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Abstract 
The formation conditions and time sequences for various types of 
wrench-related fractures are not clear. Based on a parabola-type failure crite-
rion, this paper has gotten new insights on those questions. In a simple shear, 
the occurrence of either tensional fractures or Riedel shears is controlled by 
the ratio (Rtc) of tensile strength to cohesion. In a pure shear, the occurrence 
of either second order tensional fractures or second order Riedel shears is 
controlled by the ratio (Rtci) of tensile strength to cohesion, given a constant 
inner frictional coefficient. Where the Rtc or the Rtci is less than a certain val-
ue, the en echelon tensional fractures will occur first. Where the Rtc or the Rtci 
is bigger than the certain value, the Riedel shears will occur first. Where the 
Rtc or the Rtci is equal to the certain value, the en echelon tensional fractures 
and the Riedel shears will occur simultaneously. The understandings will en-
hance the research on wrench related fractures and will be of significance in 
petroleum exploration and development, because fractures are both impor-
tant accumulation spaces and key migration paths for oil and gas. 
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1. Introduction 

Wrench zones and their related structures were common both in outcrops and 
in oil-bearing areas [1]-[10]. However, there is little analytical discussion on 
both the conditions and time sequence for the various types of fractures. 

The earliest physical modeling of a wrench zone was conducted in a mud 
model [11]. Based on that model, En echelon tensional fractures (T-fracture) 
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and shear fractures were identified later [12]. The synthetic shears (R-shears) 
and antithetic shears (R'-shears) were defined to be Riedel shears [13] [14]. Oth-
er secondary structures in a wrench zone include P-shears, Y-shears, and con-
vergent structures like folds and reverse faults [15] [16] [17]. 

There are debates on the time sequences of various structures all the time. 
Bartlett et al. [18] considered an identical time for the occurrence of all R-shears, 
P-shears and R'-shears. Stacey [19], Lajtai [20] and Cho et al. [21] argued that 
T-tensional fractures will occur first. Physical modeling conducted by Naylor et 
al. [22] showed that en echelon R-shears would occur in the early stage of a 
wrench belt development, T-tensional fractures in the middle stage and 
R'-shears with cease of the T fractures in the late stage and further, netted faults 
and lens would form in this stage as well. While Moore and Byerlee [23] consi-
dered the R-shears and P-shears were formed earlier than the R'-shears. All 
physical modeling showed that the main displacement zone would be formed at 
last and where new fractures occur, pre-existing fractures are active [24]. 

All kinds of structures may occur in an outcrop wrench belt or in a subsurface 
oil-bearing area [1] [4] [25], including R-shears, R'-shears, P-shears, Y-shears, 
T-tensional fractures and principal displacement zone. Xu et al. [17] put forward 
the similarity between the Riedel shear patterns and strike-slip basin patterns. 
However, the time sequence of the wrench related structures was addressed ana-
lytically neither in physical models nor in natural examples. 

Based on parabola-type fracture or failure criterion, this paper discusses the 
stress status and rock mechanics for the occurrence of T-tensional fractures and 
Riedel shears. Furthermore, the time sequence of their occurrence is addressed 
as well. 

2. Methodology 

There are two end members of rock deformation patterns, the simple shear and 
the pure shear (Figure 1). The rock deformation in the upper lithosphere is go-
verned by Coulomb behavior, and the brittle fracture or frictional sliding apply 
for most the deformation in the upper lithosphere [26] [27]. Typical rock failure 
criterions include straight line-type, such as Byerlee’s law and Mohr-Coulomb 
failure criterions [28], and parabola-type [29] [30]. For the straight line-type 
failure criterions do not apply for tensional fractures, a parabola-type failure cri-
terion will be adapted in the following discussions. 

2.1. Simple Shear 

A parabola-type failure criterion is [30] 

( )
2

2 0
I

I

τ
τ σ σ

σ
= +                            (1) 

2 2 2
cσ τ τ+ =                              (2) 

where τ is shear stress with positive sign for counter-clock shear and negative 
sign for clockwise shear. σ is normal stress with positive sign for compression  
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Figure 1. The first order structures in a simple shear (a) and in a pure shear (b). R is syn-
thetic Riedel shear (R-shear), R' is antithetic Riedel shear (R'-shear), and T is tensile frac-
ture (T-fracture). The parallel principal shear zone fault (Y-shear), the symmetrical shear 
(P-shear) to the R shear and convergent structures were not shown in simple shear (a). 
(After Harding [15], Twiss and Moores [31] and Cho et al. [21]) 

 
and negative sign for extension. τ0 is cohesion. σI is tensile strength under each 
isotension. τc is radius for an extreme circle (c-circle) (Figure 2). 

