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Abstract 
In this study, we consider the heat-induced withdrawal reflex caused by ex-
posure to an electromagnetic beam. We propose a concise dose-response re-
lation for predicting the occurrence of withdrawal reflex from a given spatial 
temperature profile. Our model is distilled from sub-step components in the 
ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our 
model has only two parameters: the activation temperature of nociceptors and 
the critical threshold on the activated volume. When the spatial temperature 
profile is measurable, the two parameters can be determined from test data. We 
connect this dose-response relation to a temperature evolution model for elec-
tromagnetic heating. The resulting composite model governs the process from 
the electromagnetic beam deposited on the skin to the binary outcome of 
subject’s reflex response. We carry out non-dimensionalization in the time 
evolution model. The temperature solution of the non-dimensional system is 
the product of the applied power density and a parameter-free function. The 
effects of physical parameters are contained in non-dimensional time and 
depth. Scaling the physical temperature distribution into a parameter-free 
function greatly simplifies the analytical solution, and helps to pinpoint the 
effects of beam spot area and applied power density. With this formulation, 
we study the theoretical behaviors of the system, including the time of reflex, 
effect of heat conduction, biological latency in observed reflex, energy con-
sumption by the time of reflex, and the strategy of selecting test conditions in 
experiments for the purpose of inferring model parameters from test data. 
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1. Introduction 

Millimeter wave (MMW) is a subset of radio frequency (RF) in the 30 - 300 gi-
gahertz (GHz) range. Human body exposure to MMW radiation at sufficiently 
high intensities increases the skin temperature and induces thermal pain. Since 
the energy penetration depth of MMW irradiation in tissue is very shallow 
(millimeter or less), the primary effect of MMW exposure is temperature in-
crease near the skin surface. Due to the rapid growth in using MMW in common 
applications including wireless communications systems, automobile collision 
avoidance systems, airport security screening, non-lethal crowd control weapons, 
medical imaging, and detection of vital signs such as respiration and heartbeat 
rates [1] [2] [3], it is important to understand the thermal responses of humans 
to MMW irradiation and to evaluate biological safety with respect to thermal 
hazards. 

Considerable work has been done in MMW interactions with the human body 
[4]. We briefly review a few papers that motivate us for this study. In [5], cuta-
neous thresholds for thermal pain were measured in 10 human subjects (3 fe-
male and 7 male Caucasian volunteers, 31 - 70 years old with an average age of 
43.7, military or DoD civilians or contractors). Each subject was tested with 
3-second exposures to 94 GHz electromagnetic wave of intensity up to 1.8 W/cm2. 
During each exposure, the temperature increase at the skin’s surface was meas-
ured by infrared thermography. The mean baseline temperature of the skin was 
34˚C. The irradiated area of the skin has a diameter of 4 cm. The threshold for 
pricking pain was 43.9˚C (at skin surface). The measured surface temperature 
was in good agreement with a simple one-dimensional thermal model that ac-
counted for heat conduction and for the penetration depth of the electromag-
netic energy into tissue. One important observation in [5] was that the skin sur-
face temperature increased roughly by 10˚C after a 3-second exposure to 1.8 
W/cm2 at 94 GHz. 

Heating of tissues by electromagnetic waves has also been studied in [6] using 
Pennes’ bioheat equation, which includes the effect of the blood convection in 
dissipating the heat. The model was used to estimate the threshold for percep-
tion of pain as a function of frequency and exposure duration in the case of 
plane-wave irradiation. The numerical results in [6] agree well with the experi-
mental thresholds for warmth perception evoked by electromagnetic waves of 
2.45 - 94 GHz applied to the back of the test subject for 10-second intervals. 

In [7] [8], a one-dimensional multi-layer tissue model was used and solved 
with the finite difference method to predict temperature variations in the skin 
exposed to electromagnetic waves. This approach allows estimation of tempera-
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ture distribution and prediction of burn injury in different layers of the skin de-
pending on blood perfusion rate, thermal conductivity, power density, and ex-
posure time. Even though the numerical simulations were focused on electro-
magnetic waves with frequencies of 10 GHz and below, this multi-layer model 
can be extended directly to MMW frequencies. These studies concluded that the 
rate of skin surface temperature increase in humans in response to brief, high-power 
MMW exposures can be mathematically modeled using the one-dimensional 
thermal conduction model. 

In [9], a spherical heterogeneous model was developed to simulate the thermal 
effects (surface and subsurface) on a primate (monkey) head exposed to far-field 
radiation at 100 GHz. It was found that temperature (both surface and subsur-
face) increases as the energy level increases, whereas high-power millimeter-waves 
(HPMs) with power densities in the range of 1.0 to 3.0 W/cm2 for 3 seconds have 
a higher peak temperature than low-power millimeter-waves (LPMs) in the 
range of 0.1 to 0.3 W/cm2 for 30 seconds. The surface temperature increase is 
generally linear with applied energy density for HPMs except under combined 
conditions of high blood-flow rate and high-energy density. In contrast, with 
LPMs, the surface temperatures do not behave linearly with respect to incident 
energy. The simulations also showed that the subsurface (i.e., mid-scalp and 
mid-skull) temperature increases are substantially damped compared to the sur-
face (i.e., scalp) temperature. 

Far-field exposure of the human face to a linearly polarized plane wave at fre-
quencies from 6 to 100 GHz and with exposure durations of 100 milliseconds to 
10 seconds was modeled in [10]. The Maxwell equations were solved using a fi-
nite-difference time-domain solver. The Pennes’ bioheat transfer equation ex-
tended with a term representing the electromagnetic power absorption was used 
to model body temperature and it was numerically solved. The electromagnetic 
and thermal simulations revealed highly non-uniform frequency-dependent pat-
terns of temperature rise. 

According to a review published in 2016 [11], there are very limited data in 
the literature related to skin temperature rises or thermal sensation thresholds in 
humans exposed to MMWs. Most data involves brief exposures to MMWs 
around 94 GHz [12]. For example, experiments with 13 male adults were con-
ducted in San Antonio, TX to quantify the thermal and behavioral effects of ex-
posure to 30 kW and 95 GHz MMW [13]. The experimental results indicated 
that the power density necessary to achieve pain intolearability in 90% of the 
human subject population is 3.03 W/cm2 when the duration of the exposures 
was fixed at 3 seconds. The effects of variable spot size (beam diameter) on hu-
man exposure to 95 GHz MMW were investigated in [14] with a small number 
of volunteers. The experiments confirmed that repel times of stationary subjects 
decreased with increasing beam size, although the strength of this relationship 
varied with power density. 

In this paper, we study the mathematical framework for human subjects’ be-
havioral responses when exposed to millimeter wave radiation. The electromag-
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netic energy absorbed in the skin increases the skin temperature via dielectric 
heating. High temperature activates the heat-sensitive nociceptors which pro-
duce a stimulus that is sent to the Central Nervous System (CNS) [15]. When the 
stimulus is sufficiently strong, the withdrawal reflex is initiated and the subject 
moves away from the exposure. The withdrawal reflex is also called nociceptive 
flexion reflex and is a spinal reflex intended to protect the body from noxious 
stimulations [16]. In the ADT CHEETEH-E model [17] recently developed at 
the Institute for Defense Analyses, the process from the power emitted at the 
radiation antenna to the subject’s behavioral response is divided into multiple 
sub-steps, and model components were proposed to describe individual sub-steps 
[17]. In this study, we follow these model components as general guidelines and 
use only the physical principles of these model components. We construct a 
concise dose-response relation for predicting the occurrence of withdrawal reflex 
based on the spatial temperature profile. The resulting concise model is inde-
pendent of the specific function forms and parameters used in the sub-steps of 
ADT CHEETEH-E [17]. In our formulation, the dose quantity is defined as the 
volume of activated region where the temperature is above the activation tem-
perature of nociceptors. The dose-response model for withdrawal reflex is speci-
fied by only two parameters: the activation temperature of nociceptors ( actT ) 
and the critical threshold on the dose quantity ( cz ). When the spatial tempera-
ture profile at reflex is measurable, the two model parameters actT  and cz  can 
be determined from test data. The inference formulation for calculating actT  
and cz  is based solely on the measured temperature profiles. It does not depend 
on any symmetry of temperature profile or electromagnetic heating or heat 
conduction. It does not require any input parameter. 

The dose-response model maps a given spatial temperature profile to the bi-
nary outcome of subject’s reflex response. We connect it to a time evolution 
model governing the temperature increase for electromagnetic heating in the 
skin. The result is a composite model that takes as input the electromagnetic 
beam deposited on the skin, which is characterized by the beam spot area and 
the power density. For the temperature evolution, we first consider the simple 
case of uniform temperature over beam cross-section with no heat conduction 
(which we shall call idealized case A). The exact solution of temperature is propor-
tional to the time and proportional to the applied power density. Its spatial shape 
is determined by that of the electromagnetic heating. In order to assess the validity 
of no-conduction approximation, we consider the case of uniform temperature 
over the beam cross-section with heat conduction in the depth direction (which 
we shall call idealized case B). To pinpoint the effects of individual parameters and 
to facilitate the exact solution, we carry out non-dimensionalization. The tempera-
ture solution of the non-dimensional system is the product of the applied power 
density and a standardized parameter-free function, which we shall call the norma-
lized temperature. The normalized temperature as a function of non-dimensional 
time and depth has no dependence on the power density or any other parame-
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ters. The effects of physical parameters are contained in the non-dimensional 
variables and in the non-dimensional power density (the multiplier coefficient). 
Comparing the solutions, respectively, in the presence and in the absence of heat 
conduction, we find that the no-conduction approximation is appropriate only 
in the region away from the skin surface and only over a short time. With the 
analytical solution, we explore the theoretical behaviors of the system and dis-
cuss the issues listed below. 
• We derive the asymptotic expansion of reflex time at large beam spot area, 

and compare the result with that in the case of no heat conduction. 
• We investigate the biological latency (time delay) in the observed withdrawal 

reflex. We formulate an algorithm for determining the time delay in the ob-
served withdrawal reflex. The algorithm is based solely on three data points 
of observed reflex time vs. applied power density. The algorithm is parame-
ter-free, and thus, is operationally applicable in all situations. 

• We carry out asymptotic analysis on the normalized temperature respectively 
for small time and for large time. Building on the asymptotic behaviors of 
normalized temperature, we construct asymptotic approximations of the ref-
lex time respectively for large and for small applied power density. 

• Using the asymptotic results obtained, we examine the energy consumption 
by the time of reflex, as a function of applied power density. We find that the 
energy consumption attains a minimum at a moderately large value of ap-
plied power density. 

• We examine the spatial temperature profile at reflex and demonstrate that it 
converges to the no-conduction solution at large power density. 

• We study how to select test conditions for determining model parameters 
( )act , cT z  from the measured temperature profiles at reflex. Each data set yields 
only one constraint on ( )act , cT z . To determine both actT  and cz  simulta-
neously, we need to obtain distinct constraints on ( )act , cT z , which is achieved 
by carrying out tests both with large beam spot area and with moderate beam 
spot area. 

Finally, we do a case study of Gaussian beams using numerical simulations. 
We revisit the theoretically predicted behaviors of the system derived in the 
idealized case B (uniform temperature over beam cross-section). For Gaussian 
beams (which do not satisfy the assumptions of case B), 1) we evaluate the per-
formance of the algorithm for estimating the biological latency from a sequence of 
observed reflex times; 2) we examine the existence of energy consumption mini-
mum with respect to the applied power density; and 3) we test the strategy of se-
lecting optimal test conditions for determining model parameters actT  and cz . 

2. Review of ADT CHEETEH-E Model [17] 

The ADT CHEETEH-E model was proposed in [17] for predicting heat-induced 
withdrawal reflex of a subject exposed to an electromagnetic beam. The compu-
tational framework starts at the radiation antenna which sends the millimeter 
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wave toward the skin surface of a subject, located at a certain distance away. Let 
N be the number of radiators in the antenna and i℘  be the power output of the 
i-th radiator. The power output of the antenna is described by the vector 

( ){ }, 0,1, , 1i i N℘ = − . We review the formulation components used in [17] for 
modeling sub-steps in the process from the electromagnetic power output of the 
antenna eventually to the subject’s behavioral response. 

1) Electric field near the skin of the subject 

( )


( )
1

2
0

0Electric field on skin at 
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where: 
- r  is the position vector of a point on the skin surface of the subject; 
- ir  is the position vector of the i-th radiator of the antenna; 

- i iR = −r r  and ˆ i
i

i

−
=

−
r r

R
r r

 are respectively the magnitude and the unit 

direction of vector ( )i−r r ; 

- α  is the atmospheric attenuation coefficient; 
- 2k λ= π  is the wave number of the electromagnetic wave; λ  is the wave 

length; and 1j = − . 
2) Power incident per area on the skin 
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3) Power deposited per area on the skin 
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4) Power absorbed per volume into the skin 
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Power absorbed per volume into skin at depth 
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where y  is the coordinate of depth from the skin surface and 1 µ  is the 
characteristic depth that the millimeter wave penetrates into the skin. In the 
formulation here r  is a vector in 3 , restricted to the 2-D skin surface, de-
scribing the 2-D coordinates on the skin surface. In a local 3-D coordinate sys-
tem with the depth direction selected as an axis, r  is effectively a vector in 

2 , and mathematically ( ), yr  represents the 3-D coordinates in the skin. 
5) Temperature as a function of spatial coordinates and time 
The temperature distribution is governed by the heat conduction along the 

depth direction with a source term of electromagnetic heating. 
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where 
- ρ  is the mass density of the subject’s skin; 
- pC  is the specific heat capacity of the skin and; 
- K is the thermal conductivity of the skin. 
In the initial boundary value problem above, an insulated boundary condition 

is imposed at the skin surface ( 0y = ). 
6) Number of heat-sensitive nociceptors activated in a local voxel 
Each small voxel either has all its heat-sensitive nociceptors activated or has 

none of them activated depending on the average temperature. 

