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Abstract 
In this article, we propose a generalized empirical likelihood inference for the 
parametric component in semiparametric generalized partially linear models 
with longitudinal data. Based on the extended score vector, a generalized em-
pirical likelihood ratios function is defined, which integrates the within-cluster 
correlation meanwhile avoids direct estimating the nuisance parameters in the 
correlation matrix. We show that the proposed statistics are asymptotically 
Chi-squared under some suitable conditions, and hence it can be used to con-
struct the confidence region of parameters. In addition, the maximum empir-
ical likelihood estimates of parameters and the corresponding asymptotic nor-
mality are obtained. Simulation studies demonstrate the performance of the 
proposed method. 
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1. Introduction 

An important issue in statistical inference is to construct the confidence region 
for parameters of interest. The convention method is the normal approximation 
method which based on the asymptotic normal distribution of parameter esti-
mators. The normal approximation (NA) method requires estimating the limit-
ing variance of regression parameter, which is very complicated in some situa-
tion. Besides, the confidence region derived from the NA method is predeter-
mined to be symmetric. 

As a nonparametric data-driven technique, the empirical likelihood (EL) ap-
proach employs empirical likelihood function without specifically assuming a 
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distribution for the data, while it can incorporate the side information through 
constraints, which maximizes the efficiency of the method. Compare with the 
NA method, EL approach does not involve a plug-in estimation for the limiting 
variance, and the shapes and the orientation of the confidence region obtained 
are automatically determined by the data. There has been a lot of literature in 
empirical likelihood, e.g., [1]-[12]. 

Longitudinal data often occurs in biomedical research where the repeated mea-
surements form subjects are collected over times, and therefore the responses 
from same subjects are very likely to be correlated with an unknown structure. 
The challenge for longitudinal data lies in how to effectively utilize the with-
in-cluster information. The early works in EL for longitudinal data ignored the 
correlations within subjects, e.g. [7] [8]. Some recent studies incorporate the 
correlation information by constructing the auxiliary random vector through the 
generalized estimating equations (GEEs) [9] [10]. The GEEs use a working cor-
related matrix to carry the correlation information. The working correlated ma-
trix is decided by a small set of nuisance parameters α  to avoid the specifica-
tion of the whole correlation matrix [13]. The advantage of the GEEs is that the 
estimators of the regression parameter β  are always consistent. However, GEEs 
estimator suffers a great loss in efficiency when the correlation structure is misspe-
cified. The quadratic inference functions (QIFs) approach avoids estimating the 
nuisance correlation parameters α  by assuming that the inverse of the working 
correlation matrix can be approximated by a linear combination of several known 
basis matrices, and solve the combined estimation functions by using the prin-
ciple of the generalized method of moments [14] [15]. The QIFs can also take the 
within-cluster correlation into account and is more efficient than GEEs when the 
working correlation is misspecified. The QIFs approach has been applied to many 
models, including varying coefficient models, partially linear models, single-index 
models and generalized linear models. The recent related works include [16]-[21]. 
More recently, [11] [12] proposed generalized empirical likelihood method (GEL), 
which using a QIFs-based generalized log-empirical likelihood ratio statistics to 
construct the confidence region for the parameters in generalized linear models 
(GLMs) with longitudinal data and partially linear models with Longitudinal 
data. 

Generalized partially linear models (GPLMs) can be regarded as a comprise be-
tween the GLMs and fully nonparametric models. The choice of a partial linear 
model is sometimes made to avoid nonparametric specification of high-dimensional 
covariates, and at other times the model arises naturally due to categorical cova-
riates. In this article, we extend the GEL method to GPLMs with longitudinal data 
and the B-spline method is adopted to approximate the nonparametric compo-
nent in the model. Our method incorporates the within-cluster correlation in-
formation into the auxiliary random vector. Our proposed method does not re-
quire the estimation of the variance of the proposed estimator and is not sensi-
tive to the misspecification of the working correlation structure. 
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The rest of this article is organized as follows. We propose the QIF-based EL 
method for GPLMs in Section 2 and present the corresponding asymptotic re-
sults in Section 3. Simulation studies are provided in Section 4 and a real data is 
analysed in Section 5. The details of the proofs are provided in the Appendix. 