Given 0I tcRσ τ=  and 0c bτ τ= , the solution of Equation (1) and (2) is 

( )2 2
0 0 1 4 1

2
tc

tc

R b

R

τ τ
σ

− ± − −
=                    (3) 

Suppose 

( )2 24 1 1tcR b− =                          (4) 

Equation (3) is now simply 

0

2 tcR
τ

σ
−

=                             (5) 

where σ = −σI = −Rtcτ0, there is one intersection point (Figure 2(a), Figure 2(b)) 
with 

2
2tcR =                            (6) 

or 

0
2

2Iσ τ=                           (7) 

In this case of rock mechanics like Equation (7), the tensional fractures and 
Riedel shears will occur instantaneously. Where the tensile strength is less than 

0
2

2
τ , tensional fractures will be dominant (Figure 2(a), Figure 2(b)). The 

intersection angles between the tensional fractures and their en echelon axis, the 
wrench zone are 45˚ (Figure 2(c)). Where the tensile strength is bigger than 

0
2

2
τ , the Riedel shears will be dominant instead (Figure 2(d), Figure 2(e)). 

The angles between the shears and the wrench zone will vary with inner friction-
al coefficient. 
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Figure 2. First order fractures in a simple shear. PF = Parabola-type failure criterion, α = 
inner frictional angle. 

2.2. Pure Shear 

In a pure shear, the first order fractures are two conjugate shears (Figure 3(a)). 
The normal stress and shear stress are σfs and τfs in a shear fracture (Figure 
3(b)). We have 

fs fsτ µσ=                             (8) 

where μ is inner frictional coefficient. σfs is the normal stress of the intersection 
(P) between the σ1 - σ3 circle (FC) and the parabola-type failure criterion (PF) 
(Figure 3(c), Figure 3(d)). The extreme stress Mohr circle for the second order 
fractures related to the two first order fractures is SC (Figure 3(c)). Its circle 
center is on the σ axis and the circle cross points (σfs, τfs) and (0, −τfs). The 
second order extreme Mohr circle in formula form can be expressed as 

( )
2 2

2 21 4
2 4

fs fsσ σ
σ τ µ
 

− + = + 
 

                     (9) 

Given σI = Rtciτ0 and only one value of σ, connecting Equation (9) and (1), we 
have 

2
2 2 20

04 4 0fs fs
tciR
τ

σ µ σ τ
 

− + − = 
 

                   (10) 

and 

0

2
tci fs

tci

R
R

σ τ
σ

−
=                          (11) 

The σ1 - σ3 circle is 
2 2

21 3 1 3

2 2fs fs
σ σ σ σ

σ τ
+ −   − + =   

   
                (12) 
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Figure 3. Extreme stress circles for the first (FC) and second order (SC) fractures in pure 
shear deformation. FS = First order shear fracture, FC = first order extreme stress circle, 
SC = second order extreme stress circle, PF = Parabola-type failure criterion. 
 

The Equation (1) is now 

( ) ( )
2

2 0 0
0fs I fs tci f s

I tci

R
R

τ τ
τ σ σ τ σ

σ
= + = +               (13) 

Connecting (12) and (13), we have 

( ) ( )
2

2 20 0
1 3 1 3 02 4 0

tci tciR R
τ τ

σ σ σ σ τ
 

− + + − − = 
 

           (14) 

and 

( )1 3 0

2
tci

fs
tci

R
R

σ σ τ
σ

+ −
=                     (15) 

Connecting (11) and (15), we have 

( )1 3 03
4

tci

tci

R
R

σ σ τ
σ

+ −
=                     (16) 

where σ = −Rtciτ0, a tensional fracture will occur and we have 

( ) ( )2 2
1 3 0 1 3

0

48
8tciR

σ σ τ σ σ

τ

+ + − +
=                (17) 
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or 

( )2
0

1 3

3 4 tci

tci

R

R

τ
σ σ

−
+ =                      (18) 

Substitute (18) into (14), we have 

( )2 20
1 3 4 5 4

2 tci tci
tci

R R
R
τ

σ = − + −                  (19) 

and 

( )2 20
3 3 4 5 4

2 tci tci
tci

R R
R
τ

σ = − − −                 (20) 

Substitute (18) into (15), we have 

( )2
01 2 tci

fs
tci

R

R

τ
σ

−
=                       (21) 

Substitute (21) into (10), we have 

2

1 1 1
2 2 1 4tciR

µ
= ±

+
                    (22) 

or 

0 2

1 1 1
2 2 1 4Iσ τ

µ
= ±

+
                   (23) 

In the case of rock mechanics like Equation (23), second order tensional frac-
tures and Riedel shears will occur instantaneously. Whether a positive sign or 
negative sign in Equation (23) will be determined by the maximum (σ1) and 
minimum (σ3) principal stresses. 

where the tensile strength (σI) is less than 0 2

1 1 1
2 2 1 4

τ
µ

±
+

, tensional frac-

tures will be dominant. Where the tensile strength (σI) is bigger than

0 2

1 1 1
2 2 1 4

τ
µ

±
+

, Riedel shears will be dominant instead. 

3. Discussions 

Study of the relationship between the rock mechanics and the time sequences 
and types of fractures in a wrench zone can help us explain some natural frac-
tures or physical modeling fractures. 

In simple shear, the tensional fractures and R-shears array to be en echelon 
belts, and penetrative principal displacement zones are absent. Because of that, 
the rock veins filled in en echelon T-fractures in Figure 4(a), they were formed 
under left-handed simple shear. In Figure 4(b), an en echelon R-shears oc-
curred, which were formed under right-handed simple shear. 