( )


( )
( )

noc act

actNumber of nociceptors activated in voxel 

, if

0, if
j j

j
jj

V T t T
x t

T t T

ρ ≥= 
<  

where 
- voxel j is a volume element in the computational discretization; 
- jV  is the volume of voxel j; 
- nocρ  is the density of heat-sensitive nociceptors in the subject’s skin; 
- ( )jT t  is the average temperature of voxel j at time t and; 

- actT  is the activation temperature of heat-sensitive nociceptors. 
7) Total number of heat-sensitive nociceptors activated at time t 
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j
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=
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where M is the number of voxels in the computational discretization. 
8) Perceived pain level 

( )
( )( )Dol

Perceived pain level in Dol scale at time 
ln

1 expt

ah t
x t b
c

=
 − −

+   
 



 
9) Motivation-modulated perceived pain level 
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10) Subject’s behavioral response 
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3. A Concise Model for the Withdrawal Reflex 

This section focuses on the occurrence of withdrawal reflex, observed as the 
subject moving out of beam in tests. At a given time t, we consider the event that 
the spatial temperature profile results in withdrawal reflex. In terms of the sub-
ject’s behavioral response, this event is simply described by ( ){ }Event 2g t = . 
To formulate a concise model, we follow the model components proposed in 
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[17] as guidelines. We adopt the same assumption that the perceived pain level 
at time t is solely determined by the number of activated nociceptors at time 
t, which in turn is solely determined by the spatial temperature profile at 
time t. In other words, given the temperature profile at time t, the past his-
tory of the temperature profile does not affect the perceived pain level at 
time t. Our strategy is to use only the principles of these model components, 
not the specific function forms. The goal is to construct a formulation i) that 
is broadly applicable without assuming a particular function form for any 
internal sub-step and ii) that is concise with only a few model parameters. 
Specifically, we require the model to have 3 design features: [leftmargin = 1.5 
cm]. 
• it maps a given spatial temperature profile to the corresponding binary out-

come with regard to the occurrence of withdrawal reflex; 
• it is independent of the function forms adopted in [17] and; 
• it has only two parameters. 

Building upon the model components of [17], we proceed with the analysis 
steps below. 
• Based on the relation between ( )g t  and ( )Dolĥ t  (the motivation-modulated 

perceived pain level) described in model component 10 above, we write. 

( ){ } ( ){ }Dol High
ˆEvent 2 Eventg t h t Y= = ≥

 
• ( )Dolĥ t  is a monotonically increasing function of ( )Dolh t  (the perceived 

pain level). In model component 9 above, this function is set to:  
( ) ( )Dol Dol 0ĥ t h t m m= − . Here we write generally ( ) ( )( )Dol 1 Dolĥ t F h t=  and 

require only that ( )1F ⋅  be an increasing function. Applying ( )1
1F − ⋅  to 

( )Dol Highĥ t Y≥ , we write: 

( ){ } ( ) ( ){ }1
Dol 1 HighEvent 2 Eventg t h t F Y−= = ≥

 
• ( )Dolh t  increases monotonically with ( )x t  (the total number of nocicep-

tors activated). In model component 8 above, ( )Dolh t  is set to:  

( )
( )( )( )Dol

ln
1 exp

ah t
x t b
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=
 − −
 +
 
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. Again, we write generally  

( ) ( )( )Dol 2h t F x t=  and require only that ( )2F ⋅  be an increasing function. 

Applying ( )1
2F − ⋅  to ( ) ( )1

Dol 1 Highh t F Y−≥ , we write: 

( ){ } ( ) ( )( ){ }1 1
2 1 HighEvent 2 Eventg t x t F F Y− −= = ≥

 
• At a given time t, ( )x t  is determined from the spatial temperature profile 

( ), ,T y tr : 

( ) ( ) ( )
actnoc

Activated volume

, , d dT Tx t I y t yρ ≥= ∫ r r


 
where the indicator function ( )actT TI ≥  is defined as: 
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( ) ( ) ( )
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Using this expression of ( )x t , we write the event in terms of ( ), ,T y tr : 

( ){ } ( ) ( )( )act

1 1
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noc

1Event 2 Event d dT Tg t I y F F Y
ρ

− −
≥

 
= = ≥ 

 
∫ r      (1) 

Result (1) leads to a deterministic dose-response relation for withdrawal ref-
lex. Given spatial temperature profile ( ),T yr , we select the activated volume as 
the single metric predictor variable (the dose quantity) for predicting withdrawal 
reflex. 

{ }( ) ( )actact

Dose Activated volume

, d dT Tz z T T I y≥≡ ≡ ∫




r                   (2) 

Here we use { }T  as a concise notation for spatial temperature profile  
( ),T yr . Equation (1) tells us that the critical threshold on dose z for withdrawal 

reflex is 

( )( )1 1
2 1 High

noc

1
cz F F Y

ρ
− −≡                     (3) 

The deterministic dose-response model is 

( ) ( )
( )

1 withdrawal reflex , if
Outcome

0 no withdrawal reflex , if <
c

c

z z
z

z z
 ≥= 


         (4) 

Model (4) is completely specified by 2 parameters: actT  and cz . 
• Activation temperature actT  is used in calculating dose z in (2). 
• Threshold cz  is used in determining the binary outcome corresponding to 

dose z. 
Note that threshold cz  varies with many internal parameters of ADT CHEE- 

TEH-E [17]: 
• HighY  in the subject behavioral response function ( )g t ; 
• m and 0m  in the motivation modulated perceived pain level ( )Dolĥ t ; 
• a, b and c in the perceived pain level ( )Dolh t  and; 
• nocρ  in the total number of nociceptors activated ( )x t . 

In addition, threshold cz  depends on function forms of ( )1F ⋅  and ( )2F ⋅ . 
The advantage of model (4) is that the effect of all these model parameters and 
function forms is captured in a single parameter cz . Once the values of cz  and 

actT  are known, dose-response model (4) is completely specified. 

4. Inferring Model Parameters from  
Spatial Temperature Profiles 

We study the methodology of determining the two parameters ( cz  and actT ) in 
model (4) from test data. We consider the hypothetical situation where the tem-
perature of the skin as a function of the 3-D coordinates and the time is mea-
surable in experiments. 
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The dose-response model described in (4) is based on the assumption that the 
occurrence of withdrawal reflex at time reft  is solely attributed to the spatial 
temperature profile at reft . As a result, in the inference method, only ( )ref, ,T y tr  
is relevant for determining actT  and cz . In experimental setup, two quantities 
are tunable: the power density deposited on the skin surface depP  and the beam 
spot area A. When the applied power density is uniform inside a geometric area 
and zero outside, the beam spot is naturally defined as that area. When the ap-
plied power density is a function of the 2-D coordinates on the skin surface: 

( )dep depP P= r , the scalar beam spot area A refers to a characteristic area of the 
beam cross-section. For a Gaussian beam with radius w, the beam spot may refer 
to the circle of radius w around the beam center, which is the region of  

( ) ( )dep dep2

1 0P P
e

≥r  or equivalently the region of ( ) ( )1 0E E
e

≥r . Alternatively, 

the beam spot area may refer to the peak effective area, which is defined as 

( ) ( )2 dep depd 0A P P≡ ∫ r r


. 

In test data, information on the unknown parameters actT  and cz  is con-
tained in the reflex time reft  and in the spatial temperature profile at reflex 
( )ref, ,T y tr . For a given ( )ref, ,T y tr , we can set the activation temperature actT  

to any reasonable value within the range of ( )ref, ,T y tr . Then, for each value of 

actT , the threshold ( )actcz T  is the activated volume calculated according to 

actT . 

( ) ( ) ( ){ }act ref actvolume of , , ,cz T y T y t T≡ ≥r r             (5) 

Function ( )actcz T  defined in (5) is based on the temperature profile  
( )ref, ,T y tr . Given ( )ref, ,T y tr , the pair ( )( )act act, cT z T  explains the observed 

reflex time reft  for any value of actT . In other words, one temperature profile 
( )ref, ,T y tr  does not provide enough information for determining both actT  

and cz  simultaneously. At a given test condition, the measurements provide 
only one constraint function ( )actcz T  on the two unknown parameters. When 
the test condition ( ){ }( )dep ,P Ar  is varied in experiments, the reflex time reft  
and the temperature profile at reflex ( )ref, ,T y tr  will change, and accordingly, 
the constraint function ( )actcz T  may be different. The influence of test condi-
tion on the constraint function ( )actcz T  offers hope of constructing substan-
tially distinct equations for ( )act , cT z  from data measured at different test con-
ditions. Once we obtain two different constraint equations for ( )act , cT z , the two 
unknown parameters are solved simultaneously from a 2 2×  system. 

( ) ( )

( ) ( )

act test condition 1

act test condition 2

0

0

c c

c c

z z T

z z T

 − =


− =
                   (6) 

Let us summarize and clarify what information regarding model parameters 
( )act,cz T  we can extract from measured temperature profiles and how we ex-
tract it. 
• At a given test condition ( ){ }( )dep ,P Ar , the two unknown parameters actT  

https://doi.org/10.4236/ajor.2020.102004


H. Y. Wang et al. 
 

 
DOI: 10.4236/ajor.2020.102004 41 American Journal of Operations Research 
 

and cz  are constrained by only one function: ( )actcz T . 
• As described in (5), constraint function ( )actcz T  is completely determined 

by the measured spatial temperature profile ( )ref, ,T y tr . Function ( )actcz T  
is parameter-free. 

• In the subsequent sections, we will analyze the behaviors of ( )actcz T  in cer-
tain idealized cases. It is important to point out that the construction of 

( )actcz T , given in (5), is not dependent on the assumptions of these idealized 
cases. The assumptions are for the purpose of facilitating the exact solution of 
temperature evolution. 

• If test data from different test conditions provide two distinct constraint eq-
uations, then parameters ( )act , cT z  can be determined from the 2 2×  sys-
tem (6). 

In the next section, we will explore theoretically what test conditions are likely 
to provide substantially distinct constraint equations for ( )act , cT z . To make it 
possible to solve the problem analytically, we will introduce assumptions and 
consider idealized cases in the analysis. The results of the mathematical study on 
these idealized cases are only intended as guidelines for selecting test conditions 
that will (in the idealized cases) provide substantially distinct constraint equa-
tions for ( )act , cT z . Once the tests are carried out and measurements are col-
lected, the construction of constraint equations ( )actcz T  is based on the real 
test data using formula (5), which does not depend on any assumption used in 
the idealized cases. The process of determining ( )act , cT z  is solely based on 
measured temperature profiles at several test conditions. It does not require any 
symmetry of temperature or any particular parameter values for the heat absorp-
tion/conduction in the skin. 

5. Theoretical Behaviors of the System  
in the Case of No Heat Conduction 

In this section, we study the case of no heat conduction. We examine the beha-
viors of the temperature distribution, the time until reflex, the latency in with-
drawal reflex, and the constraint function on model parameters based on the 
spatial temperature profile at reflex. To facilitate the analysis in a simple theo-
retical setting, we first introduce idealized cases. 

5.1. Idealized Case U and Case A 

Idealized case U is characterized by the two assumptions below: 
1) At any given time, the temperature is uniform over the beam cross-section 

A (i.e., independent of r ) and is a decreasing function of depth y. 
2) Outside the beam cross-section, the temperature is always below the noci-

ceptor activation temperature (for example, at the normal body temperature). 
One particular situation of case U is when the initial temperature of skin is a 

constant below the activation temperature and the applied power density is uni-
form over the beam cross-section A and zero outside. Mathematically, idealized 
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case U is characterized by 

( ) ( )
( ) act

, , , , decreasing with , for
Case U

, , , for

T y t T y t y A

T y t T A

= ∈  ≡  
< ∉  

r r

r r
      (7) 

In case U, it is mathematically more convenient to view the constraint func-
tion in the form of ( )act cT z  with cz  as the independent variable. Recall that 
the dose z is defined as the volume of the activated region, which in case U is a 
cylinder with base area A. Dose z has the expression: volume base depth= × . 
Given the threshold cz  on activated volume and the beam spot area A, the cor-
responding activated depth is act cy z A= . The activation temperature actT , and 
( )act ref,y t  are related in the temperature distribution ( ),T y t  

( )act ref actCase U : ,c
c

z
T T t T z

A
 = ≡ 
 

                (8) 

Equation (8) serves various purposes depending on which are known/unknown. 
On one hand, given the reflex time reft  and the spatial temperature profile at 
reflex ( )ref,T y t , (8) is a constraint equation for model parameters ( )act , cT z . 
On the other hand, given model parameters ( )act , cT z , (8) is an equation for the 
reflex time reft . We will use this equation to solve for reft  in case A and case B 
below, which are special situations of case U. Notice that constraint function 

( )act cT z  given by (8) in case U is simply the temperature profile at reflex, scaled 
in the depth direction by a factor of 1/A. Based on the mathematical form of (8), 
intuitively we can change how fast ( )act cT z  varies with cz  by reducing/increasing 
beam spot area A in experiments. 

It should be mentioned that case U does not exclude heat conduction in the 
depth direction. We now add the assumption of no-heat-conduction and intro-
duce case A. 

( ) ( )

( )

dep dep dep

0 act

uniform power density over beam spot :
for and 0 for

Case A
no heat conduction
uniform initial temperature : ,0

P P A P A

T y T T

 
 = ∈ = ∉ ≡  
 
 = < 

r r r r
    (9) 

Case A satisfies the conditions of case U, and is a special situation of case U. 

5.2. Selecting Test Conditions for Determining ( )cT zact ,  

Case A is solved analytically in Appendix A. The temperature distribution and 
the reflex time are given by (see Equations (65) and (66) of Appendix A). 

( ) dep
0

act 0
ref

dep

, , e for

Results of case A :
e c

y

p

p z A

P
T y t T t A

C

CT T
t

P

µ

µ

µ
ρ

ρ
µ

−
= + ∈




− = ⋅


r r
      (10) 

It follows from (8) that the constraint function ( )act cT z  has the expression 
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( ) ref dep
act 0 e cz A

c
p

t P
T z T

C
µµ

ρ
−= +                  (11) 

Let ( )* *
act , cT z  denote the true value of ( )act , cT z . With this specific notation 

for the true values, we can use cz  to represent the independent variable and 

actT  the dependent variable in constraint function ( )act cT z  without confusion.  