2. Model and Generalized Empirical Likelihood 
2.1. GPLMs with Longitudinal Data 

In this article, we consider a longitudinal study with n subjects and im  observa-
tions over time for the ith subject ( 1, ,i n=  ), for a total of 1

n
iiN m

=
= ∑  obser-

vations. Each observation consists of a response variable ijY  and the covariate 
vectors ( ),ij ijX U , where p

ijX R∈  and ijU  is a scalar. We assume that the ob-
servations from different subjects are independent, but those from the same sub-
ject are dependent. The generalized partially linear model (GPLMs) with longi-
tudinal data take the form 

( ) ( )( ) ( ) ( )T| , ,var | , .ij ij ij ij ij ij ij ij ij ijE Y X U h X U Y X U vµ β α µ= = + =       (1) 

where ( )1, , pβ β β=   is a 1p ×  vector of unknown regression coefficients, 
( )h ⋅  is a known monotonic smooth link function, ( )α ⋅  is a unknown smooth 

function and ( )v ⋅  is a known function with ( ) 0v ⋅ > . Without loss of general-
ity, we assume ( )~ 0,1U U . 

Following [22], we replace ( )α ⋅  by its basis function approximations. More 
specifically, let ( ) ( ) ( )( )T

1 , , LB u B u B u=   be the B-spline basis functions with 
the order of M, where 1L K M= + + , and K is the number of interior knots. 
We use the B-spline basis functions because they often provide good approxima-
tions with a small number of knots. Besides, the B-spline basis functions have 
bounded support and are numerically stable. The spline approach also treats a 
non-parametric function as a linear function with the basis functions being the 
pseudo-design variables, thus any computational algorithm developed for the ge-
neralized linear models can be used for the generalized partially linear models. 

Suppose ( )uα  can be approximated by ( ) ( )Tu B uα γ≈ , where  
( )T

1, , Lγ γ γ=   is a 1L×  vector of unknown regression coefficients. Then our 
regression model (1) becomes 

( ) ( )( )TT, ,ij ij ijh X B Uµ β γ β γ= +                     (2) 

Denote ( ) ( ) ( )TTT T T
1 1 1, , , , , , , , ,

ip p p L i i imY Y Yθ θ θ θ θ β γ+ += = =   , and write 
( ), , ,i i i iX U B U µ  in a similar fashion. Following the QIFs approach, the extend 

score ( )Ng θ  is defined to be 

( ) ( )
( )

( )

T 1 2 1 2
1

1 1 T 1 2 1 2

1 1 ,
i i i i in n

N i
i i

i i s i i i

A M A Y
g g

n n
A M A Y

µ µ
θ θ

µ µ

− −

− −= =

 −
 

= =  
 − 

∑ ∑






          (3) 

where ,i
i

µµ
θ

∂
=
∂

  ( ) ( )( )1diag , ,i i imA v vµ µ=   is the marginal covariance matrix 

of the ith subject and 1, , sM M  are known matrices for approximating the in-
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verse of the working correlation matrix ( )R ρ  in GEEs. Then θ̂  is obtained by 
minimizing the following quadratic inference function  

( ) ( ) ( ) ( )1T ,n N N Nng gθ θ θ θ−= Ω                     (4) 

where ( ) ( ) ( )T
1

1 n
N i ii g g

n
θ θ θ

=
Ω = ∑ . 

Hence, ( )T

1
ˆ ˆ ˆ, , pβ θ θ=   is the QIF estimator of β , and the estimator of ( )uα  

can be obtained by ( ) ( )Tˆ ˆu B uα γ= , where ( )T

1
ˆ ˆˆ , ,p p Lγ θ θ+ +=   is the QIF es-

timator of γ . Details of the QIFs estimator for GPLMs with longitudinal data 
refers to [21]. 

