x t
K A A X t X t x x

x t− →

 ∆ = ∆ ≤ ∆ ≤ ∆ ≤ 
  

  


 

( )
( ) ( ) ( )_ 0 00

limsup | , , .A
CLTI RDE

x t
K A A X t X t x x

x t
∞

∞ − →
∞

 ∆ = ∆ ≤ ∆ ≤ ∆ ≤ 
  


  


 (27) 

For   sufficiently small, with A A∆ , ( ) ( )X t X t∆ , 0 0x x∆ ≤  , 
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we take 2-norm in (26) and get  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
0

1 1
0

,

.

d d d

d d d

x t t x A x t G X t x t

t x A x t G X t x t

− −

− −

∆ ≤ Φ ∆ + Ω ∆ + Ω ∆

≤ Φ + Ω + Ω  
 

Therefore, we can obtain   

( )
( )

( )
( ) ( )0 1 1 .d

d d

x t t x
A G X t

x t x t
− −∆ Φ

≤ + Ω + Ω


 

Thus 0→  gives   

( )
1

2_ 1, 0 .A
CLTI RDE

uK t t
x t− ≤ ≤ ≤  

Analogously, we take ∞ -norm in (26) and apply (27), then obtain   

( )
( )

( )
( ) ( )0 1 1 .d

d d

t xx t
A G X t

x t x t
∞ − −∞

∞ ∞ ∞∞ ∞
∞ ∞

Φ∆
≤ + Ω + Ω


 

Let 0→ , we can get   

( )
2

_ 1, 0 .A
CLTI RDE

uK t t
x t∞ −

∞

≤ ≤ ≤  

When we compute condition numbers and perturbation bounds of CLTI 
efficiently via solving RDEs, we let ( )

d d
X X tΩ Ω=  be the solution to the following 

DLEs   

( ) ( ) ( ) ( ), 0 0,
d d d dd dX t A t X X A t I XΤ

Ω Ω Ω Ω= + + =           (28) 

where ( )dA t  is defined in (24). We assume that ( )dA t  is a c-stable matrix and 
therefore (28) has a unique symmetric solution ( ) ( )

d d
X t X tΤ

Ω Ω=  [32]. The 
following theorem states the solution 

d
XΩ  of DLEs (28) that is equivalent to 

( )1
d I−Ω  defined in (25).  
Theorem 2.4. [23] For ( )dA t  and 1

d
−Ω  as in (24) and (25), respectively, the 

unique solution of the DLEs (28) is defined by   

( ) ( ) ( ) ( ) ( )1
0

d ,
d

t
d d d dX t t s s t s− −Τ Τ

Ω = Φ Φ Φ Φ∫  

where ( )d tΦ  is defined in (23). Furthermore, we can obtain  

( ) ( ) ( ) ( ) ( ) ( )1 1
0

d .
d

t
d d d d dI t s s t s X t− − −Τ Τ

ΩΩ = Φ Φ Φ Φ =∫  

Therefore,   

( ) ( )1 1and .
d dd dX t X t− −

Ω Ω∞ ∞
Ω = Ω =  

2.3. Backward Differentiation Formula Method for Solving DLEs 

There is a large variety of methods to compute the solution of DLEs, see, e.g. 
[27] [28] [29]. In this paper, we apply the efficient method called Backward 
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Differentiation Formula (BDF) to (15), which can be treated (28) similarly. 
Consider  

( ), ,l lF t F=   

( ), , 0,2,l
l g l l gt F A F F A P lΤ= + + =  

( )0 0.lF =                           (29) 

Applying the fixed-coefficients BDF method to the DLEs (29), we obtain the 
matrix valued BDF scheme   

( ) ( ) ( )( )11 1 1
1

, ,
p

l j l k k lk k j k
j

F F h t Fα β ++ + − +
=

= − +∑   

where 1k k kh t t+= −  is the time step size, ( ) ( )11l l kkF F t ++
≡ , jα , β  are the 

determining coefficients of the p-step BDF method as listed in Table 1 (see, e.g. 
[33]).   

It leads to solving the following Lyapunov-BDF difference equation  

( ) ( ) ( ) ( ) ( )( ) ( )11 1 1 11 1
1

0,
p

l
l k g l l g k j lk k k k jk k

j
F h A F F A P Fβ α

Τ

++ + + + −+ +
=

− + + + − =∑  

with ( ) ( )11g g kk
A A t ++

≡ , ( )1 1
l l

k kP P t+ +≡ , which can be written as the following 
Lyapunov equation   

( ) ( ) ( )11 1 1
1

0,
p

l
b l l b k k j lk k k j

j
A F F A h P Fβ αΤ

++ + + −
=

 
+ + − = 

 
∑         (30) 

for ( ) 1l kF
+

 and ( ) 1

1
2b k g k

A h A Iβ
+

≡ − . 