We like to get rid of ref dep

p

t P
C

µ
ρ

 in (11) by using ( )* *
act , cT z . In the inference method,  

we view (11) as a constraint function on ( )act,cz T  while reft  is known (from 
data). Alternatively (11) may be viewed as the governing equation for reft  when 

*
cz  and *

actT  are given. We use (11) to express reft  in terms of ( )* *
act , cT z  and 

then substitute the expression back into (11) to write constraint function  
( )act cT z  as 

( ) ( ) **
act 0 act 0 e ec cz A z A

cT z T T T µ µ−= + − ⋅
 

We cast the constraint function into the form of ( )*
act actT T−  vs. ( )*

c cz z−  

( ) ( ) ( )*
* *

act act act 0 e 1c cz z A
cT z T T T

µ− − − = − ⋅ − 
 

            (12) 

Constraint function (12) is specified by two parameters: ( )*
act 0T T−  and A µ . 

Note that (12) is the constraint function for case A (the case of no heat conduc-
tion) and it is independent of the power density depP , which specifies how fast 
the electromagnetic beam heats up the skin. When the effect of heat conduction 
along the depth direction is included, depP  will affect the steepness of spatial 
temperature profile at reflex. A smaller power density depP  heats up the skin 
slower and the heat conduction has more time before reflex to smooth out the 
temperature profile. 

Figure 1 compares constraint functions constructed from simulated test data 
 

 

Figure 1. Constraint functions on ( )act , cT z  based on simulated data in case A. The in-

tersection of two distinct constraint functions determines the true values ( )* *
act , cT z . 

https://doi.org/10.4236/ajor.2020.102004


H. Y. Wang et al. 
 

 
DOI: 10.4236/ajor.2020.102004 44 American Journal of Operations Research 
 

in case A, with two different beam spot areas: 1A µ =  and 4A µ = . The 
well-defined intersection of the two curves gives us the true value *

actT  and *
cz . 

In simulations, we used ( )*
act 0 4T T− = . The choice of ( )*

act 0T T−  does not ac-
tually alter the essential shape of constraint functions. If we divide (12) by 

( )*
act 0T T−  and use the scaled temperature as the dependent variable, then (12) is 

completely specified by A µ , independent of ( )*
act 0T T− . 

In summary, in case A, to determine model parameters actT  and cz , we need 
to carry out tests with different beam spot areas: one with a moderate value of 
A µ  to make the constraint function actT  vs. cz  slant, the other with a rela-

tively large value of A µ  to make actT  vs. cz  flat. Notice that the meanings 
of phrases “moderate value of A µ ” and “relatively large value of A µ ” are 
not precise since quantity A µ  is not dimensionless. This issue will be ad-
dressed when we discuss non-dimensionalization. 

5.3. Time until Withdrawal Reflex vs. Beam Spot Area 

We study how the reflex time reft  varies with the beam spot area A while the 
power density depP  is maintained at a constant level. In case A (the case of no 
heat conduction), the analytical expression of reft  is given in (10). In expression 
(10), when the beam spot area A  is fixed, the reflex time reft  is inversely pro-
portional to the applied power density depP . When depP  is fixed, as beam spot 
area A increases, reft  decreases. But reft  is not inversely proportional to A. 
Eventually reft  reaches a constant level above zero for large A. This can be seen 
in the Taylor expansion of (10) as ( )1 0A → . 

Case A: no heat conduction 

( )2act 0
ref

dep

1p cCT T z
t O A

P A
ρ µ
µ

−−  = ⋅ + + 
 

              (13) 

In all realistic situations, heat conduction is always present. Case A (the case 
of no heat conduction) corresponds to the situation where the effect of heat 
conduction is relatively small in comparison with others. In the non-dimens- 
ional analysis of the next section, we will see that the effect of heat conduction is 
negligible only in a region away from the skin surface and only over a short time. 
Even during a short time, near skin surface, the heat conduction may still be sig-
nificant or even dominant in the temperature evolution. Expression (10) for reft  
is derived based on the no-conduction approximation of the temperature at 
depth cz A . For large A, depth cz A  is close to the skin surface. As a result, 
expression (10) for reft  eventually becomes invalid for large A. Expanding reft  
vs. A with the effect of heat conduction will be carried out after the non-dimen- 
sionalization analysis. We will see that with the effect of heat conduction, the 
(1/A) term in expansion (13) is invalid. 

5.4. Latency in Withdrawal Reflex 

We hypothesize that when the number of nociceptors activated reaches a thre-
shold, the stimulus sent to the Central Nervous System (CNS) is strong enough 
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to initiate the withdrawal reflex. However, it takes time for the signal to travel to 
the CNS, for the CNS to send a signal to muscles, and for muscles to act upon 
the signal to carry out the withdrawal reflex before the actual withdrawal reflex 
action (i.e., the subject moving out of the beam) is observed in tests. To facilitate 
the discussion of biological latency in the observed withdrawal reflex, we first 
introduce proper mathematical notations for these time instances. Let 
• reft  = time until the activated volume (dose z) reaches threshold cz ; reft  is 

the time until a stimulus strong enough for initiating withdrawal reflex is 
generated; we regard reft  as the true underlying reflex time in the sense that 
even if the beam power is turned off at that point, withdrawal reflex will still 
occur; 

• obst  = time until observed withdrawal reflex; obst  is the observed reflex time; 
• del obs reft t t= −  = latency (time delay) in the observed withdrawal reflex. 

We assume that the time delay delt  is an intrinsic property of the test subject, 
not affected by parameters of the electromagnetic beam, such as power density 
( depP ) or beam spot area (A). In case A (the case of no heat conduction), the true 
underlying reflex time reft  is given by (10). The observed reflex time obst  has 
the expression: 

act 0
obs del

dep

e cp z ACT T
t t

P
µρ

µ
−

= ⋅ +                  (14) 

The plot of obst  vs dep1 P  is a straight line. The vertical intercept of the plot 
gives us delt , which can be estimated from measured values of obst  at dep 0P p=  
and dep 02P p= . 

Case A: no heat conduction 
( ) ( ) ( )est
del obs 0 obs 02 2t t p t p= − .                   (15) 

6. Non-Dimensionalization and Solution of Heat Conduction 
in the Depth Direction 

We study the effect of heat conduction along the depth direction of the skin (the 
y-direction of the coordinate system). We first introduce case B which has all 
assumptions of case A except that it includes the effect of heat conduction in the 
depth direction with uniform thermal conductivity: ( )K y K≡ . 

( ) ( )

( )

dep dep dep

0 act

uniform power density over beam spot :
for and 0 for

Case B
heat conduction in with uniform conductivity
uniform initial temperature : ,0

P P A P A
y

T y T T

 
 = ∈ = ∉ ≡  
 
 = < 

r r r r
    (16) 

In case B, the temperature distribution is governed by 

( ) ( )

( ) ( )

2

dep2

0
0

, , , ,
e for

, ,
0, , ,0

y
p

y

T y t T y t
C K P A

t y
T y t

T y T
y

µρ µ −

=

 ∂ ∂
= + ∈

∂ ∂
∂ = = ∂

r r
r

r
r

       (17) 
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6.1. Non-Dimensionalization 

We introduce a temperature scale T∆ , the characteristic difference between the 
initial temperature 0T  and the nociceptor activation temperature actT . Note 
that T∆  serves only as the temperature scale for non-dimensionalization. T∆  
does not need to be the exact difference between 0T  and actT . We look at the 
physical dimensions of various quantities: 

[ ] ( ) 1lengthµ −=  

[ ] ( )( ) ( ) ( )1 1 1energy temperature length timeK − − −=  

( )( ) ( )1 3energy temperature lengthpCρ − −  =   

( ) ( )2 1length time
p

K
Cρ

− 
= 

    

( )
2

1time
p

K
C
µ

ρ
− 

= 
    

( )( ) ( )2 1
dep energy length timeP − −  =   

[ ] ( )temperatureT∆ =  

( ) ( ) ( )1 2

dep

1 1energy length time
K T Pµ

− 
= = ∆       

We introduce length scale and time scale 

s s 2
1 , pC

y t
K
ρ

µ µ
≡ ≡

 
Here sy  is the depth at which the beam decays by a factor of 1e− , and st  is 

the time at which a δ  function spreads to a Gaussian distribution of standard devi-
ation sy . We use these characteristic scales to carry out non-dimensionalization. 

Non-dimensional depth and time: 
2

nd nd
s s

,
p

y t Ky y t t
y t C

µµ
ρ

≡ = ≡ =
 

Non-dimensional temperature as a function of ( )nd nd,y t : 

( ) ( ) 0
nd nd nd

,
,

T y t T
T y t

T
−

≡
∆  

Non-dimensional reflex time: 
2

ref
ref,nd ref

s p

t Kt t
t C

µ
ρ

≡ =
 

Non-dimensional power density deposited on skin surface: 

dep,nd dep
1P P

K Tµ
≡

∆  
Non-dimensional beam spot area: 
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s
nd

1

c c

yA A A
z zµ

≡ =
 

Non-dimensional activation temperature: 

act 0
act,nd

T TT
T
−

≡
∆  

The governing equation for ( )nd nd nd,T y t  follows from Equation (17). 

( )

( )
nd

2
nd nd

dep,nd nd2
nd nd

nd
nd

nd 0

exp

0, ,0 0
y

T T
P y

t y

T
T y

y
=

∂ ∂
= + − ∂ ∂


∂ = =∂

                (18) 

The non-dimensional temperature distribution offers two mathematical ad-
vantages. 
• For ( )nd nd nd,T y t , both the initial and the boundary conditions are homoge-

neous. 
• ( )nd nd nd,T y t  is proportional to dep,ndP . Function ( )nd nd nd dep,nd,T y t P  is pa-

rameter-free. The effects of all other parameters are contained in the non- 
dimensional variables. 

We define the normalized non-dimensional temperature 

( ) ( )nd
dep,nd

1, ,H y t T y t
P

≡                    (19) 

Here we have denoted ( )nd nd,y t  concisely as ( ),y t . Function ( ),H y t  is go-
verned by 

( )

2

2

0

e

0, ,0 0

y

y

H H
t y

H H y
y

−

=

∂ ∂
= + ∂ ∂


∂ = =

 ∂

                   (20) 

Notice that the normalized Equation (20) is parameter-free. 

6.2. Analytical Solution 

To solve problem (20), we view the forcing term as the time integral of impulse 
forcing. Let ( ),G y t  denote the solution of a unit impulse forcing at 0t = , 
which is governed by 

( )

2

2

0

0, ,0 e y

y

G G
t y

G G y
y

−

=

∂ ∂
= ∂ ∂


∂ = =

 ∂

                  (21) 

In Appendix B, we derive that ( ),G y t  has the expression 

( ) 1 2 1 2, erfc e erfc e
2 24 4

t y t yt y t yG y t
t t

− +− +   = +   
     
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where ( )erfc ⋅  is the complementary error function defined as 

( ) ( )22erfc exp d
x

x s s
∞

≡ −
π ∫  

We integrate ( ),G y t s−  with respect to s to superpose the effect of forcing 
in [ ]0, t . The solution of problem (20) is given by 

( ) ( ) ( )
0 0

, , d , d
t t

H y t G y t s s G y s s= − =∫ ∫  
Function ( ),H y t  satisfies:  
(i) At each fixed y, ( ),H y t  is an increasing function of t. 
(ii) At each fixed t, ( ),H y t  is a decreasing function of y. 
(iii) At a fixed y, for small t, ( ),H y t  increases with t more than linearly; for 

large t, the increase is slower than linear. 
The third property of ( ),H y t  illustrates the two opposite effects of heat 

conduction. In the absence of heat conduction, the heating term e y−  leads to a 
linearly increasing temperature e yt − . With heat conduction, at a fixed depth y, 
function ( ),G y t  starts at ( ),0 e yG y −=  and increases over short time. As a 
result, ( ),H y t  initially rises faster than e yt − . Over long time, however, heat 
conduction eventually pulls ( ),G y t  back below e y−  and reduces it gradually 
to zero. Consequently, for large t, ( ),H y t  grows much slower than e yt −  with 
growth rate decreasing toward zero. We will revisit property (iii) and derive the 
behaviors of ( ),H y t  respectively for small t and for large t in the asymptotic 
analysis of the next section. 

In summary, in case B (the case with heat conduction), ( )nd nd nd,T y t  has the 
expression 

( ) ( )
( ) ( )

( )

nd nd nd dep,nd nd nd

0

, ,

Results of case B : , , d

1 2 1 2, erfc e erfc e
2 24 4

t

t y t y

T y t P H y t

H y t G y s s

t y t yG y t
t t

− +


 =
 =


− +    = +       

∫   (22) 

The pre-scaling physical temperature distribution ( ),T y t  is 

( )
2

0 dep,nd dep
s s

1, , ,
p

y t KT y t T T P H P H y t
y t K C

µµ
µ ρ

  
− = ∆ ⋅ =        

     (23) 

Equation (23) expresses the physical temperature distribution ( ),T y t  as a 
scaling and shifting of the normalized non-dimensional temperature ( ),H y t , 
which is parameter-free. 

6.3. Effect of Heat Conduction 

We investigate the consequence of neglecting heat conduction (i.e., completely 
turning off the heat conduction in Equation (20)). Specifically, we remove the  

2

2

H
y

∂
∂

 term and the insulated boundary condition in (20). The resulting equa-
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tion is 

( )0
0e , ,0 0yH

H y
t

−∂
= =

∂
                   (24) 

which yields the no-conduction approximation of ( ),H y t  

( )0 , e yH y t t −=                        (25) 

It is important to clarify the precise difference between Equations (20) and 
(24). They do not correspond to different regimes of heat conductivity. Rather, 
they are both obtained in non-dimensionalization using exactly the same para-
meters. The only difference is that at the end, in Equation (24) we discard the 
terms involving heat conduction. 