2.2. GEL for GPLMs with Longitudinal Data 

In most applications of GPLMs, the main interest is the statistical inference on 
the regression coefficient 0β . Similar with [5], we regard the nonparametric func-
tion ( )α ⋅ , i.e. the spline coefficient γ  as nuisance, and conduct a suitable es-
timator of it to make sure the efficient statistical inference for β . In this article, 
we take the QIF estimate γ̂  as the estimator of γ . 

Noticing ( )ig θ  in (3) carries the within-cluster correlation information, in 
order to construct the empirical likelihood ratio function for β , we introduce 
the auxiliary random vector  

( )
( ) ( )( )

( ) ( )( )

T 1 2 1 2
1

T 1 2 1 2

ˆ ˆ, ,
ˆ; .

ˆ ˆ, ,

i i i i i

i

i i s i i i

A M A Y

g

A M A Y

µ β γ µ β γ

β γ

µ β γ µ β γ

− −

− −

 −
 

=  
 
 − 







          (5) 

Note that ( )( )ˆ; 0iE g β γ =  when 0β β= , we define the generalized empiri-
cal log-likelihood ratio function as follows, 

( ) ( ) ( )
1 1 1

ˆ ˆ; 2max log | 0, 1, , , 1, ; 0 .
n n n

i i i i i
i i i

R np p i n p p gβ γ β γ
= = =

 = − ≥ = = = 
 
∑ ∑ ∑  (6) 

By the Lagrange multiplier method, we obtain that ( )ˆ;R β γ  is maximized at 

( )T
1 1

ˆ1 ;i
i

p
n gλ β γ

=
+

                         (7) 

where λ  is a 1ps ×  vector satisfies  

( )
( )T

1

ˆ;1 0.
ˆ1 ;

n
i

i i

g
n g

β γ
λ β γ=

=
+∑                        (8) 

Then ( )ˆ;R β γ  can be represented as  

( ) ( )( )T

1
ˆ ˆ; 2 log 1 ; .

n

i
i

R gβ γ λ β γ
=

= +∑                  (9) 

By minimizing ( )ˆ;R β γ  under the Equation constraints (8), we can obtain the 
maximum empirical likelihood estimator (MELE) of the parameter β .  
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3. Asymptotic Properties 

For convenience and simplicity, let C denote a positive constant that may have 
different values at each appearance throughout this paper and A  denote the 
modulus of the largest singular value of matrix or vector A. Before the proof of 
our main theorems, we list some regularity conditions that used in this paper. 

Assumption (A1): The spline regression parameter γ  is identifiable, that is, 

0γ  is the spline coefficient vector from the spline approximation to ( )0α ⋅ . In 
addition, there is a unique 0 Sβ ∈  satisfying ( ){ }ˆ, 0iE g β γ = , where S is the 
parameter space. 

Assumption (A2): The weight matrix ( ) ( )T
1

1 n
n i ii g g

n
θ θ

=
Ω = ∑  converges al-

most surely to a constant matrix 0Ω , where 0Ω  is invertible. 

Assumption (A3): The covariate matrices , 1, ,iX i n=   satisfy that  
4sup ,i iE X ∞ . 

Assumption (A4): The error i i iYε µ= −  satisfies that  

( )T ,supi i i i iE V Vε ε = < ∞ , and there exists a postive constant δ  such that  
2supi iE δε + < ∞ . 

Assumption (A5): All marginal variances 0iA ≥  and supi iA < ∞ . 
Assumption (A6): { }im  is a bounded sequence of positive integers. 
Assumption (A7): ( )uα  is rth continuous differentiable on (0, 1), where 

2r ≥ . 
Assumption (A8): The inner knots { }, 1, ,ic i K=   satisfy 

( )1
1 01

maxmax and ,
min

i
i ii K

i

hh h o K C
h

−
+≤ ≤
− = ≤  

where 
1.i i ih c c −= −  

Assumption (A9): The link function ( )h ⋅  is 2nd continuous differentiable 
and { }2E h δ+ < ∞  for some 2δ > . 