The Lyapunov Equation (30) can be solved by applying various methods such 
as the Schur vector method, symplectic SR methods, the matrix sign function, 
the matrix disk function or the doubling method; see, e.g. [34] [35] [36]. In this 
paper, we used the MATLAB function “lyap” to compute the unique symmetric 
positive semidefinite solution to the Lyapunov Equation (30). 
 
Table 1. Coefficients of the p-step BDF method with 5p ≤ . 

p β  1α  2α  3α  4α  5α  

1 1 −1     

2 2
3

 4
3

−  1
3

    

3 6
11

 18
11

−  9
11

 2
11

−    

4 12
25

 48
25

−  36
25

 16
25

−  3
25

  

5 60
137

 300
137

−  300
137

 200
137

−  75
137

 12
137

−  

https://doi.org/10.4236/apm.2020.104010


P. C.-Y. Weng, F. K. H. Phoa 
 

 
DOI: 10.4236/apm.2020.104010 164 Advances in Pure Mathematics 
 

3. Solving Continuous-Time Linear Time-Invariant System  
via Continuous-Time Algebraic Riccati Equation 

For infinite time horizon, 1t →∞  and we search for the steady state solution of 
the RDEs (3), which leads to the continuous-time algebraic Riccati equation 
(CARE):   

( ) 0.X A X XA H XGXΤ≡ + + − =                  (31) 

In this case, the time-invariant solution X leads to the optimal control   

( ) ( ) [ )1 , 0, .u t R B Xx t t− Τ= − ∈ ∞                   (32) 

In this paper, we used the MATLAB function “care” to compute the unique 
symmetric positive semidefinite solution X to the CAREs (31), then replace the 
optimal control ( )u t  (32) in the CLTI (1) and solve the ODE to get the state 
vector ( )x t . Moreover, we can also obtain the output vector ( )y t . For the 
details about the solvable conditions of CAREs (31) and solving the CLTI (1) via 
CAREs (31), please see Weng and Phoa [22]. 

3.1. Sensitivity of the Continuous-Time Algebraic Riccati Equation 

Before we discuss the sensitivity of the CLTI (1) via solving CAREs (31), we first 
consider the sensitivity of the CAREs. Suppose we add some small perturbations 
only to the coefficient matrix A in the CAREs (31) similar to that in the RDEs 
(4), then we get the perturbed continuous-time algebraic Riccati equation 
(pCARE):   

0,A X XA H XGXΤ + + − =                         (33) 

where X X X≡ + ∆ . Dropping the second and high-order terms in (33) yields   

( ) ( ) 0.A XG X X A GX A X X AΤ Τ− ∆ + ∆ − + ∆ + ∆ =            (34) 

Set   

,cA A GX= −                          (35) 

and let cΩ  satisfy   

( ) .c c cZ A Z ZAΤΩ = +  

Due to solvable conditions of CAREs (31), it is known that the matrix 

cA A GX= −  is c-stable [3] [9]. Furthermore, we can get that cΩ  is invertible 
[37] and   

( )1
0

d .c cA t A t
c Z e Ze t

Τ∞−Ω = ∫                     (36) 

Therefore, we can solve the Lyapunov Equation (34)   

( ),cX A∆ = −Θ ∆                        (37) 

where   

( ) ( )1 .c cZ Z X XZ− ΤΘ = Ω +                    (38) 

To connect X∆  to only A∆ , we modify the condition theory of Rice [31] 
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into   

sup | .A X
C A A

X
 ∆ = ∆ ≤ 
  

 


 

Taking the limit as   goes to zero, we obtain the condition number   

0
lim .A A

CAREK C
→

= 
                        (39) 

The following theorem derives two kinds of condition numbers of CAREs 
(31) in 2- and ∞ -norm.  