To assess the validity of neglecting heat conduction, we compare ( )0 ,H y t  
with ( ),H y t  in Figure 2 at several time instances. Here y and t are the non- 
dimensional depth and time. When t is small and y is away from 0, ( )0 ,H y t , 
provides a good approximation to ( ),H y t . 

We examine the relative error in approximating ( ),H y t  with ( )0 ,H y t . 

( ) ( ) ( )
( )

0 , ,
Err ,

,
H y t H y t

y t
H y t

−
≡                   (26) 

Figure 3 plots contour lines of relative error ( )Err ,y t  in percentage. Again, 
here y and t are the non-dimensional depth and time. The results illustrate re-
gions where the relative error is bounded by the specified values. 

For the physical temperature distribution, the no-conduction approximation 
is 

( )( )
2

dep
0 dep 0

1, , e y

p p

PKT y t T P H y t t
K C C

µµµµ
µ ρ ρ

−
 

− ≈ =  
 

        (27) 

 

 

Figure 2. Comparison of ( ),H y t  and ( )0 ,H y t , respectively, the normalized non-dim- 

ensional temperatures and its no-conduction approximation. 
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Figure 3. Contour lines of relative error ( )Err ,y t  defined in (26), in percentage. 

 

Approximation (27) is valid when the non-dimensional time 
2

nd
p

Kt t
C
µ

ρ
≡  is  

small and the non-dimensional depth ndy yµ≡  is away from 0. In the rectan-
gular region of nd 0.102t ≤  and nd 0.258y ≥  (lightly shaded in Figure 3), the 
relative error in the no-conduction approximation of ( )( )0,T y t T−  is bounded 
by 5%. No-conduction approximation (27) is valid only at depth away from the 
skin surface. When depth ndy  is small (near skin surface), we need to restrict 

ndt  to a very small range in order to maintain a reasonably low relative error 
( )Err ,y t . For example, at depth nd 0.05y = , to make the relative error bounded 

by 5%, we have to restrict the non-dimensional time to the tiny interval of 

nd 0.015t ≤  (darkly shaded rectangle in Figure 3). 

7. Theoretical Behaviors of the System  
in the Case with Heat Conduction 

In this section, we study the behaviors of case B (the case with heat conduction), 
based on its analytical solution. We examine the reflex time vs. beam spot area, 
the latency in withdrawal reflex, asymptotics of the normalized temperature for 
small t and for large t, the energy consumption at small and at large applied 
power density, the spatial temperature profile at reflex, and constraint functions 
constructed from spatial temperature profiles. 

7.1. Reflex Time vs. Beam Spot Area 

In subsection 5.3, we studied the asymptotic behavior of reflex time for large 
beam spot in case A (the case of no heat conduction). The asymptotic result of 

reft  vs A in case A is given in (13). The derivation of (13) is based on the 
no-conduction approximation at depth cz A  and time reft . As we discussed in 
subsection 6.3, the no-conduction approximation is valid only in the region 
away from the skin surface and only over short time. When we increase the 
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beam spot area A, the depth cz A  converges to zero and the time reft  de-
creases to a positive value above zero. For large A, the combination of depth 

cz A  and time reft  leads to a large relative error in the no-conduction ap-
proximation. Thus, when the beam spot is large, the no-conduction approxima-
tion is no longer valid. We now analyze the asymptotic behavior of reft  for large 
A in the presence of heat conduction (case B). 

In case U defined in (7), which includes case B, the governing equation for 

reft  is given in (8). Using the exact solution (23) for case B, we write the equa-
tion in terms of the normalized temperature distribution ( ),H y t : 

2

0 dep ref act
1 ,c

p

z KT P H t T
K A C

µ µ
µ ρ

 
+ =  

   

which leads to a non-dimensional equation for ref ,ndt  

( )act 0
ref ,nd

dep nd

1 ,
T T K

H t
P A

µ−  
=  

 
                 (28) 

where nd
c

AA
zµ

=  is the non-dimensional beam spot area and 
2

ref ,nd ref
p

Kt t
C
µ

ρ
=   

the non-dimensional reflex time as defined in subsection 6.1. As the beam spot 
area ndA  increases, we expect the reflex time ref ,ndt  decrease to a positive value 
above zero. Thus, for ref ,ndt , we seek an expansion of the form: 

( )ref ,nd nd 0
nd

11 At A t c
A

α  
 = + + 
   

                (29) 

Substituting expansion form (29) into Equation (28) and carrying out the Taylor 
expansion of ( )0,H y t t∆ + ∆  around ( )00, t , we get 

( ) ( ) ( ) ( )( )

( ) ( )

act 0 0
0 ref ,nd nd 0

dep

22
0 0

2
nd nd0 0

0,
0,

, ,1 1 1
2

y y

T T K H t
H t t A t

P t

H y t H y t
y A Ay

µ

= =

− ∂
= + −

∂

∂ ∂   
+ +   ∂ ∂   

    (30) 

Based on governing Equation (20) and expression (22) of ( ),H y t , we can de-
rive: 

( ) ( ) ( ) 20, erfc e 1th t H t t t≡ = − +
π

              (31) 

( ) ( ) ( )
0

0, ,
erfc e , 0t

y

H t H y t
t

t y
=

∂ ∂
= =

∂ ∂
 

( ) ( )
2

2
0

,
erfc e 1t

y

H y t
t

y
=

∂
= −

∂
 

Using these results in expansion (30), we obtain 
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( )

( ) ( ) ( )( )0 0

act 0

dep

2

0 0 0 0
nd nd

1 1 1erfc e erfc e 1
2

t t
A

T T K
P

h t t t c t
A A

α

µ−

   
= + + −   

   

    (32) 

Matching corresponding terms of 
nd

1
A

 
 
 

 on both sides of (32) yields 

( ) ( )

( ) ( )( )0 0

act 0
0

dep

0 0 0

, 2,

1and erfc e erfc e 1 0
2

t t
A

T T K
h t

P

t t c t

µ
α

−
= =

+ − =

           (33) 

Using expansion (29) and 2α = , we write out the expansion of the physical 
reflex time. 

Case B: with heat conduction 

( )
2

ref 02 1p c
A

C z
t A t c

AK
ρ µ
µ

  = + +  
   

                (34) 

where 0t  and Ac  are solved from (33) and are given by 

( )

( )
( )

0

0

act 01
0

dep

0

0 0

1 erfc e

2erfc e

t

A t

T T K
t h

P

t
c

t t

µ−
  −

=     


−
=



                   (35) 

Here ( )1h− ⋅  denotes the inverse function of ( )h t  defined in (31). We com-
pare (13) and (34). The reflex time in (34) converges rapidly to a positive value 
above zero as the beam spot area A increases. The convergence of 1/A2 in (34) 
(the case with heat conduction) is faster than the convergence of 1/A in (13) (the 
case of no heat conduction). 

7.2. Latency in Withdrawal Reflex 

We study the behavior of biological latency (time delay) delt  in observed reflex 
in case B (the case with heat conduction). We investigate the mathematical for-
mulation for determining delt  from test data. While the true reflex time varies 
with the applied power density depP  and with the beam spot area A, we assume 
that the time delay in observed reflex is an intrinsic property of the test subject 
and is independent of depP  and A. In experiments, applied power density depP  
and beam spot area A are adjustable. Our strategy is to determine the time delay 

delt  using observed reflex times at a sequence of depP  values. 
The observed reflect time is the sum of the true reflex time and the unknown 

time delay: obs ref delt t t= + . As a function of beam spot area A, the true reflex  

time reft  has expansion (34). At large non-dimensional 
c

A
zµ

, the observed ref-
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lex time obst  is approximately 

( )act 01
obs ref del del2

dep

pC T T K
t t t h t

PK
ρ µ
µ

−
 −

= + ≈ +  
 

           (36) 

In the limit of 
c

A
zµ

→∞ , the observed reflex time obst  as a function of depP  

has the form: 

( ) 1 2
obs dep 1 del

dep

ct P c h t
P

−
 

= +  
 

                  (37) 

( )2 act 0 1 2, pC
c T T K c

K
ρ

µ
µ

≡ − ≡
 

In (37), besides the unknown time delay delt , the two coefficients 1c  and 2c  
are also unknown while depP  is specified in experiments. We want to estimate 

delt  from measurements of obst  vs depP . Notice that the three unknowns 
( )2 1 del, ,c c t  and measurable quantities ( )dep obs,P t  are constrained by a para-
meter-free function ( )1h u−  in Equation (37). This mathematical observation 
suggests an approach for determining delt : 
• measure three data points of ( )dep obs,P t , and use formulation (37) to con-

struct three constraint equations for ( )2 1 del, ,c c t  based on the three meas-
ured data points; 

• then solve for ( )2 1 del, ,c c t  simultaneously from the system of joint con-
straints. 

Specifically, we carry out tests at 3 values of depP : 

dep 0 dep 0 dep 0, 2 , 4P p P p P p= = =  
We examine the difference in the observed reflex time. The difference is inde-

pendent of delt . 

( ) ( ) 1 12 2
obs 0 obs 0 1

0 0

2
2

c ct p t p c h h
p p

− −    
− = −    

     
           (38) 

( ) ( ) 1 12 2
obs 0 obs 0 1

0 0

2 4
2 4
c ct p t p c h h
p p

− −    
− = −    

     
          (39) 

In (38) and (39), the number of unknowns is reduced to two: 1c  and 2c . 
Next, we get rid of unknown 1c . For that purpose, we consider quantity obsv  
defined as 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

obs 0 obs 0 obs 0 obs 0
obs

obs 0 obs 0 obs 0 obs 0

2 2 2 4

2 2 2 4

t p t p t p t p
v

t p t p t p t p

− − −
≡

− + −
        (40) 

From (38) and (39), it follows that obsv  is a function of 2 0c p  

2
obs

0

cv R
p

 
=  

 
                        (41) 
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where function ( )R u  is defined in terms of ( )1h− ⋅  as 

( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1

1 1 1 1

2 2 2 4

2 2 2 4

h u h u h u h u
R u

h u h u h u h u

− − − −

− − − −

− − −
≡

− + −
        (42) 

Function ( )h t  is defined in (31) and is parameter-free. As a result, function 

( )R u  introduced above is also parameter-free. Figure 4 demonstrates that  

( )R u  is an increasing function. This observation indicates that the inverse 

function ( )1R− ⋅  is well defined. 

In Appendix C, we derive asymptotics of ( )R u . The asymptotic results are 

( )

( )

1 2

2

2 2

5 3 2 4 2 3 for small
9 163

1 16 161 for large
3 9 9

R u u u u

R u u
u u

  −
= + − +   ππ  


  = − + + 
 





        (43) 

These asymptotic results establish analytically the invertibility of function 
( )R u  in the region of small u and in the region of large u. The invertibility of 
( )R u  allows the calculation of 2c  in Equation (41), which subsequently leads 

to the determination of delt . 

We now describe the method of determining delt  from data of obst  vs depP . 

Given three data points of observed reflex time vs. power density: ( )obs 0t p , 

( )obs 02t p  and ( )obs 04t p , we proceed as follows. We first calculate quantity obsv  

as described in (40). Then we apply the inverse function ( )1R− ⋅  to both sides of 
(41) to find 2c . Next we substitute the obtained value of 2c  into (38) to calcu-
late 1c . Finally, with the values of 2c  and 1c , we calculate delt  in (37). Ma-
thematically we write the method as an algorithm: 

Case B: with heat conduction 
 

 

Figure 4. Graph of function ( )R u  shows it increases monotonically with u. 
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( )
( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )
( )

obs
est 1

2 0 obs

est obs 0 obs 0
1 est est1 1

2 0 2 0

est est est1
del obs 0 1 2 0

est
pred est est1 2

obs dep 1 del
dep

is calculated from data using 40

2

2

v

c p R v
t p t p

c
h c p h c p

t t p c h c p

ct P c h t
P

−

− −

−

−




=
 − =
 −


= −


 
= +   

 

             (44) 

The last line of (44) gives the predicted function of observed reflex time vs. 
applied power density, based on the 3 data points. Algorithm (44) is parame-
ter-free. It calculates the time delay delt  using only the 3 data points. Even 
though algorithm (44) is derived based on the theoretical behavior of case B in 
the limit of large beam spot area, operationally it can be applied in any situation 
since it does not require any input parameter. In the next section, we will test it 
in the case of a Gaussian beam where the temperature is not uniform over the 
beam cross-section and the beam radius is finite. 

7.3. Temperature at a Fixed Depth for Small Time and Large Time 

In this subsection, we study the time evolution of the normalized non-dimen- 
sional temperature ( ),H y t  at a fixed y, respectively for small t and for large t. 
Here the pair ( ),y t  denotes the non-dimensional depth and time. ( ),H y t  is 
governed by Equation (20). We will see that over short time, the temperature in-
crease caused by the heating term in (20) is augmented by the heat gain via 
conduction. Over long time, however, the effect of the heating term is very much 
diminished by the heat loss via conduction. 

In solution (22), ( ),H y t  is an integral of ( ),G y t . We first look at the 

asymptotics of ( ),G y t . At a fixed 0y > , as ( ),G y t  we have y
t
→ +∞ . Re-

call two properties of ( )erfc ⋅ : 

( )erfc 0 T.S.T. asz z= + → +∞  
( )erfc 2 T.S.T. asz z− = + → +∞  

The abbreviation T.S.T  stands for Transcendentally Small Terms, which 
converge to zero faster than any powers of z. At a fixed 0y >  and small t, we 
use these two properties to calculate the expansions of ( ),G y t  and ( ),H y t  in 
(22). 