[Remark] (A1) is for the identification. (A2) holds when based on the weak 
law of large numbers when n goes to infinity and the maximum cluster size is 
fixed, i.e., when (A6) holds. (A3)-(A6) are the common regularity conditions in 
the longitudinal data analysis. (A7) is the usual assumption in spline approxima-
tion, it determines the convergence rate of spline estimate ( )Tˆ ˆB Uα γ= . (A8) is 
the general condition for the knots in B-spline approximation. (A9) is the com-
mon condition in the study of GLMs. 

We next study the asymptotic properties of the resulting GEL estimators. We 
first introduce some notations. Let 0β  denote the true values of ( )β ⋅  and β  
be the MELE of β . The following Theorem 1 shows that the ( )ˆ;R β γ  is 
asymptotically distributed as a Chi-square with ps degrees of freedom. 

Lemma 1. Suppose that the regularity conditions of (A1)-(A9) hold and the 
numbers of knots ( )( )1 2 1rK O N += , then  

( )1 2
0ˆ .pO nγ γ −− =  
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This is a direct result from Theorem 1 of [21]. 
Lemma 2. Suppose that the regularity conditions of (A1)-(A9) hold and the 

numbers of knots ( )( )1 2 1rK O N += , then  

( ) ( )0 0
1

1 ˆ, 0, .
n

L
i

i
g N

n
β γ

=

→ Ω∑                   (10) 

( ) ( )1 2
0 ˆmax , .i pi

g o nβ γ =                       (11) 

The proof can be found in the Appendix. 
Theorem 1. Assume that the conditions (A1)-(A9) hold and the numbers of 

knots ( )( )1 2 1rK O N += , then 

( ) 2
0 ˆ; ,L

psR β γ χ→  

where L→  represents the convergence in distribution. 
The proof can be found in the Appendix. 
Let ( )2 1psχ α−  be the 1 α−  quantile of 2

psχ  for any 0 1α< < . From 
Theorem 1, an approximate 1 α−  confidence region can be established by  

( ) ( ) ( ){ }2ˆ, 1 .psC Rα β β γ χ α= ≤ −  

Denote 

( )
1

ˆ,1lim ,
n

i

n i

g
E

n
β γ
β→∞ =

∂ 
Γ =  ∂ 

∑  

( ) ( )T
0

1

1 ˆ ˆlim , , .
n

i in i
E g g

n
β γ β γ

→∞ =

 Ω =  ∑  

If the matrices 0Ω  and T 1
0
−Γ Ω Γ  are invertible, we obtain the asymptotic 

normality of β . 
Theorem 2. Suppose that the conditions (A1)-(A9) hold and the numbers of 

knots ( )( )1 2 1rK O N += , then  

( ) ( )0 0, ,Ln N Vβ β− →  

where ( ) 1T 1
0V

−−= Γ Ω Γ . 
The proof can be found in the Appendix. 
The confidence region interval of each component of β  is also worth con-

cerning. Let re  denote the unit vector with 1 at the rth entry, for 1, ,r p=  . 
The estimate of the rth component of β  is Tˆ ˆ

r reβ β= , for 1, ,r p=  . Let  

( ) ( )T
1 1 1

ˆ ˆ ˆˆ ˆ; , , , , , , ;ir r s r i r r r pg I e gβ γ β β β β β γ− += ⊗    

where sI  is the s s×  identity matrix, ⊗  is the Kronecker product, and ( )ig ⋅  
is defined in (5). Then, the partial generalized empirical log-likelihood ratio for 

rβ  is defined as  

( ) ( ) ( )
1 1 1

ˆ ˆ; 2max log | 0, 1, , , 1, ; 0 .
n n n

r r i i i i ir
i i i

R np p i n p p gβ γ β γ
= = =

 = − ≥ = = = 
 
∑ ∑ ∑  

Theorem 3. Assume that the conditions (A1)-(A9) and the numbers of knots 
( )( )1 2 1rK O N += , if β  is the true parameter, then 
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( ) 2ˆ; .L
r r sR β γ χ→  