Theorem 3.1. Using the notations given above, we can derive the explicit 
expressions and perturbation bounds for two kinds of condition numbers of 
CAREs (31) according to only perturbed matrix A  

1
2_ ,A

CARE
nK
X

−                         (40) 

2
_ ,A
CARE

nK
X∞

∞

=                        (41) 

where  

1 ,cn A= Θ  

2 .cn A
∞ ∞

= Θ  

Proof. For   sufficiently small, with A A∆ ≤  , we take 2-norm in (37) 
according to the definition of the condition number (39) and get  

( ) .c c cX A A A∆ = Θ ∆ ≤ Θ ∆ ≤ Θ   

Divide by X  to get   

.cX A
X X

∆ Θ
≤


 

Take 0→  and obtain   

1
2_ .A

CARE
nK
X

≤  

Analogously, we take ∞ -norm in (37) and divide X
∞

 , then we obtain  

.c cX A A
X X X

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

∆ Θ ∆ Θ
≤ ≤

 
 

Let 0→  give   

2
_ .A

CARE
nK
X∞

∞

≤  

To solve two kinds of condition numbers and perturbation bounds of CAREs 
(31) efficiently, we let kE  be the solution to the Lyapunov equation   

, 0,2,k
c k k cA E E A X kΤ + = − =                   (42) 
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where cA  is defined in (35) and X is the solution of CAREs (31). The following 
theorem applies the Lyapunov equation (42) to compute the condition numbers 
(40) and (41) efficiently.  

Theorem 3.2. For 1
c
−Ω , cΘ  and kE  as in (36), (38) and (42), respectively   

1 1
2 20 22 .c E EΘ ≤  

Proof. For m mZ ×∈ , we let u and v be unit left and right singular vectors of 
( )c ZΘ  such that   

( ) ( ) .c cZ u Z vΤΘ = Θ  

By (36) and (38), we get  

( ) ( )0

0

0

d ,

d ,

2 d .

c c

c c

c c

A t A t
c

A t A t

A t A t

Z u e Z X XZ e v t

u e Z X XZ e v t

Z u e X e v t

Τ

Τ

Τ

∞ Τ Τ

∞ Τ Τ

∞ Τ

Θ = +

≤ +

≤

∫

∫

∫

 

Applying the Cauchy-Schwarz inequality, we obtain   

( )
1 1

2 2 22 2

0 0
2 d d .c cA t A t

c Z Z u e t X e v t
Τ∞ ∞Τ   Θ ≤      ∫ ∫  

We can express the solution kE  of (42) explicitly [37]   

0
d .c cA t A tk

kE e X e t
Τ∞

= ∫                        (43) 

But   
2

0 00 0
d d ,c c cA t A t A tu e t u e e tu u E u E

Τ Τ∞ ∞Τ Τ Τ= = ≤∫ ∫            (44) 

where u is a unit vector. Moreover,   
22 2

2 20 0
d d ,c c cA t A t A tX e v t v e X e tv v E v E

Τ∞ ∞Τ Τ= = ≤∫ ∫         (45) 

where v is a unit vector. Therefore, we combine (44) and (45), so   

( )
1 1
2 20 22 .c Z Z E EΘ ≤  

Thus,   
1 1
2 20 22 .c E EΘ ≤  

3.2. Sensitivity of the CLTI via CAREs 

We consider the perturbed CLTI (19) and take the perturbed optimal control   

( ) ( )1u t R B Xx t− Τ= − 

   

in (19), then obtain   

( ) ( ) ( ) ( ) 0 0, 0 .x t Ax t GXx t x x x= − = + ∆ 

                  (46) 

By dropping the second and higher-order terms in (46), we apply the similar 
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technique such as variation method to solve   

( ) ( ) ( ) ( ),cx t A x t Ax t G Xx t∆ = ∆ + ∆ − ∆  

and we obtain   

( ) ( ) ( )( ) ( )( )1 1
0 ,c c cx t t x Ax t G Xx t− −∆ = Ψ ∆ + Π ∆ − Π ∆         (47) 

with ( )c tΨ  and 1
c
−Π  being the following differentiation and integral functions, 

respectively  

( ) ( ) ( ), 0 , 0 ,c c c ct A t I tΨ = Ψ Ψ = ≤ < ∞  

( )1
0

d ,c cA t A t
c Y e Ye t

Τ∞−Π = ∫                     (48) 

where cA  is defined in (35). 
The above relation (47) states a first-order perturbation ( )x t∆  in the state 

vector corresponding to only one perturbation matrix A∆ . From the 
perturbation analysis, we investigate two kinds of condition numbers according 
to only perturbed matrix A in the CLTI (1) via CAREs (31) in the following 
theorem.  