( ), e T.S.T. for smallt yG y t t−= +  

( ) ( ) ( )0
, , d e e 1 T.S.T. for small

t y tH y t G y s s t−= = − +∫        (45) 

In the no-conduction approximation given in (25), ( )0 , e yH y t t −=  is pro-
portional to t for all t. The increase rate of ( )0 ,H y t  is independent of t. With 
heat conduction, the solution ( ),H y t  increases slightly more than linearly with 
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t in (45) for small t. 

( ) 21e 1
2

t t t t − = + + > 
 



 
The linear portion of the temperature growth at depth y is attributed to the 

heating at y from the electromagnetic wave penetrating into the skin. The por-
tion above the linear growth is caused by the positive net heat gain via conduc-
tion. For a small interval around y, the net heat gain via conduction is positive 
when the heat in-flow from the upstream is more than the heat out-flow to the 
downstream. The temperature growth caused by the electromagnetic heating is 
augmented by the conduction when the net heat gain via conduction is positive. 
Mathematically, at depth y, the net heat gain via conduction is positive when 

( )2 2, 0H y t y∂ ∂ > , which is true for small t. We will show below that for large t, 
however, the net heat gain via conduction is negative. As a result, the tempera-
ture increase caused by electromagnetic heating is diminished by heat conduc-
tion, and the realized temperature increase for large t is much smaller than the 
linear growth. 

To expand ( ),G y t  for large t, we write it in terms of the scaled complemen-
tary error function ( ) ( ) ( )2erfcx erfc expz z z≡ . 

( ) ( ) ( )
2

2 2

1, erfcx erfcx exp
2 4

y yz t z t
t t

yG y t z z
t= − = +

   −
= +   

    
We use the expansion of ( )erfcx z  given in (68) of Appendix C. 

( )
21 2, 1 for large

4
yG y t t
tt

 +
= − + 

π  
            (46) 

Integrating the expansion of ( ),G y t  with respect to t, we obtain 

( ) ( )
2

1 2 1 2
0

2 2, for large
2

yH y t t c y t t−+
= + + +

π π


(47) 

The constant term ( )0c y  is undetermined in the integration. In Appendix 

D, we derive ( ) ( )0 e yc y y−= − + . For large t, ( ),H y t  increases like t , 

much slower than the linear growth in the no-conduction approximation 

( )0 , e yH y t t −= . The effect of the heating term in (20) is very much neutralized 

by the net heat loss at y via conduction. This slow temperature increase at large t 
is in sharp contrast with the situation for small t where the effect of the heating 
term is augmented by the net heat gain via conduction. Of course, heat is con-
served in the conduction. The net heat loss at depth 1y  contributes to a poten-
tial net heat gain somewhere downstream (at depth 2 1y y> ). Expansions (46)  

and (47) are based on 1
2
yz t
t

 = − → +∞ 
 

. The qualification of “large t’’ de-

pends on the value of y. At any fixed t (no matter how large it is), when y is large 

enough, eventually 1
2
yz t
t

 = − 
 

 is negative, and expansions (46) and (47)  

are invalid. In the regime of fixed t and large y, the net heat gain at y via conduc-
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tion is positive. Expansions (46) and (47), however, tell us the behavior in a dif-
ferent regime: at a fixed 0y > , when t is large enough, the electromagnetic 
heating is diminished by the net heat loss via conduction and it produces a much 
slower temperature growth proportional to t  instead of t. 

We compare the normalized temperature ( ),H y t , its asymptotics for small t 
and for large t, and the no-conduction approximation ( )0 ,H y t . We like to 
compare them in their relative differences over a wide range of time t. Given that 

( )0 ,H y t  is proportional to t, we scale everything by 1/t to facilitate the com-
parison. ( ),H y t t  has the physical meaning of the average rate of temperature 
increase in [ ]0, t . Figure 5 shows the scaled exact solution ( ),H y t t , its 
asymptotic approximations (45) for small t and (47) and for large t, and the 
scaled no-conduction approximation ( )0 , e yH y t t −= . 

We look into the net heat gain/loss due to conduction, for small t and for large 
t. Differentiating (45) and (47) twice with respect to y, we have 

( )2

2 1 2

e e 1 0 for small
Net heat gain : 1e 0 for large

y t

y

t
H

y t t

−

− −

 − >
∂

= 
∂ − + <

π

       (48) 

The results in (48) are valid only when (45) and (47) are valid, respectively, in 
the regimes of small t and large t. This is particularly evident in line 2 of (48), 
which suggests that at fixed depth y, the regime of large t has to satisfy 2e yt > π . 
Since there is no heat in-flow at depth 0 (skin surface), the conduction always 
leads to an overall heat loss for the interval [ ]0, y . The local net heat loss is in-
itially confined to near 0 and gradually propagates to the entire interval. For 
large y, it takes long time for the local net heat loss to reach depth y. It takes even 
longer time for the net heat loss to offset the previously accumulated heat gain at 
y and then to substantially neutralize the electromagnetic heating. 

 

 

Figure 5. ( ),H y t t , its asymptotics (45) and (47), and no-conduction approximation 

( )0 ,H y t t , over a wide range of time t. Parameter used: 1y =  (non-dimensional). 

https://doi.org/10.4236/ajor.2020.102004


H. Y. Wang et al. 
 

 
DOI: 10.4236/ajor.2020.102004 58 American Journal of Operations Research 
 

7.4. Reflex Times at Large and at Small Applied Power Densities 

In case B, the temperature is uniform over the beam cross section and the acti-
vated region is a cylinder. Given the beam spot area A and the threshold cz  for 
activated volume, withdrawal reflex occurs when the temperature at depth  

cz A  reaches the activation temperature actT . In this subsection, we use the 
asymptotics of temperature for small time and for large time (obtained in sub-
section 7.3) to study the reflex time at large and at small applied power densities. 
We also compare the results with the no-conduction approximation of the reflex 
time given in (10), which is inversely proportional to the applied power density. 

In case B, the reflex time reft  satisfies equation ( )ref act,cT z A t T= , as de-
scribed in (8). The non-dimensional version of the equation is given in (28). For 
our discussion here, we write the left side of (28) in terms of act,ndT  and dep,ndP . 

act,nd
ref ,nd

nd dep,nd

1 ,
T

H t
A P

 
= 

 
                    (49) 

where ( ),H y t  is the parameter-free normalized non-dimensional temperature 
defined in (22). We consider the function of ref ,ndt  vs dep,ndP  and denote it con-
cisely as ( )dep,ndPτ . 

The no-conduction version of Equation (49) is obtained by replacing ( ),H y t  
with its no-conduction approximation ( )0 , e yH y t t −= . The solution of the 
no-conduction version of (49) gives the no-conduction approximation of  

( )dep,ndPτ  
Case A: no heat conduction 

( ) ( ) nd0 act,nd 1
dep,nd

dep,nd dep,nd

1e AT
P

P P
τ = ∝                 (50) 

For large dep,ndP , we expect small ( )dep,ndPτ , we use the asymptotic for small t 
given in (45) to approximate ( ),H y t , and we write Equation (49) approx-
imately as 

( )nd act,nd1
dep,nd

dep,nd

e e 1 for largeA T
P

P
τ− − =

 
which yields 

( )

( ) ( )

nd

nd

act,nd 1
dep,nd dep,nd

dep,nd

0 act,nd 1
dep,nd

dep,nd

ln 1 e for large

1 e

A

A

T
P P

P

T
P

P

τ

τ

 
= +  

 
 

= − +  
 



          (51) 

Result (51) indicates that heat conduction reduces the reflex time when the 
applied power density is large. This corresponds to the asymptotic result in sub-
section 7.3 that at a fixed depth and over short time, heat conduction enhances 
the temperature increase of electromagnetic heating. We measure the relative 
reduction in reflex time by 
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( ) ( ) ( )
( ) ( )

nd

0
dep,nd dep,nd act,nd 1

0
dep,nddep,nd

e AP P T
PP

τ τ

τ

−
= +

 
The relative reduction in reflex time actually increases slightly when the ap-

plied power density is slightly decreased as long as it is still in the regime of large 
power density so that the small time approximation (45) is valid. 

For small dep,ndP , we expect large ( )dep,ndPτ , we use asymptotic for large t 
given in (47) to approximate ( ),H y t , and we write Equation (49) approximately 
as 

( ) ( )
nd

2
act,nd1 nd1 2 1 2

nd
dep,nd

2 12 e 1
2

A TA
A

P
τ τ− −+

− + + =
π π  

which becomes a quadratic equation for τ  and gives the solution 

( )
( )( )

2
22

1 1 nd

dep,nd dep,nd

2 1
for small

2

b b A
P Pτ

 + − + 
=  
 
 

       (52) 

ndact,nd 1
1 nd

dep,nd

e 1
2

AT
b A

P
− π

= + +  
   

The second solution of the quadratic equation satisfies ( )dep,nd 0 dep,ndlim 0P Pτ→ = , 
which is unreasonable. The expansion of (52) as a power series of dep,ndP  is 

( )
22

dep,nd dep,ndact,nd
dep,nd 1 2 dep,nd2 2

act,nddep,nd act,nd

1 for small
4

P PT
P a a P

TP T
τ

 π
= + + + 

  
    (53) 

nd nd

21 1

1 2 2
nd nd nd

1 1 2 12 e , e 2A Aa a
A A A

− −     
= + = + − +         π       

Result (53) indicates that for small applied power density dep,ndP , the reflex 
time ref ,ndt  increases enormously, proportional to ( )2

dep,nd1 P  instead of propor-
tional to dep,nd1 P . This corresponds to the asymptotic result in subsection 7.3 
that at a fixed depth and over long time, heat conduction results in local net heat 
loss and significantly diminishes the temperature increase of electromagnetic 
heating. 

We compare reflex times ( )dep,ndPτ , the two asymptotics and ( ) ( )0
dep,ndPτ . 

As dep,ndP  increases, ( )dep,ndPτ  varies extensively from being extremely large at 
small dep,ndP  to being near zero at large dep,ndP . To examine the relative differ-
ences over a wide range of dep,ndP , we scale everything by dep,ndP  to reduce their 
variations with dep,ndP . In particular, after scaling, ( ) ( ) nd0 1

dep,nd dep,nd act,nde AP P Tτ =  
is independent of dep,ndP . Physically, ( )dep,nd dep,ndP Pτ  has the meaning of ener-
gy deposited per area on skin by the time of reflex. When the beam spot area is 
fixed, ( )dep,nd dep,ndP Pτ  can be used as a measure of energy consumption by the 
time of reflex. Figure 6 compares the exact solution ( )dep,nd dep,ndP Pτ , its asymp-
totic approximations (51) for large dep,ndP  and (52) and for small dep,ndP , and 
the no-conduction approximation ( ) ( )0

dep,nd dep,ndP Pτ . 
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Figure 6. ( )dep,nd dep,ndP Pτ , its asymptotics (52) and (51), and no-conduction approxima-

tion ( ) ( )0
dep,nd dep,ndP Pτ . Parameters used: act ,nd 1T =  and nd 1A = . 

 
In Figure 6, we make an important observation that the energy consumption 

has a minimum with respect to applied power density. We now demonstrate the 
minimum analytically. Based on asymptotics (51) and (53), ( )dep,nd dep,ndP Pτ  has 
the expansions below, respectively, for small dep,ndP  and for large dep,ndP  

( )
nd ndact,nd1 1

act,nd dep,nd
dep,nd

dep,nd dep,nd 2
act,nd

dep,nd
dep,nd

e 1 e for large

for small
4

A AT
T P

P
P P

T
P

P

τ

  
−     = 

π



    (54) 

For large dep,ndP , ( )dep,nd dep,ndP Pτ  approaches its no-conduction approximation 
nd1

act,nde AT  from below; for small dep,ndP , ( )dep,nd dep,ndP Pτ  grows unbounded. The 
minimum of ( )dep,nd dep,ndP Pτ  is attained in between when dep,ndP  is moderately 
large. In general, the range of moderately large dep,ndP  is also a good compromise 
between inducing withdrawal reflex quickly and preventing burn injury of acciden-
tal over-heating. For large dep,ndP , burn injury may occur even when the power is 
turned off shortly after the internal initiation of withdrawal reflex. 

7.5. Spatial Temperature Profile at Reflex 

We examine the temperature profile at reflex and how it varies as the applied power 
density increases from small to large. We compare it with the no-conduction ap-
proximation, which is independent of the applied power density. 

We follow the equation and notation for the reflex time used in subsection 
7.4. At reflex, the non-dimensional temperature has the expression 

( ) ( )nd nd dep,nd ndreflex

act,nd

nd dep,nd

,

Temperature at reflex : 1is the solution of ,

T y P H y

T
H

A P

τ

τ τ

 =

  

=  
  

   (55) 
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The no-conduction approximation of ( ),H y t  is ( )0 , e yH y t t −= , which has 
separable dependence on t and y. The no-conduction approximation of (55) is 

( ) ( )0
nd nd act,nd ndreflex

nd

1No-conduction approximation : expT y T y
A

 
= − 

   
which is independent of the applied power density dep,ndP . In the presence of 
heat conduction, the normalized temperature ( ) ( )

0
, , d

t
H y t G y s s= ∫  has non- 

separable dependence on t and y. Consequently, ( )nd nd reflex
T y  in (55) varies 

with dep,ndP . Figure 7 compares ( )nd nd reflex
T y  for several values of dep,ndP  and 

its no-conduction approximation. As dep,ndP  increases, the reflex time decreases 
to zero, and the heat conduction has little time to take its effect. Figure 7 de-
monstrates that at a fixed depth 0y > , as dep,ndP  increases the temperature at 
reflex converges to that in the case of no heat conduction. Therefore, at any fixed 
depth away from the skin surface, the effect of heat conduction is eventually 
negligible when the applied power density is large enough. 

7.6. Selecting Test Conditions for Determining ( )cT zact ,  

The situation of inferring parameters ( )act , cT z  from temperature profiles at 

reft  is similar to that in the case of no heat conduction. Once the latency delt  is 
determined, the true reflex time is calculated from the observed reflex time: 

ref obs delt t t= − . Given the temperature profile at reflex ( )ref, ,T y tr  at one test 
condition, the activation temperature actT  can be set to any value in the range 
of ( )ref, ,T y tr . At each value of actT , the corresponding threshold ( )actcz T  is 
calculated as the activated volume at reflex according to formula (5). When re-
stricted to data at one test condition, ( )ref, ,T y tr  provides only one constraint 
on ( )act , cT z ; it does not allow us to determine actT  and cz  simultaneously. 