The proof of Theorem 3 is similar to that of Theorem 1, we hence omit here. 
Applying Theorem 3, the approaximate 1 α−  confidence interval for rβ  

can be constructed by 

( ) ( ) ( ){ }2ˆ, 1 .r r r sC Rα β β γ χ α= ≤ −  

4. Simulation Studies 

In this section, we conduct simulation studies to evaluate the finite sample per-
formance of the proposed methods. We compare the GEL with the NA-based 
method in terms of the coverage probability and the lengths of the obtained con-
fidence region. 

In our non-parametric estimation implementation, we use the sample quantiles 
of ijU  as knots. Moreover, we use cubic splines and take the number of internal 
knots to be the integer around 1 5n . This particular choice is consistent with the 
asymptotic theory in Section 3 and performs well in the simulations. 

4.1. Study 1 

Consider a binomial response:  

{ } ( )2logit 1 | , 0.4cos 2 , 1, , ; 1, , ,ij ij ij ij ijY X U X U i n j mβ= = + π = =   

where 0.4, 6, 50,100m nβ = = =  and 150, ( ) [ ]~ 0,1 , ~ 1,1ij ijX N U U − . The 
clustered binary responses are generated as [23]. The correlation parameter ρ  
are taken to be 0.25, 0.5 and 0.75 which represent weak, medium and strong 
correlation respectively. We generated 500 data sets for each pair of ( ,n ρ ). 

Table 1 list the EL-based and NA-based confidence intervals of β  under CS 
structure. It shows that the GEL approach gives a slightly shorter confidence in-
tervals than the NA method, while the former has a coverage probability more  

 
Table 1. The average length and the corresponding coverage probabilities of the 95% 
confidence region of β  for GEL and NA when the correlation structure is CS. 

  Average Length Coverage Probability 

ρ n GEL NA GEL NA 

0.25 

50 0.3498 0.4821 0.932 0.834 

100 0.3191 0.3431 0.934 0.902 

150 0.2881 0.2795 0.958 0.928 

0.5 

50 0.3403 0.4850 0.919 0.824 

100 0.3159 0.3441 0.940 0.896 

150 0.2868 0.2792 0.956 0.922 

0.75 

50 0.3450 0.4829 0.904 0.811 

100 0.3166 0.3446 0.944 0.884 

150 0.2867 0.2792 0.944 0.908 
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closer to the nominal level. In addition, the coverage probability obtained by GEL 
approach tend to the nominal level and the average length decrease as n increases. 

To study the influence of mis-specification to GEL approach, we derive the 
GEL confidence interval when the working correlation structure is specified to 
be CS and AR-1 respectively. Table 2 list the results when the true structure is 
CS. Table 3 list the results when the true structure is AR-1. It is known that the 
QIFs estimator is insensitive to mis-specification in correlation structure. Table 
2 and Table 3 show that the QIFs-based GEL approach gives similar 95% confi-
dence interval and coverage probability even the correlation structure is misspe-
cified, which means the proposed GEL approach is robust. 

 
Table 2. The average length and the corresponding coverage probabilities of the 95% 
confidence region of β  for GEL when the true correlation structure is CS. 

  Average Length Coverage Probability 

ρ n CS AR-1 CS AR-1 

0.25 

50 0.3498 0.3544 0.932 0.920 

100 0.3191 0.3278 0.934 0.912 

150 0.2881 0.3025 0.958 0.966 

0.5 

50 0.3403 0.3370 0.919 0.919 

100 0.3159 0.3182 0.940 0.940 

150 0.2868 0.2867 0.956 0.956 

0.75 

50 0.3450 0.3427 0.904 0.916 

100 0.3166 0.3169 0.944 0.936 

150 0.2867 0.2795 0.944 0.938 

 
Table 3. The average length and the corresponding coverage probabilities of the 95% 
confidence region of β  for GEL when the true correlation structure is AR-1. 