In pure shear, first order conjugate shear fractures should be formed first. 
Then, second order T-fractures or Riedel shears would be formed and delimited  
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Figure 4. Natural fractures. (a) En echelon veins, Portugal [32]. (b) R shears [32]. c-en 
echelon veins delimited by first order shear fractures, Keping uplift, Tarim basin. d-R 
shears delimited by first order shear fractures, Botanical Garden, Beijing. 
 
by the first order fractures. In Keping uplift, Tarim basin, rock veins filled eche-
lon T-fractures which were delimited by a penetrative left handed principal dis-
placement zone, the first order shear fracture (Figure 4(c)). In the Botanical 
Garden, Beijing, the en echelon R-shears were delimited by a penetrative right 
handed principal displacement zone (Figure 4(d)), which was one of the two 
first order conjugate shear fractures. 

In physical modeling, the mechanic properties of the materials should be con-
sidered while the results are discussed. The Riedel shears are common in physi-
cal models for the tensile strength is small less than the cohesion [21]. 

Whether the first order fractures in a simple shear are tensional fractures or 
Riedel shears depends on tensile strength (σI) and the cohesion (τ0). In a given 

parabola-type failure criterion, if the tensile strength is less than 0
2

2
τ  or the 

ratio (Rtc) of tensile strength to cohesion is less than 
2

2
, the tensional frac-

tures will occur first. If the tensile strength is bigger than 0
2

2
τ  or the ratio 

(Rtc) of tensile strength to cohesion is bigger than 
2

2
, the Riedel shears will 

occur first. If the tensile strength is equal to 0
2

2
τ , the tensional fractures and  

the Riedel shears will occur instantaneously. The first order fractures in a pure 
shear should be two conjugate shears. Subsequently, if tensile strength is less 

than 0 2

1 1 1
2 2 1 4

τ
µ

±
+

 or the ratio (Rtci) of tensile strength to cohesion is less 
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than 
2

1 1 1
2 2 1 4µ
±

+
, the second order T fractures will occur first. If the ten-

sile strength is bigger than 0 2

1 1 1
2 2 1 4

τ
µ

±
+

 or the ratio (Rtci) of tensile 

strength to cohesion is bigger than 
2

1 1 1
2 2 1 4µ
±

+
, the Riedel shears will oc-

cur first. If the tensile strength is equal to 0 2

1 1 1
2 2 1 4

τ
µ

±
+

, tensional frac-

tures and Riedel shears will occur instantaneously. The positive sign or negative  
sign will be determined by the maximum (σ1) and minimum (σ3) principal 
stress. The most important thing is the occurrence of tensional fractures or Rie-
del shears being determined by the relative magnitude between the tensional 
strength and the cohesion with the inner frictional coefficient. 

The formats and figures (Figure 3(c)) indicate that there are still tensional 
fractures in high confining pressures in the deep earth with a tensional stress. 
They are of significance in petroleum exploration and development. 

4. Conclusions 

The occurrence of tensional fractures or Riedel shears in a simple shear depends 
on tensile strength (σI) and the cohesion (τ0). Where the ratio (Rtc) of tensile 

strength to cohesion is less than 
2

2
, the tensional fractures will occur first. 

Where the Rtc is bigger than 
2

2
, the Riedel shears will occur first. Where the 

Rtc is equal to 
2

2
, the tensional fractures and the Riedel shears will occur in-

stantaneously. 
The occurrence of second order tensional fractures or Riedel shears in a pure 

shear after the formation of first order conjugate shears depends on tensile 
strength (σI), the cohesion (τ0) and the inner frictional coefficient (μ). Where the  

ratio (Rtci) of tensile strength to cohesion is less than 
2

1 1 1
2 2 1 4µ
±

+
, the 

second order T-fractures will occur first. Where the Rtci is bigger than 

2

1 1 1
2 2 1 4µ
±

+
, the Riedel shears will occur first. Where the Rtci is equal to 

2

1 1 1
2 2 1 4µ
±

+
, tensional fractures and Riedel shears will occur instanta-

neously. 
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Appendix: List of Variables and Abbreviations 

FC: first order extreme stress circle 
FS: first order shear fracture 
P: intersection between the first order extreme stress circle (FC) and the parabo-
la-type failure criterion (PF) 
PF: Parabola-type failure criterion 
Rtc: ratio of tensile strength to cohesion in simple shear 
Rtci: ratio of tensile strength to cohesion in pure shear 
R: synthetic Riedel shear (R-shear) 
R': antithetic Riedel shear (R'-shear) 
SC: second order extreme stress circle 
T: tensile fracture (T-fracture) 
α: inner frictional angle 
σ: normal force 
σ1: maximum principal stress 
σ3: minimum principal stress 
σfs: normal stress in a pre-existing shear fracture 
σI: tensile strength 
τ: shear stress 
τ0: cohesion 
τc: radius for an extreme circle (c-circle) 
τfs: shear stress in a pre-existing shear fracture 
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