Theorem 3.3. Using the above notations, the explicit expressions and 
perturbation bounds for two kinds of condition numbers in the CLTI (1) via 
CAREs (31) according to only perturbed matrix A are  

( )
1

2_ ,A
CLTI CARE

vK
x t− =                      (49) 

( )
2

_ , 0 ,A
CLTI CARE

vK t
x t∞ −

∞

= ≤ < ∞                  (50) 

where  

( ) ( ) ( )1
1 0 ,c cv t x x t A G X−= Ψ + Π +  

( ) ( ) ( )1
2 0 .c cv t x x t A G X−

∞ ∞ ∞ ∞∞ ∞∞
= Ψ + Π +  

Proof. We consider condition numbers of the CLTI (1) via CAREs (31) 
according to only perturbed matrix A in 2- and ∞ -norm defined by  

( )
( )2_ 0 00

limsup | , , ,A
CLTI CARE

x t
K A A X X x x

x t− →

 ∆ = ∆ ≤ ∆ ≤ ∆ ≤ 
  

  


 

( )
( )_ 0 00

limsup | , , .A
CLTI CARE

x t
K A A X X x x

x t∞ − →
∞

 ∆ = ∆ ≤ ∆ ≤ ∆ ≤ 
  


  


  (51) 

For   sufficiently small, with A A∆ , X X∆ , 0 0x x∆ ≤  , we 
take 2-norm in (47) and get  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
0

1 1
0

,

.

c c c

c c c

x t t x A x t G X x t

t x A x t G X x t

− −

− −

∆ ≤ Ψ ∆ + Π ∆ + Π ∆

≤ Ψ + Π + Π  
 

According to the above definition of the condition number, we obtain   
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( )
( )

( )
( )

0 1 1 .c
c c

x t t x
A G X

x t x t
− −∆ Ψ

≤ + Π + Π


 

Let 0→  give   

( )
1

2_ , 0 .A
CLTI CARE

vK t
x t− ≤ ≤ < ∞  

Analogously, we take ∞ -norm in (47) by applying (51) and obtain   

( )
( )

( )
( )

0 1 1 .c
c c

x t t x
A G X

x t x t
∞ − −∞ ∞

∞ ∞ ∞∞ ∞
∞ ∞

∆ Ψ
≤ + Π + Π  

Take 0→ , we can get   

( )
2

_ , 0 .A
CLTI CARE

vK t
x t∞ −

∞

≤ ≤ < ∞  

To solve two kinds of condition numbers of CLTI (1) via CAREs (31) 
efficiently, we apply Theorem 3.2 to compute condition numbers (49) and (50) 
efficiently.  

Theorem 3.4. For cA  and 1
c
−Π  as in (35) and (48), respectively, the unique 

solution of the Lyapunov Equation (42) is represented in (43), then we can get   

( )1
00

d .c cA t A t
c I e e t E

Τ∞−Π = =∫  

Thus,   
1 1

0 0and .c cE E− −
∞∞

Π = Π =  

4. Numerical Examples 

The numerical simulations are conducted on a desktop with a 3.40 GHz Intel 
Core 2 Duo processor and 32 GB RAM, with machine accuracy 162.22 10eps −= × . 
We compute with MATLAB [38] Version R2017b. 

We have chosen one example for demonstration:    
1) The example 1 illustrates condition numbers and perturbation bounds of 

CLTI via solving RDEs and CAREs with finite and infinite time horizons, 
respectively to present the effectiveness of the theoretical results.   

Example 1 (CLTI) 
Consider the CLTI (1) with 2n m= =  and 1r = : 

[ ]1 0 2

1 0 2 1 1 0 1
, , , , , 1, 0 ,

0 2 0 1 0 0 1
A B Q x R I C

−       
= = = = = =       −       

 

satisfying  

( ) ( ) ( ) ( ) 0, 0 , 0 ,fx t Ax t Bu t x x t t= + = ≤ ≤  

( ) ( ),y t Cx t=  

with the optimal controls ( )u t  chosen through minimizing the cost functional   
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( ) ( ) ( ) ( )1 0

1 1 d .
2 2

ft
f fJ x t Q x t u t Ru t tΤ Τ= + ∫  

In the example, the perturbed coefficient matrix is constructed such as 
E E E= + ∆  and ( )10 ,jE randn n m−∆ = × , for n mE ×∈ , 10 j−  being the 
weighted coefficient. From the tables, ( ) ( ) ( )X t X t X t= + ∆ ,  
( ) ( ) ( )x t x t x t= + ∆  and X X X= + ∆  are solutions of pRDEs, pCLTI and 

pCAREs, respectively, then we obtain relative differences of solutions between  

original and perturbed equations in 2- and ∞ -norm such as 
( )
( )