As we discussed in section 4, constraint function ( )actcz T  is calculated  
 

 

Figure 7. Non-dimensional temperature profile at reflex, ( )nd nd reflex
T y , for various values 

of applied power density dep,ndP . Parameters used: act,nd 1T = , nd 2A = . 
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directly from the measured temperature profile at reflex ( )ref, ,T y tr . It does not 
require any model parameter, such as µ , K, or pCρ . We explore how to obtain 
substantially distinct constraint equations for ( )act , cT z  by carrying out tests at 
different conditions. In case U (which includes both case A and case B), the ac-
tivated region is a cylinder with the beam cross section as the base. Given the 
beam spot area A, the activated volume is completely specified by the activated 
depth. At reflex, the activated volume is cz  and the activated depth is cz A . In 
case B, the temperature has the analytical solution given in (22) and (23). When 
examining the constraint on ( )act , cT z  using the analytical solution, it is more 
convenient to view actT  as a function of cz . For any positive value of cz , the 
corresponding activation temperature ( )act cT z  is given by the temperature at 
depth cz A , which leads to the constraint on ( )act , cT z  described in Equation 
(8). 

The non-dimensional version of (8) is Equation (28). Recall that (28) was de-
rived as the governing equation for the reflex time ref ,ndt  when other parameters 
including cz  and actT  are known and fixed. As an equation for ref ,ndt , the 
meaning of (28) is clear. In the situation of inferring ( )act,cz T , reflex time reft  
is known (from data) and we view (28) as a constraint equation on ( )act,cz T , 
with cz  as the independent variable and actT  the dependent variable. In this 
view, we need to be careful about the precise meaning of various terms in (28).  

In particular, the non-dimensional beam spot area nd
c

AA
zµ

=  varies with  

independent variable cz , and thus is no longer a constant. To pinpoint the in-
fluence of independent variable cz  on various terms in (28), we use ( )* *

act , cT z  
to denote the true value of ( )act , cT z , and introduce quantities below based on 
true values ( )* *

act , cT z . 

* * * *
nd act 0 dep,nd dep* *

1, ,
c

AA T T T P P
z K Tµ µ

= ∆ = − =
∆  

For simplicity and clarity, we use τ  to denote ref ,ndt  and write nd1 A  as 
* * * *

* * *
nd nd

1 1= 1c c c c c c c

c c

z z z z z z z
A A A z A z

µ µ    + − −
= = +   

     

With the proper notations clarified above, we write constraint (28) as 
*

*act 0
dep,nd* * *

nd

1 1 ,c c

c

T T z z
P H

T A z
τ

  − −
= +   ∆   

             (56) 

The true value ( )* *
act , cT z  satisfies constraint (56). Subtracting the (56) eva-

luated at ( )* *
act , cT z  from the general (56), we write the constraint as 

* *
*act act

dep,nd* * * *
nd nd

1 11 , ,c c

c

T T z z
P H H

T A z A
τ τ

     − −
= + −      ∆       

       (57) 

(57) is a constraint function in the form of 
*

act act
*

T T
T
−

∆
 vs 

*

*
c c

c

z z
z
−

 and has 
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three parameters: *
dep,ndP , *

ndA  and τ . The non-dimensional reflex time τ  

satisfies Equation (56) at ( )* *
act , cT z : 

*
dep,nd *

nd

11 ,P H
A

τ
 

=  
 

                      (58) 

The solution τ  is a function of ( )* *
dep,nd nd,P A . It follows that as a function of 

*
act act

*

T T
T
−

∆
 vs 

*

*
c c

c

z z
z
−

, constraint (57) is completely determined once  

( )* *
dep,nd nd,P A  is known. 

We examine constraint (57) in the form of 
*

act act
*

T T
T
−

∆
 vs 

*

*
c c

c

z z
z
−

 and explore  

the parameter space of ( )* *
dep,nd nd,P A . The purposes of adopting this form are i) 

to pinpoint the effect of ( )* *
dep,nd nd,P A ; and ii) to focus on the shape of constraint 

functions relative to their intersection at ( )* *
act , cT z . As we discussed above, the 

relative shape is completely determined by ( )* *
dep,nd nd,P A , independent of other 

parameters. While this form is the proper mathematical tool for examining the 
behavior of constraint (57), we do need to point out that in real applications of  

inferring ( )* *
act , cT z  from test data, the form of 

*
act act

*

T T
T
−

∆
 vs 

*

*
c c

c

z z
z
−

 is not  

operationally realistic since *
actT  and *

cz  are unknown to start with. In real ap-
plications, we simply calculate constraint function ( )actcz T  from test data using 
(5), and then find ( )* *

act , cT z  at the intersection of two constraint curves. 

Figure 8 compares constraint (57) in the form of 
*

act act
*

T T
T
−

∆
 vs 

*

*
c c

c

z z
z
−

 at 

several test conditions. A combination of large beam spot *
ndA  and small power  

 

 

Figure 8. Constraints on ( )act , cT z  in case B in the form of 
*

act act
*

T T
T
−
∆

 vs 
*

*
c c

c

z z
z
− . Dif-

ferent test conditions specified by ( )* *
dep,nd nd,P A  lead to distinct constraint curves. 
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density *
dep,ndP  makes the constraint function flat while a combination of small 

*
ndA  and large *

dep,ndP  makes it slate. Once we obtain two distinct constraints 
from different test conditions, the well-defined intersection of the two curves 
gives us the values of *

actT  and *
cz . 

In summary, to reliably determine model parameters *
actT  and *

cz , we need 
to carry out tests with significantly different combinations of ( )* *

nd dep,nd,A P : one 
with moderate *

ndA  and large *
dep,ndP , the other with large *

ndA  and moderate 
*

dep,ndP . 

8. The Case of a Gaussian Beam with Heat Conduction 

We consider a Gaussian beam with power density 

( ) ( )
2

0
dep dep 2

2
expP P

w

 −
 =
 
 

r
r                    (59) 

where ( )0
depP  is the power density at the beam center ( 0=r ) and w is the beam 

radius, which is twice the standard deviation of the Gaussian distribution. At 
each value of r , the temperature is governed by the electromagnetic heating 
and the heat conduction along the y-dimension, independent of the temperature 
at other values of r . The temperature distribution ( ), ,T y tr  is obtained by 
applying exact solution (23) at each r  

( ) ( )
2 2

0
0 dep 2

2 1, , exp ,
p

KT y t T P H y t
K Cw

µµ
µ ρ

   −
 = +       

r
r         (60) 

where ( ),H ⋅ ⋅  is the parameter-free normalized non-dimensional temperature 
defined in (22). The activated volume in spatial temperature profile (60) at a 
given time t does not have a closed-form expression. We use a numerical inte-
gration method to calculate the activated volume at any given time. The reflex 
time reft  satisfies ( )

ref
activated volume ct

z= . We use an iterative non-linear 
solver to find reft . Once reft  is known, we calculate ( )ref, ,T y tr  using (60). 
Following this procedure, we generate simulated data and then we use the data 
to test the theoretical predictions derived in the previous section for case B. 

To facilitate the analysis, we introduce parameters 2c  and 1c  as in case B, 
and write temperature distribution (60) in a non-dimensional form, in terms of 

2c  and 1c . 

( ) ( ) 20
dep0

2
act 0 2 1

2, ,
exp ,

PT y t T tH y
T T c cw

µ
 −−  
 =   −   

rr
           (61) 

( )2 act 0 1 2, pC
c T T K c

K
ρ

µ
µ

≡ − ≡
. 

8.1. Activated Domain and Reflex Time 

First, we discuss how to generate simulated data of reflex time in the case of a 
Gaussian beam with finite radius. At time t, the activated domain is described by 
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( ) ( ) ( ){ }

( )
( )

activated act

20
dep

2
2 1

, , ,

2
, exp , 1

D t y T y t T

P ty H y
c cw

µ

= ≥

  −    = ≥        

r r

r
r

        (62) 

Figure 9 shows an example of activated domain for a Gaussian beam. Since 
the beam center ( 0r = ) has the highest intensity, near the beam center the skin 
receives more electromagnetic energy and the activated domain extends more in 
the depth direction. Away from the beam center, the beam intensity falls quickly 
and accordingly the depth of activated domain decreases toward 0. This leads to 
the bowl-shaped activated domain in Figure 9. 

Withdrawal reflex occurs when the volume of the activated domain reaches 
the critical threshold cz . The reflex time reft  is governed by 

( ) ( )

2
ref 2

2 0
1 dep

2
Volume , exp , c

t cy H y z
cw P

µ
  −     ≥ =        

r
r         (63) 

We non-dimensionalize spatial coordinates r  and y, respectively with scales 
w and 1 µ . 

nd nd, y y
w

µ≡ ≡
rr

 
Note that r  and y are scaled differently. In coordinates ( )nd nd, yr , (63) be-

comes 

( ) ( ) ( )
2 ref 2

nd nd nd nd 20
1 dep

Volume , exp 2 , ct zcy H y
c wP

µ   − ≥ =  
   

r r       (64) 

Equation (64) for reft  is completely specified by parameters 1c , ( )0
2 depc P  

and 2
cz wµ . Function ( ),H y t  is parameter-free and there is no other para-

meter. In simulations, we use 
2

1 21, 1 2, 1cc c z wµ= = =  
With these parameters, we solve for the true reflex time reft  from (64) as a 

function of ( )0
depP . The observed reflex time is calculated as obs ref delt t t= + . Fig-

ure 10 plots the simulated function of obst  vs ( )0
depP  for a Gaussian beam. We  

 

 

Figure 9. Activated domain in the case of a Gaussian beam. (a) Color map of ( ),T y r  

with the activated domain marked by dashed curve. (b) 3-D view of the activated domain. 
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Figure 10. Observed reflex time obst  vs beam center power density ( )0
depP . Comparison of 

the simulated function (treated as exact) and the prediction by algorithm (44) based sole-
ly on the 3 data points shown above, without using any other information. 

 
regard the simulated ( )( )0

obs dept P  in Figure 10 as exact since it is numerically ac-
curate to the computer precision. 

8.2. Estimating the Latency 

We study the methodology for determining the time delay in the observed with-
drawal reflex: obs ref delt t t= + . The time delay delt  is an intrinsic property of the 
test subject, independent of the applied power density ( )0

depP . We estimate the 
time delay delt  based solely on the measured values of observed reflex time obst , 
without using any model parameters. In tests, ( )0

depP  is tunable. The general 
strategy is to measure obst  at a sequence of ( )0

depP  values, and then use the test 
data to build multiple joint constraints on delt  and other unknowns. All para-
meters involved in the constraint formulation are treated as unknown, and all 
unknowns are solved simultaneously from the system of joint constraints. 

In subsection 7.2, a joint constraint was constructed for 3 unknowns: delt , 2c  
and 1c . Equation (37) is derived in the idealized situation where. 
• the applied power density is uniform over the beam cross-section and is zero 

outside; heat conduction is included in the depth direction (case B);  
• the beam spot area is large and approaching infinity ( A →∞ ). 

Given 3 data points, we applied (37) to construct a constraint at each data 
point. Then we used the joint system of 3 constraints to derive algorithm (44) for 
determining delt . Algorithm (44) is based solely on the 3 data points. It does not 
require any input parameter. In the idealized situation above, delt  solved from 
algorithm (44) is exact. In this subsection, we test the performance of algorithm 
(44) for inferring delt  in the case of a Gaussian beam with a finite beam radius. 
The purpose is to demonstrate the versatility and accuracy of algorithm (44) 
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when the idealized conditions above are not met. Here we focus on the accuracy 
of estimating the time delay since delt  is our objective while coefficients 2c  and 

1c  are just auxiliary unknowns accompanying delt  in algorithm (44). 
The simulated curve of obst  vs ( )0

depP  for a Gausian beam is shown in Figure 
10. From the simulated curve, function values at ( )0

dep 0 0, 2P p p=  and 04 p  (with 

0 2p = ) are selected as the 3 data points, shown as filled squares in Figure 10. 
These 3 data points and only these 3 data points are then used in algorithm (44) 
to estimate delt . A Gaussian beam with finite beam radius does not satisfy the 
idealized conditions above. Nevertheless, we apply algorithm (44) to the 3 data 
points in Figure 10 to estimate ( )2 1 del, ,c c t . Operationally, algorithm (44) is 
universally applicable in any situation since it does not require any input para-
meter. 

Once we obtain the estimated values ( ) ( ) ( )( )est est est
2 1 del, ,c c t , we use them in (44) to 

predict the observed reflex time as a function of ( )0
depP . 

( ) ( )( ) ( )
( )

( )
( )

est
0 est est1 2

obs dep 1 del0
dep

pred ct P c h t
P

−
 

= + 
 
   

Figure 10 demonstrates that the predicted function ( ) ( )( )0
obs dep

predt P  (dashed 
blue line) is a very good approximation of the exact function (solid red line). 
Note that the predicted function is based solely on the 3 data points. No other 
information is used. 

8.3. Scaling Properties of the Formulation for Estimating Latency 

In addition to its high accuracy for estimating the time delay in situations where 
the idealized conditions are not met, formulation (44) and the predicted function 
based on it, have several important properties. We now discuss these properties. 

1) The prediction is based solely on the 3 data points. Formulation (44) 
and the predicted function ( ) ( )( )0

obs dep
predt P  are parameter-free. Coefficients 2c  

and 1c  are auxiliary unknowns that are solved simultaneously with delt  in Eq-
uation (44). 