  Average Length Coverage Probability 

ρ n CS AR-1 CS AR-1 

0.25 

50 0.3496 0.3501 0.940 0.904 

100 0.3177 0.3269 0.944 0.940 

150 0.2864 0.3008 0.958 0.944 

0.5 

50 0.3519 0.3599 0.942 0.922 

100 0.3153 0.3252 0.938 0.932 

150 0.2883 0.2915 0.942 0.946 

0.75 

50 0.3421 0.3201 0.948 0.920 

100 0.3092 0.3201 0.938 0.940 

150 0.2773 0.2852 0.944 0.942 
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4.2. Study 2 

We consider a two-demensional logistic model with 150, 6in m m= = = , and  

{ } ( )1 1 2 2logit 1 | , 0.4cos 2 ,ij ij ij ij ij ijY X U X X Uβ β= = + + π  

where ( ) ( ) ( ) ( )1 2 1 2, 0.5,0.5 , ~ 0,1 , ~ 0,1ij ijX N X Nβ β β= =  and ijU  are drawn 
independently from a uniform distribution on [ ]1,1− . The clustered binary 
responses with exchangeable correlation structure are also generated as [23]. The 
correlation parameter ρ  are taken to be 0.3 and 0.8. 

Carried out 200 simulation runs, the EL-based and NA-based 95% confidence 
intervals for β  when 0.3ρ =  are reported in Figure 1. It shows that GEL ap-
proach gives a smaller confidence region than the NA method. As to the cover-
age probability, the GEL approach is more closer to the nominal level than NA 
(0.925 vs 0.90). The result of 0.8ρ =  is similar, we omit here. 

5. Example: Infectious Disease Data 

To investigate the performance of the proposed method, we analysis an infec-
tious disease data. In this study, a total of 275 preschool children were examined 
every three months for 18 months. The outcome is the presence of respiratory 
infection (1 = yes, 0 = no). The primary interest is in studying the relationship of 
the risk of respiratory infection to Vitamin A deficiency, which is indicated by 
xerophthalmia variable (1 = yes, 0 = no). The other covariates included: age, 
 

 
Figure 1. The 95% confidence region of β  based on GEL and NA approach when 

0.3ρ =  for Study 2. 
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Figure 2. The 95% confidence region of β  based on GEL and NA approach under ex-
changeable correlation structure for infectious disease data. 

 
gender (1 = female, 0 = male), height, stunting status (1 = yes, 0 = no), and the 
seasonal Cosine and seasonal sine variables which indicate the season when those 
examinations took. 

This data set has been well analyzed by many authors, such as [24] [25] [26] 
[27] [28]. We here consider a simple logistic model:  

( ) ( )1 1 2 2logit ,ij ij ij ijX X Uµ β β α= + +  

where µ  is the mean of the risk of respiratory infection, 1β  and 2β  describe 
the effects of Vitamin A deficiency and the sex aspect. We use two methods: the 
NA method and QIFs-based GEL under the CS correlation. The confidence re-
gions are reported in Figure 2. It shows that GEL gives smaller confidence re-
gions than NA does. 
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Appendix 
Proof of Lemma 2 

Proof. Consider the kth component of ( )0 ˆ,Ng β γ : 

( ) ( )( )T 1 2 1 2
, 0 0

1

1 ˆ, .
n

N k i i k i i i
i

g A M A Y
n

β µ µ β γ−

=

−= −∑                 (12) 

Note that 

( ) ( )( ) ( )( )0 0 0 0ˆ ˆ, ,i i i i i i iY h X U h X B Uµ β γ β α β γ ε− = + − + +          (13) 

Apply Taylor expansion to the first two terms in (13) at ( )0 0i i iX B Uη β γ= + , 
we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
0 1 1

2
2 2

1ˆ,
2
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i i i i i i i

i i i i
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H R U H R U

µ β γ ε η ω

η π

′ ′′− = + +

′ ′′− −
      (14) 

where iω  is between iη  and ( )0 0i iX Uβ α+ , iπ  is between iη  and  
( )0 ˆi iX B Uβ γ+ , and 