2

2

X t
X t
∆

, 

( )
( )

X t
X t

∞

∞

∆
, 

( )
( )

2

2

x t
x t
∆

, 
( )
( )

x t
x t

∞

∞

∆
, 2

2

X
X
∆

 and 
X

X
∞

∞

∆
 and the corresponding  

perturbation bounds 2_
A

RDEK , _
A

RDEK∞ , 2_
A

CLTI RDEK − , _
A

CLTI RDEK∞ − , 2_
A

CLTI CAREK − , 

_
A

CLTI CAREK∞ − , 2_
A

CAREK  and _
A

CAREK∞  according to only perturbed coefficient 
matrix A . 

Moreover, some parameters are set below:  

1
1

1

= max , ,RDE F F

F F

A Q
A Q

 ∆ ∆ 
 
  

  

{ }2 1 1min : , , 0 ,RDE A A Q Q= ∆ ≤ ∆ ≤ >      

( )
( )

0
1

0

max , , ,CLTI RDE F F F

F FF

X tA x
A X t x

−
 ∆∆ ∆ =  
  

  

( ) ( ){ }2 0 0min : , , , 0 ,CLTI RDE A A X t X t x x− = ∆ ≤ ∆ ≤ ∆ ≤ >       

0
1

0

max , , ,CLTI CARE F F F

F F F

A X x
A X x

−
 ∆ ∆ ∆ =  
  

  

{ }2 0 0min : , , , 0 ,CLTI CARE A A X X x x− = ∆ ≤ ∆ ≤ ∆ ≤ >       

1 ,CARE F

F

A
A

 ∆ =  
  

  

{ }2 : |, 0 ,CARE A A= ∆ ≤ >     

for perturbation bounds of RDEs, CLTI and CAREs, respectively; the time range 
is [ ]0,1  for CLTI via solving RDEs and CAREs with a division 15 parts; the 
parameter of the weighted coefficient is fixed into 3j = ; the terminal time is 

1ft = . 
From Table 2, we skip the relative differences of RDEs in ∞ -norm as  
( )
( )

( )
( )

2

2

X t X t
X t X t

∞

∞

∆ ∆
= . We can observe sharper perturbation bounds of the 

relative differences in RDEs and CLTI such as 
( )
( )

2
1 2_

2

RDE A
RDE

X t
K

X t
∆

  ,  
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Table 2. Example 1 (Condition numbers and perturbation bounds of CLTI solved by RDEs; 2n = , 2m = , 1r = ). 

t 
( )
( )

2

2

X t
X t
∆

 1 2_
RDE A

RDEK  2 _
RDE A

RDEK∞  
( )
( )

2

2

x t
x t
∆

 1 2_
CLTI A

CLTIK  
( )
( )

x t
x t

∞

∞

∆
 2 _

CLTI A
CLTIK∞  

0 2.5870e−04 7.6082e−04 8.0831e−04 9.2242e−04 9.2242e−04 9.2978e−04 9.2978e−04 

0.0667 2.5856e−04 7.6823e−04 8.1539e−04 8.6703e−04 1.0657e−03 8.7716e−04 1.1148e−03 

0.1333 2.5803e−04 7.7703e−04 8.2377e−04 8.1119e−04 1.2269e−03 8.4001e−04 1.3251e−03 

0.2000 2.5677e−04 7.8723e−04 8.3342e−04 7.5528e−04 1.3740e−03 8.0345e−04 1.5178e−03 

0.2667 2.5430e−04 7.9861e−04 8.4408e−04 6.9985e−04 1.5005e−03 7.6736e−04 1.6842e−03 

0.3333 2.4983e−04 8.1055e−04 8.5505e−04 6.4563e−04 1.6089e−03 7.3152e−04 1.8274e−03 

0.4000 2.4218e−04 8.2175e−04 8.6497e−04 5.9361e−04 1.7044e−03 6.9567e−04 1.9545e−03 

0.4667 2.2956e−04 8.2989e−04 8.7140e−04 5.4514e−04 1.7931e−03 6.5941e−04 2.0740e−03 

0.5333 2.0947e−04 8.3130e−04 8.7058e−04 5.0210e−04 1.8820e−03 6.2220e−04 2.1966e−03 