2) The prediction is invariant with respect to a shift in obst . Quantity obsv  
defined in (40) contains differences in observed reflex time among the 3 data 
points, and thus, is independent of time delay delt . It follows that ( )est

2c  and 
( )est
1c  calculated in (44) are independent of delt . If the measured values of obst  

at 3 data points are shifted by a constant amount, then the estimated time delay 
( )est
delt  and the predicted function ( ) ( )( )0

obs dep
predt P  are both shifted by the same 

amount. In other words, ( )( )est
del delt t−  is invariant with respect to delt . This can 

be seen by subtracting delt  in (44) 
( )( ) ( ) ( ) ( )( )est est est1
del del ref 0 1 2 0t t t p c h c p−− = −

 
In the equation above, all quantities on the right hand side are independent of 

delt . Thus, the absolute error ( )( )est
del delt t−  is not affected by delt . The absolute 

error in ( )est
delt  reflects the model error that the Gaussian beam does not satisfy 
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the idealized conditions described in subsection 8.2. In Figure 10, the absolute 
error is ( )( )est

del del 0.014t t− = , In data generation, we used del 0.5t = . If we used a 
different value for delt , it would not change the absolute error ( )( )est

del delt t− . 
3) The prediction is invariant with respect to a scaling of ( )0

depP . Suppose 
the true value of ( )0

depP  is not measurable. Instead, a quantity proportional to 
( )0

depP  with a fixed but unknown multiplier is measured. Let ( )0
depQ Pα=  be the 

measured quantity where α  is an unknown coefficient. For example, while it 
may be difficult to measure the power density deposited on the skin ( ( )0

depP ), the 
power emitted at the antenna (Q) is proportional to ( )0

depP  and is measured in 
experiments. The 3 data points with Q as the independent variable are at  

0 0, 2Q q q=  and 04q  where 0 0q pα= . Here 0q  is measured/specified but 
both α  and 0p  are unknown. Let ( ) ( ) ( )( )est est est

2, 1, del,, ,Q Q Qc c t  be the solution of Equa-
tion (44) with Q as the independent variable. We have 

( ) ( ) ( ) ( ) ( ) ( )est est est est est est
2, 2 1, 1 del, del, ,Q Q Qc c c c t tα= = =  

The predicted observed reflex time as a function of Q satisfies 

( ) ( ) ( ) ( )( )0
obs, obs dep

pred pred
Qt Q t P=

 

Therefore, for the purpose of determining delt , we only need to measure 
( )0

depQ Pα= . There is no need to measure ( )0
depP  or find the value of multiplier α . 

It is worthwhile to point out that all of the properties above are attributed to 
the formulation form of (44). They are independent of the data on which algo-
rithm (44) is applied. In particular, they are not affected by the true model go-
verning the data generation in simulations or in experiments. Property 3 above 
is very powerful in applications. To estimate the time delay delt , it is sufficient to 
measure i) the power emitted at the antenna (Q) and ii) the corresponding ob-
served reflex time ( obst ). Both of these are readily measurable. In algorithm (44), 
using the measurable quantity Q as the independent variable instead of ( )0

depP  
does not introduce any additional error in estimating the time delay delt . For-
mulation (44) is truly invariant with respect to scaling. 

8.4. Energy Consumption vs. Applied Power 

Let skinQ  be the power absorbed in the skin (energy absorbed per time) and 

antennaQ  be the power emitted at the antenna of radiators. At a fixed beam radius 
w and at a fixed distance d between the antenna and the test subject, antennaQ  is 
proportional to skinQ , which in turn is proportional to ( )0

depP , the power density 
absorbed in the skin at the beam center. 

( ) ( )
2 2

0 0
skin dep dep20

22 exp d
2

r wQ P r r P
w

+∞   π
= π − = ⋅ 

 
∫

 

( ) ( ) ( )
2

0
antenna skin dep, ,

2
wQ w d Q P w dβ β

π
= = ⋅
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The proportionality constant ( )
2

,
2
w w dβπ  is independent of ( )0

depP . 

Let antennaE  be the total energy emitted at the antenna by the time of with-
drawal reflex reft . Energy antennaE  is proportional to ( )( ) ( )0 0

ref dep dept P P  

( )( ) ( ) ( )
2

0 0
antenna ref antenna ref dep dep ,

2
wE t Q t P P w dβπ

= = ⋅
 

We treat antennaE  as the energy consumption and study it as a function of ap-

plied power density ( )0
depP . Since the proportionality constant ( )

2

,
2
w w dβπ  is 

independent of ( )0
depP , we use ( )( ) ( )0 0

ref dep dept P P  as a measure of energy consump-

tion. Figure 11 plots ( )( ) ( )0 0
ref dep dept P P  vs ( )0

depP  for a Gaussian beam. In Figure 11, 

the energy consumption varies with the applied power density and it attains a 
minimum at a moderate value of ( )0

depP . 

In case B, we showed analytically (in subsection 7.4) that the energy consump-
tion attains a minimum at an intermediate range of applied power density. The 
minimum energy consumption is attributed to the two opposite effects of heat 
conduction on temperature increase, respectively over short time and over long 
time. In case B, with a given beam spot area, withdrawal reflex occurs when the 
temperature at a fixed depth reaches the nociceptor activation temperature. Ma-
thematically, we derived (in subsection 7.3) that at a fixed depth, over short time 
the net heat gain via conduction is positive. When the applied power is large, the 
reflex occurs in short time. Over that short time, the heat conduction augments 
the temperature increase of electromagnetic heating, speeds up the process of 
reaching the activation temperature, and reduces the energy consumption. In the 
regime of large applied power, increasing the applied power further makes the 
reflex time very short and leaves very little time for the conduction to take its ef-
fect in reducing the energy consumption. As a result, in the regime of large  

 

 

Figure 11. Energy consumption by the reflex time ( )( )0
ref dept P . 
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applied power, the energy consumption increases with the applied power. At a 
given depth, the positive net heat gain via conduction depends on the heat 
in-flow from upstream. At the skin surface, however, there is no heat in-flow. As 
time goes on, the effect of insulated boundary propagates in the depth direction 
in the form of attenuating the heat flow. Mathematically, at a fixed depth, even-
tually the net heat gain via conduction turns negative and the magnitude of net 
heat loss grows with time. When the applied power is small, it takes long time to 
induce the reflex. Over that long time, the heat conduction yields net heat loss, 
diminishes the temperature increase of electromagnetic heating, slows down the 
process of reaching the activation temperature, and drives up the energy con-
sumption. In the regime of small applied power, reducing the applied power will 
give the conduction more time to take its effect in neutralizing the electromag-
netic heating, and increase the energy consumption. Consequently, In the re-
gime of small applied power, the energy consumption increases when the ap-
plied power is lowered. The transition between these two regimes produces a 
minimum for the energy consumption. Although the behaviors of these two re-
gimes were derived for the idealized case B, in the case of a Gaussian beam, we 
observe the same behaviors in Figure 11: in the regime of small ( )0

depP  when 
( )0

depP  increases, energy consumption is reduced; in the regime of large ( )0
depP , 

energy consumption increases with ( )0
depP ; the transition between these two 

trends produce a minimum energy consumption in the middle. Figure 11 indi-
cates that the two opposite effects of heat conduction on temperature increase, 
respectively over short time and over long time, are present in all situations even 
when the idealized conditions are not met. 

Figure 11 describes the energy consumption in the situation where the power 
is turned off exactly at the predicted internal initiation of withdrawal reflex (be-
fore the actual occurrence of observed reflex). Given that the predicted  

( )( )0
ref dept P  is not exact, to ensure that the applied beam induce the withdrawal 

reflex, it is prudent to keep the power on for a short time beyond ( )( )0
ref dept P . In 

real operations, adding a short time serves as a cushion for accommodating the 
uncertainty in estimating delt . The uncertainty is in the form of an absolute er-
ror in the estimated delt , which leads to an absolute error in the estimated true 
reflex time ref obs delt t t= − . We study the energy consumption until ( reft  + cu-
shion time), as a function of applied power density. Figure 12 plots  

( )( )( ) ( )0 0
ref dep dep0.05t P P+  vs ( )0

depP . With a fixed short time 0.05 added to reft , the 
energy consumption has a more pronounced minimum, which also occurs at a 
more moderate range of applied power. 

8.5. Determining ( )cT zact ,  from Test Data 

In subsection 7.6, we discussed selecting test conditions for producing distinct 
constraint functions on ( )act , cT z  in the idealized case B. We found that a com-
bination of large beam spot area ndA  and moderate applied power density 

dep,ndP  yields a flat actT  vs cz  while a combination of moderate ndA  and  
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Figure 12. Energy consumption by the time ( )( )( )0
ref dep 0.05t P + . 

 
large dep,ndP  gives a slant actT  vs cz . In this subsection, we test this strategy in 
the case of a Gaussian beam. 

We use the temperature distribution given in (61). To mimic the situation of 
real applications, we work with ( ),T yr , the physical temperature in physical 
coordinates. In simulations of this subsection, we use 

* *
1 2 01, 1 2, 1, 1, 37, 41c actc c z T Tµ= = = = = =  

Here, for clarity, we reserve ( )* *
act , cT z  as the notation for the true value of 

( )act , cT z  and use the general notation ( )act , cT z  to represent the variables in 
constraint functions. We run simulations using the parameters listed above with 
various combinations of ( )( )0

dep,w P  to generate simulated data sets. Each data 
set consists of the reflex time reft  and the temperature distribution ( ), ,T y tr  
for a particular test condition ( )( )0

dep,w P . For each data set, we apply formulation 
(5) described in section 4 to construct a constraint function on ( )act , cT z . For-
mulation (5) is based solely on the data of spatial temperature profile at reflex 
( )ref, ,T y tr . It does not require any input parameter. Figure 13 displays con-

straint functions for 3 combinations of ( )( )0
dep,w P . It demonstrates the same be-

haviors as we observed in case B: increasing the beam radius w makes the con-
straint curve actT  vs cz  flat while decreasing w makes the curve slate. The in-
tersection of distinct constraint curves gives us the true value ( )* *

act , cT z . 

9. Concluding Remarks 

We studied theoretically the occurrence of heat-induced withdrawal reflex 
caused by exposure to an electromagnetic beam. We investigated several aspects 
of the problem, including i) non-dimensionalization to pinpoint the effects of 
parameters; ii) normalization of the non-dimensional temperature into a para-
meter-free function; iii) forward prediction of system behaviors given model  
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Figure 13. Constraint functions constructed from simulated data for a Gaussian beam. 
Three distinct constraint curves are shown, corresponding to three test conditions. 

 
Parameters; iv) asymptotic behaviors in certain regimes of parameters; and v) 
backward inference of model parameters based on measured data. 

First, we reviewed the model components used in ADT CHEETEH-E [17], 
and we synthesized them to distill a concise dose-response model for predicting 
the occurrence of withdrawal reflex based on the given spatial temperature pro-
file. In the dose-response relation, the dose quantity is defined as the volume of 
the activated region of heat-sensitive nociceptors. Under the assumption that the 
nociceptor density is uniform in the skin, the activated volume is proportional to 
the total number of nociceptors activated, and thus, increases monotonically 
with the perceived pain level, which controls the occurrence of withdrawal ref-
lex. In a deterministic setting, withdrawal reflex occurs precisely when the acti-
vated volume reaches a critical threshold. The resulting dose-response relation 
described in (4) is specified by two parameters: the nociceptor activation tem-
perature actT  and the critical threshold cz  on the activated volume for with-
drawal reflex. 

The concise model has the advantage that the two parameters can be deter-
mined from test data in the situation where the reflex time and the spatial tem-
perature profile at reflex are measurable. Parameters actT  and cz  are con-
strained by function (5), which is constructed solely from the measured temper-
ature profile at reflex. The inference method based on (5) is parameter-free, re-
quiring no input parameter. The data set measured at each test condition pro-
vides only one constraint on ( )act , cT z . To determine the two unknown para-
meters, several tests at various conditions are needed to produce distinct con-
straint functions. The intersection of distinct constraint curves yields the true 
value ( )act , cT z . 

The dose-response relation predicts the occurrence of withdrawal reflex from 
the given spatial temperature profile. We connected it with a time evolution 
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model for the temperature increase of electromagnetic heating. The result is a 
composite model that takes as input the test condition described by two tunable 
quantities: the beam spot area and the applied power density. Other quantities, 
such as the initial temperature, the characteristic depth of the electromagnetic 
wave penetrating into the skin and the nociceptor activation temperature, are 
viewed as parameters. In the composite model, the time evolution model pro-
duces the temperature distribution from the test condition, and then the dose- 
response relation uses the temperature distribution to determine the time of 
withdrawal reflex. We solved the composite model analytically in two idealized 
cases, first in the case of no heat conduction and uniform electromagnetic heat-
ing over beam cross-section (case A). 

To examine the validity of the no-conduction assumption, we investigated the 
effect of heat conduction on temperature distribution. In the case of uniform 
electromagnetic heating over beam cross-section with heat conduction in the 
depth direction (case B), we carried out non-dimensionalization to facilitate the 
exact solution and to pinpoint the effects of model parameters. We solved the 
non-dimensional system analytically to obtain the exact solution given in (22). 
As a function of non-dimensional time and depth, the non-dimensional temper-
ature is the product of the non-dimensional power density and a parameter-free 
function, which is called the normalized temperature. The normalized tempera-
ture has no dependence on the power density or any other parameters. The ef-
fects of physical parameters are contained in the non-dimensional variables and 
quantities. Scaling temperature distribution into a parameter-free function sig-
nificantly simplifies the structure of exact solution and reveals its dependence on 
parameters. We compared the normalized temperatures in the presence and in 
the absence of heat conduction. We found that the no-conduction approxima-
tion is valid only in the region away from the skin surface and only over a short 
time. Both conditions need to be satisfied in order to make the effect of heat 
conduction negligible. This result indicates that the no-conduction approxima-
tion is not an adequate tool for analyzing the temperature evolution near the 
skin surface. 