( ) ( ) ( ) ( ) ( ) ( )( )T T
1 0 0 1 1 1 1, , , ,ij ij ij i i imR U U B U R U R U R Uα γ= − =   

( ) ( ) ( ) ( ) ( ) ( )( )T T
2 0 2 2 1 2ˆ , , , ,ij ij i i imR U B U R U R U R Uγ γ= − =   

( ) ( ) ( )( ) ( ) ( ) ( )( )T T2 2 2 22 2
1 1 1 1 2 2 1 2, , , , , ,i i im i i imR U R U R U R U R U R U= =                 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1diag , , , diag , , .i i im i i imH h h H h hη η η η η η′ ′ ′ ′′ ′′ ′′= =   

Substitute (14) into (12), we obtian 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T 1 2 1 2
, 0

1

T 1 2 1 2
1

1

T 1 2 1 2 2
1

1

T 1 2 1 2
2

1

T 1 2 1 2 2
2

1

1 2 3 4 5

1

1

1
2
1

1
2

.

n

N k i i k i i
i

n

i i k i i i
i

n

i i k i i i
i

n

i i k i i i
i

n

i i k i i i
i

g A M A
n

A M A H R U
n

A M A H R U
n

A M A H R U
n

A M A H R U
n

I I I I I

β µ ε

µ η

µ ω

µ η

µ π

=

=

=

=

=

− −

− −

− −

− −

− −

=

′+

′′+

′−

′−

≡ + + + +

∑

∑

∑

∑

∑











 

From conditions (A7), (A8) and theorem 12.7 in [29], we have  
( ) ( )1

r
ijR U O K −=  and ( ) ( )1B O⋅ = . Then, invoking conditions (A3)-(A5), 

by a simple calculation, we have ( ) ( )1 1 2 1 2
2

r
p pI O n n K o n− − −= =  and  

( )1 2
3 pI o n−= . 
Invoking conditions (A4)-(A9), by lemma 1 , we have  

( ) ( )1 1 2 1 2 1 2
4 p pI O n n n o n− − −= =  and ( )1 2

5 pI o n−= . 
Denote 
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T 1 2 1 2 ,ik i i k i iA M Aξ µ ε− −=   

( )TT T
1 , , ,i i isξ ξ ξ=   

we have 

( ) ( )1 2
0

1

1ˆ, .
n

N i p
i

g o n
n

β γ ξ
=

−= +∑  

Follow [11], we obtain 

( ) ( )0 0ˆ, 0, .Nng Nβ γ → ΩL  

i.e. 

( ) ( )0 0
1

1 ˆ, 0, .
n

i
i

g N
n

β γ
=

→ Ω∑ L  

Similarly, (11) can be proved. Thus we complete the proof of the Lemma 2. 
Follow the argument of [4], we can prove 

( )1 2 .pO nλ =                          (15) 

Proof of Theorem 1 

Proof. Applying Taylor expansion to ( )0 ˆ,R β γ , we obtain 
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Recall (8), it follows that 
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This together with Lemma 1 and (15) proves that 
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Therefore, we have 
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Together with Lemma 2, we complete the proof of Theorem 1. 
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Proof of Theorem 2 

Proof. We first define bivariate functions ( )1 ˆ, ,Q β λ γ  and ( )2 ˆ, ,Q β λ γ  respec-
tively as 
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( )1 T
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n
i i

g
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n g
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=   + ∂ 

∑  

Under the condition (A1), if β  is the MELE of β  and λ  is the root of (8), 
following Lemma 1 of [3], we have 

( ) ( )1 2ˆ ˆ, , 0, , , 0.n nQ Qβ λ γ β λ γ= =     

Expanding ( )1 ˆ, ,nQ β λ γ   and ( )2 ˆ, ,nQ β λ γ   at ( )0 ˆ, ;β λ γ , together with con-
ditions (A6)-(A9) and Lemma 2, we have 
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