0.6000 1.7867e−04 8.2098e−04 8.5741e−04 4.6699e−04 1.9797e−03 5.8328e−04 2.3359e−03 

0.6667 1.3375e−04 7.9373e−04 8.2674e−04 4.4295e−04 2.0980e−03 5.4158e−04 2.5112e−03 

0.7333 7.2418e−05 7.4724e−04 7.7649e−04 4.3366e−04 2.2528e−03 4.9563e−04 2.7494e−03 

0.8000 4.5173e−06 6.8682e−04 7.1256e−04 4.4279e−04 2.4637e−03 4.4333e−04 3.0829e−03 

0.8667 9.2024e−05 6.3045e−04 6.5392e−04 4.7364e−04 2.7408e−03 3.9502e−04 3.5256e−03 

0.9333 1.8188e−04 6.1786e−04 6.4218e−04 5.2947e−04 3.0334e−03 5.1072e−04 3.9783e−03 

1.0000 2.6472e−04 7.9124e−04 8.2675e−04 6.1487e−04 3.0669e−03 6.3318e−04 3.9355e−03 

 
( )
( ) 2 _

RDE A
RDE

X t
K

X t
∞

∞

∞

∆
  , 

( )
( )

2
1 2_

2

CLTI A
CLTI

x t
K

x t
∆

   and 
( )
( ) 2 _

CLTI A
CLTI

x t
K

x t
∞

∞

∞

∆
  . 

Table 3 shows that condition numbers of CLTI via solving CAREs are closely 
bounded by perturbation bounds such as  

2
1 2_

2

2.5692e 04 7.2261e 04 CARE A
CARE

X
K

X
∆

= − − =  ,  

2 _2.5692e 04 7.7101e 04 CARE A
CARE

X
K

X
∞

∞

∞

∆
= − − =  , 

( )
( )

2
1 2_

2

CLTI A
CLTI

x t
K

x t
∆

   

and 
( )
( ) 2 _

CLTI A
CLTI

x t
K

x t
∞

∞

∞

∆
  . 

To sum up, perturbation bounds of CLTI are tight around ( )310O −  
according to the weighted coefficient 10−3 whatever we solve via RDEs or 
CAREs. 

5. Conclusion 

We have proposed, tested and analyzed CLTI for the condition numbers and 
perturbation bounds according to only one perturbed coefficient matrix via 
solving RDEs and CAREs. Numerical simulations show that condition numbers 
provide tight perturbation bounds of the solutions to CLTI under some small  
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Table 3. Example 1 (Condition numbers and perturbation bounds of CLTI solved by CAREs; 2n = , 2m = , 1r = ). 

t 
( )
( )

2

2

x t
x t
∆

 1 2_
CLTI A

CLTIK  
( )
( )

x t
x t

∞

∞

∆
 2 _

CLTI A
CLTIK∞  

0 9.2242e−04 1.7511e−03 9.2978e−04 2.0709e−03 

0.0667 8.6124e−04 1.7768e−03 8.8827e−04 2.1070e−03 

0.1333 8.0087e−04 1.8030e−03 8.6181e−04 2.1434e−03 

0.2000 7.4210e−04 1.8297e−03 8.3565e−04 2.1801e−03 

0.2667 6.8599e−04 1.8570e−03 8.0980e−04 2.2171e−03 

0.3333 6.3401e−04 1.8848e−03 7.8425e−04 2.2543e−03 

0.4000 5.8810e−04 1.9132e−03 7.5903e−04 2.2917e−03 

0.4667 5.5074e−04 1.9421e−03 7.3413e−04 2.3294e−03 

0.5333 5.2480e−04 1.9716e−03 7.0956e−04 2.3673e−03 

0.6000 5.1314e−04 2.0016e−03 6.8534e−04 2.4054e−03 

0.6667 5.1787e−04 2.0322e−03 6.6146e−04 2.4437e−03 

0.7333 5.3970e−04 2.0633e−03 6.3793e−04 2.4822e−03 

0.8000 5.7779e−04 2.0948e−03 6.1476e−04 2.5208e−03 

0.8667 6.3025e−04 2.1269e−03 5.9196e−04 2.5596e−03 

0.9333 6.9480e−04 2.1595e−03 7.0861e−04 2.5984e−03 

1.0000 7.6931e−04 2.1926e−03 8.3791e−04 2.6374e−03 

 
change in the only one coefficient matrix. In summary, we introduce some 
efficient measurement tools for the sensitivity analysis of CLTI via solving RDEs 
and CAREs respectively. 
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