Using the exact solution obtained in case B (the case with heat conduction), 
we studied theoretical behaviors of the system. Below are the findings. 
• As the beam spot area A increases, the reflex time decreases rapidly to a posi-

tive value above zero. The convergence is described by 1/A2 in (34). 
• We define the true reflex time as the moment when the number of activated 

nociceptors is sufficiently large to produce a perceived pain level exceeding 
the tolerance and thus to initiate the withdrawal reflex. The observed reflex 
time is when the reflex response (i.e., the subject moving out of the beam) 
actually takes place. There is a latency (time delay) between the observed ref-
lex time and the true reflex time. We assume that the latency is intrinsic to 
the subject being tested and is independent of the applied power density. We 
derived algorithm (44) for inferring the time delay from measured values of 
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observed reflex times at a sequence of applied power density values. Once the 
time delay is obtained, the true reflex time is calculated from the observed 
reflex time. 

• The true reflex time decreases when the applied power density is increased. 
To examine the behaviors respectively at large and at small applied power 
density, we carried out asymptotic expansions of the normalized temperature 
respectively for small and large time. From the expansions of the normalized 
temperature, we derived asymptotic approximations of the reflex time, re-
spectively, for large applied power density given in (51) and for small power 
density given in (52). At a fixed beam spot area, the product of beam power 
density and reflex time is proportional to the energy consumed for inducing 
withdrawal reflex. The asymptotic analysis indicates that when we increase 
the power density gradually in the small regime, initially the energy con-
sumption decreases and then it attains a minimum; eventually in the large 
regime, further increase of power density leads to an increase in energy con-
sumption. The two sides of the energy consumption curve surrounding the 
minimum correspond to the two opposite effects of heat conduction, respec-
tively over short time and over long time. At a fixed depth, over short time, 
heat conduction augments the temperature increase of electromagnetic heat-
ing. It leads to a temperature growth faster than the no-conduction solution 
and reduces the energy consumption by shortening the reflex time. In con-
trast, over long time, heat conduction diminishes the temperature increase of 
electromagnetic heating. It results in a much slower temperature growth than 
the no-conduction solution and drives up the energy consumption needed 
for inducing withdrawal reflex. 

• We examined the spatial temperature profile at reflex and how it varies with 
the applied power density. We found that at a fixed depth, for large power 
density, the temperature at reflex converges to the no-conduction solution. 
This result indicates that it is appropriate to neglect the effect of heat con-
duction only when the location is away from the skin surface and when the 
(non-dimensional) power density is large. 

• In the situation where the spatial temperature profile at reflex is measured in 
tests, we studied the methodology for determining ( )act , cT z  from test data. 
( )act , cT z  is constrained by Equation (5), which is parameter-free and is con-
structed based solely on the measured spatial temperature profile. The inter-
section of two or more distinct constraint curves, calculated from test data at 
various test conditions, determines the true value ( )act , cT z . We explored 
how to select test conditions to produce significantly distinct constraints on 
( )act , cT z . We found that the steepness of ( )act cT z  is negatively associated 
with the beam spot area. For the purpose of estimating ( )act , cT z , we need to 
carry out tests with moderate beam spot area and with large beam spot area. 
This is to ensure that the constraint curves constructed from test data are 
substantially distinct and have a well-defined intersection. 
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We conducted a case study of a Gaussian beam with finite beam radius and 
with heat conduction in the depth direction. Since it has no closed-form solu-
tion, the case study was carried out using numerical simulations. The goal was to 
test the theoretical results predicted for the idealized case of uniform tempera-
ture over beam cross-section (case B). We first examined the performance of al-
gorithm (44) for determining the unknown latency from measured values of ob-
served reflex times at a sequence of applied power density values. Algorithm (44) 
was derived under the assumptions of case B and in the limit of beam spot area 
approaching infinity. (44) calculates the time delay solely from 3 data points of 

( )dep obs,P t  where depP  is the applied power density and obst  is the corres-
ponding observed reflex time. Algorithm (44) does not require any input para-
meter. Operationally, it is universally applicable in all situations where the ob-
served reflex time is measured. We applied it to the case of a Gaussian beam 
with a finite beam radius. In Figure 10, the estimated time delay is very close to 
the true value, suggesting the wide applicability of algorithm (44) beyond the 
idealized case B. 

In addition to its high accuracy, formulation (44) has an important scaling 
property: the prediction by (44) is invariant with respect to a scaling in the in-
dependent variable depP . At a fixed beam radius and fixed distance from the test 
subject, the power emitted at the antenna is proportional to the beam center 
power density. The scaling property allows us to use the power emitted at the 
antenna as the independent variable in (44). The calculation of delt  in (44) is 
independent of the proportionality constant in scaling. The time delay calculated 
this way will be the same as if we use the beam center power density as the inde-
pendent variable in (44). This scaling property is especially useful when it is im-
practical to measure the beam center power density deposited on the skin. 

In the case of a Gaussian beam, we examined numerically the energy con-
sumption for inducing withdrawal reflex as a function of applied power density. 
We first considered the situation where the power is turned off at the true reflex 
time when the activated volume reaches the threshold to start the internal initia-
tion of withdrawal reflex. The observed reflex action (the subject moving out of 
beam) occurs with time delay delt  after the internal initiation. We observed that 
a minimum energy consumption is attained at a moderately large beam center 
power density, similar to what we theoretically predicted in the idealized case B. 
This observation suggests that the existence of minimum energy consumption 
may be a general phenomenon in all situations. In the situation where we keep 
the power on for a short period beyond the true reflex time, the energy con-
sumption has a more pronounced minimum, which is attained at a more mod-
erate value of the applied power density. 

In the case of a Gaussian beam, we tested the strategy of selecting test condi-
tions for determining parameters actT  and cz . Again, the theoretical behavior 
of constraint function ( )act cT z , established in the idealized case B, remains qua-
litatively true for a Gaussian beam: the slope of constraint function ( )act cT z  
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decreases when the beam size is increased. To obtain substantially distinct con-
straint curves for ( )act , cT z , we need to carry out tests with a moderate beam ra-
dius and with a large beam radius. 

In summary, in a deterministic setting, we studied mathematically the system 
from the electromagnetic power deposited on the subject’s skin to the subject’s 
behavioral response. Our theoretical findings provide insight into how the sys-
tem behaves in various regimes of model parameters and how the system beha-
vior varies in response to changes in parameters. Furthermore, through theoret-
ical formulation and analysis in idealized cases, we established a mathematical 
framework for designing tunable parameters in tests to fully sample the effects of 
hidden parameters in test data. Properly sampling the effects of model parame-
ters in test data is a vital step toward reliably determining the values of these pa-
rameters. 
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Appendix A: Exact Solution of Case A 

In case A defined in (9), the temperature distribution ( , , )T y tr  is governed by 

( )

( )
dep

0

, ,
e , for

, ,0

y
p

T y t
C P A

t
T y T

µρ µ −∂
= ∈
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 =

r
r

r
 

Integrating with respect to t yields the temperature distribution 

( ) dep
0, , e , fory

p

P
T y t T t A

C
µµ

ρ
−= + ∈r r              (65) 

Since case A is a special situation of case U, the reflex time reft  is governed by 
Equation (8). With the expression of ( ),T y t  given in (65), equation for reft  
becomes 

dep
0 ref acte cz A

p

P
T t T

C
µµ
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Solving for reft , we obtain 

act 0
ref

dep

e cp z ACT T
t

P
µρ

µ
−

= ⋅                     (2) 

Appendix B: Analytic Expression of Function ( )G y t,  

Recall that ( ),G y t  is defined as the solution of 

( )

2

2

0

0, ,0 e y

y

G G
t y
G G y
y

−

=

∂ ∂
= ∂ ∂


∂ = =

 ∂  

To solve for ( ),G y t , we first convert the initial boundary value problem to 
an initial value problem by extending the initial condition for 0y ≥  to an even 
function of y. 

( )

2

2

,0 e y

G G
t y

G y −

∂ ∂
= ∂ ∂

 =  

Using the fundamental solution of the heat equation, we write ( ),G y t  as 

( )
( ) ( )

( ) ( ) ( ) ( )

2

2 2

4

4 4

0 0

1 2

e, e d
4

e ee d e d
4 4

y u t
u

y u t u y t
u u

G y t u
t

u u
t t

I I

− −
+∞ −

−∞

− − − +
+∞ +∞− −

=
π

= +
π π

≡ +

∫

∫ ∫

 

Completing the square in the exponent of term 1I , we get 
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( )

( )

2

1 0

2
2

4

1 2exp d exp
4 4

1 exp d e

1 2erfc e
2 4

t y
t y

t

t y

u t yI u t y
t t

w w

t y
t

+∞

+∞ −
−

−

 + − = − ⋅ −   π   

= − ⋅
π

− = ⋅ 
 

∫

∫

 
Similarly, we can derive 

2
1 2erfc e
2 4

t yt yI
t

++ = ⋅ 
   

Substituting 1I  and 2I  into the expression of ( ),G y t , we arrive at 

( ) 1 2 1 2, erfc e erfc e
2 24 4

t y t yt y t yG y t
t t

− +− +   
= +   

   
          (67) 

Appendix C: Asymptotics of Functions ( )h t ,  

( )h u1−  and ( )R u  

Recall that function ( )R u  is defined in (42) in terms of ( )1h u− . Function  
( )h t  is 

( ) ( ) ( )0

2erfc e d erfc e 1
t s th t s s t t≡ = − +

π∫
 

We carry out analysis in steps below to derive the asymptotics of ( )R u . 
Step 1: We first show that ( )1h u−  is well defined. We show that for  
[ )0,t∈ +∞ , function ( )h t  increases with t, and its range is [ )0,+∞ . 

Noticing that ( )0 0h =  and ( ) ( )erfc e 0th t t′ = > . To prove that the range 
of ( )h t  is [ )0,+∞ , we derive the asymptotic of ( )h t  for large t. We write 
( )h t  as 

( ) ( ) 2erfcx 1
z t

h t z t
=

= − +
π  

where ( )erfcx z  is the scaled complementary error function and has the expan-
sion 

( ) ( ) ( )2

2 4 6

erfcx erfc exp

1 1 3 151 for large
2 4 8

z z z

z
z z zz

≡

 = − + − + π  


        (68) 

Using (68), we write out the expansion of ( )h t  for large t 

( ) 2 11 for large
22

h t t t
tt

 π
= − + +  π  

            (69) 

As t goes to infinity, ( )h t  increases unbounded. Thus, the range of ( )h t  is 
[ )0,+∞ . 

Step 2: Using the results of ( )h t  obtained in Step 1, we see that ( )1h u−  is 
well defined for [ )0,u∈ +∞ . In this step, we derive the expansion of ( )1h u−  
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for large u. 
We notice that u as a function of ( )1t h u−≡  has the expansion given in (69). 

( ) 2 11
22

u h t t
tt

 π
= = − + +  π  



 
Based on this, we write out an iterative formula for expanding ( )1t h u−=  

( )

( ) ( )

1 1
2 11

22

k

kk

t u

tt

+ π
=

 π
− + +  

 


 
Starting the iteration with ( )0t = ∞ , we calculate ( )1t , ( )2t  and 

( )3
2

1 2 11
2

t u
u u

π  = + − π   
Squaring both sides, we obtain the expansion of ( )1t h u−≡  as a function of 

u. 

( )1 2 42 1 for large
4

h u u u u− π   = + + − +  π  
            (70) 

Step 3: In this step, we expand ( )R u  for large u. Using (6), we write 

( ) ( )1 1 23 12
4 4

h u h u u u O
u

− − π   − = + + +    


 

( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1

1 1 1 1

2

2 2 3

2 2 2 4

2 2 2 4

1 16 16 11 for large
3 9 9

h u h u h u h u
R u

h u h u h u h u

O u
u u u

− − − −

− − − −

− − −
=

− + −

  = − + +  
  

        (71) 

Step 4: In this step, we expand ( )1h u−  for small u. We start with the expan-
sion of ( )h t  

( ) ( )

( )1 2 3 2

2erfc e 1

4 11 for small
23

th t t t

t t t O t t

= − +
π

 
= − + + 

π 

          (72) 

Based on this, we write out an iterative formula for expanding ( )1t h u−=  

( )

( ) ( )

1

4 11
23

k

k k

ut
t t

+ =
 − + + π 



 
Starting the iteration with ( )0 0t = , we calculate ( )1t , ( )2t , and 

( )3 4 8 11
3 23

t u u u  = + + −  ππ     
Thus, near 0u =  function ( )1h u−  has the expansion 

( )1 3 2 24 8 1 for small
3 23

h u u u u u−  = + + − + ππ  


        (73) 

https://doi.org/10.4236/ajor.2020.102004


H. Y. Wang et al. 
 

 
DOI: 10.4236/ajor.2020.102004 81 American Journal of Operations Research 
 

Step 5: In this step, we expand ( )R u  for small u. Using (73), we write 

( ) ( )1 1 3 2 21 1 4 2 32 1
2 82 2 3

h u h u u u u− −    − = + − + − +   ππ   


 

( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1

1 1 1 1

1 2

2 2 2 4

2 2 2 4

5 3 2 4 2 3 for small
9 163

h u h u h u h u
R u

h u h u h u h u

u u u

− − − −

− − − −

− − −
=

− + −

 −
= + − +  ππ  



        (74) 

Appendix D: Calculation of ( )c y0  in Expansion (47) 

The expansion of ( ),H y t  for large t is given in (47) with ( )0c y  undeter-
mined. Recall that ( ),H y t  is governed by Equation (20). To derive ( )0c y , we 
substituting expansion (47) into (20). The balance of leading terms gives us  

( )0 e 0yc y −′′ + = , which leads to 

( )0 0 1e yc y a a y−= − + +  
The insulated boundary condition ( ) 0

0
y

H y
=

∂ ∂ =  yields 1 1a = − . To de-
termine 0a , we compare the expansion of ( )0,H t  for large t given in (69) 
with expansion (47) at 0y = . We obtain 0 0a = . Thus, ( )0c y  in expansion 
(47) has the expression 

( ) ( )0 e yc h y−= − + . 
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