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Abstract 
Possible formation of exotic matter-antimatter molecular structure is consi-
dered as one of the most challenging problems at International Laboratories 
of Particle Physics. In the present work, elaborate computer codes built for 
investigating four-body systems are employed for calculating the binding 
energies of exotic molecules composed of electrons, protons, muons, pions 
and their antiparticles. The results confirm the stability of these molecules 
against dissociation to their lowest possible channels. Based on these results, 
it is argued that possible creation of two universes immediately after the Big 
Bang should be considered. Particularly, it is proposed that an overlapping 
area might exist between the universe and antiuniverse in which continuous 
creation and annihilation of simple and complicated particle-antiparticle 
structures might occur. Antiparticles escaping from this area are considered 
as the origin of the minimal traces of antiparticles appearing in our universe. 
Recent interpretations of cosmic-rays and gamma-radiations observed at the 
edge of our universe could be thought of as evidences for supporting this ar-
gument. Furthermore, it is argued that possible formation of matter-antimatter 
molecular structures could open the gate in front of a new field of chemistry 
to be referred to as Antimatter Chemistry. 
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1. Introduction 

The existence of antiparticles was predicted by Paul Dirac [1] [2] and confirmed 
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through the pioneering discovery of anti-electrons (positrons) by Carl Anderson 
[3] in the thirties of the twentieth century. The fundamental property of par-
ticle-antiparticle pairs as stated by Dirac is that it collapses to electromagnetic 
radiation the moment they get closer to each other (see e.g. [4] [5]). Emilio Se-
gerè and Owen Chamberlain’s group [6] [7] [8] provided in 1955 a significant 
contribution in this field by discovering the antiproton in the Bevatron Labora-
tory built at the University of California Berkley. Further development of high 
energetic beams of protons at CERN and Fermilab indicated that electromag-
netic radiations may lead to the production of a large number of particles and 
antiparticles on the top of which was the discovery of muon pairs (μ+ and μ−) [9] 
[10] and pion pairs (π− π+) as well as the neutral pion (π). Recent experiments 
[11] [12] [13] have confirmed the fact that the masses and spins of a proton and 
its antiproton are identical. This fact raised the question about the origin of our 
universe. Consequently, the “Big Bang” theory [14] [15] was proposed and suc-
cessfully confirmed experimentally. Following this theory, an explosion occur-
ring 13.7 billion years ago and lasting for 10−32 second led to the birth of a flood 
of identical amounts of particles and antiparticles [16]. The fact that almost neg-
ligible number of antiparticles exist in our universe is commonly attributed to 
symmetry breaking processes associated with the Big Bang [17]. These processes 
were followed by continuous particle-antiparticle annihilations, the leftover of 
which is our present universe. Other quite controversial theories were proposed 
by several authors (see e.g. [18] [19]), suggesting that matter and antimatter 
were confined in one and only one universe. The development of the string [20] 
and superstring [21] theories opened the floor in front of the development of 
multiverse theories (see [22] [23] [24] [25] [26]). Recently, an utmost interesting 
scenario was proposed [27] [28] [29] [30] that originally a collision between two 
branes took place. The kinetic energy of this collision was converted to particles, 
antiparticles and electromagnetic radiation. The particles were confined in our 
universe, whilst the recoiled hidden brane contains the antiuniverse. Both num-
bers of particles and antiparticles are identical.  

On the other hand, other experimental facts about matter and antimatter are 
discussed in the literature. Martin Deutsch [31] was the first to show that an 
electron and an antielectron pairs could form quasi bound states (referred to as 
positroniums, Ps), with lifetimes ranging from 10−10 to 10−7 seconds. In 1995, a 
group working in ATHENA project at CERN [32] [33] [34] was able to create 
the first antiatom composed of an antielectron and antiproton in Laboratory 
(referred to as Antihydrogen). Scientists working at the ATRAP experiment [35] 
were able to increase the number of trapped Antihydrogens in the preceding few 
years.  

Another revolutionary experiment led to the synthesizing of antiheliums (with 
nuclei composed of two antiprotons and two antineutrons [36]). Nevertheless, 
protoniums [37], true muoniums [38] and pioniums [39] were synthesized at 
CERN; a matter which supports the argument that matter, and antimatter could 
assume different channels during their interactions rather than annihilation 
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ones.  
On the other hand, the possible formation of exotic molecular structures 

composed of matter and antimatter was proposed within the framework of the 
theory of four-body systems [40] [41] [42]. Formation of an exotic molecule 
composed of two positroniums, (the positronium molecule, Ps2), was confirmed 
numerically by different authors (see e.g. Abel-Raouf [43] [44]) and experimen-
tally by Mils’ group [45]. Moreover, numerical evidences for the possible forma-
tion of different four-body systems with arbitrary mass ratios were established 
by Abdel-Raouf [46]. Our objectives in the present paper are threefold (see also 
[47]): 1) to give a brief account on the theory of four-body systems and show 
that their stability against dissociation to the lowest possible thresholds is incor-
porated in the theory; 2) to investigate the possible formation of exotic mole-
cules composed of positroniums, protoniums, muoniums, pioniums, etc. using 
elaborate variational methods; and 3) to discuss the implications of synthesizing 
antiatoms and formation of Exotic Molecules on the coexistence of the universe 
and antiuniverse.  

The next three sections are devoted to our three objectives. A complete list of 
the references mentioned in the text is given at the end of the paper.  

2. The Four-Body Theory 

Let 1m− , 2m+ , am− , and bm+  be four charged particle (say the first and third are 
particles, while the other two are antiparticles), with internal distances as illu-
strated in Figure 1.  

The total Hamiltonian of such a four-body system has the form 
2 2 2 2

2 2 2 2
1 2

1 2

2 2

1 2 12 1 2

2 2 2 2

1 1 1 1 1 1

a b
a b

a b b a ab

ћ ћ ћ ћH
m m m m

Z e
r r r r r r

= − ∇ − ∇ − ∇ − ∇

 
+ + − − − − 

 

              (1) 

At any moment, different quasi atomic (two-body) and ionic (three + one) 
clusters are possible. Let us assume that ( 1m− , 2m+ ) and ( am− , bm+ ) are two 
possible dissociating clusters with binding energies 
 

 
Figure 1. Relative coordinates of the four-body system. 
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2 2

22ab ab
Z eE
ћ

µ= −  and 
2 2

12 12 22
Z eE
ћ

µ= − ,                (2) 

where 

a b
ab

a b

m m
m m

µ =
+

 and 1 2
12

1 2

m m
m m

µ =
+

                  (3) 

are the reduced masses, respectively. The following two cases could be distin-
guished  

Case I: 1 am m m= =  and 2 bm m M= =  where m M               (4) 
Case II: 1 2m m m= =  and a bm m M= =  where m M              (5) 

Case I corresponds to the dissociation to an atom and an antiatom each is 
composed of a light and a heavy particle. The second case yields two separate ti-
ny and heavy particle-antiparticle quasi atoms, the constituents of each of which 
are orbiting one another. It is obvious that case II assigns the lowest dissociation 
threshold. The dissociation to an ion (composed of three bodies) and a particle 
(or antiparticle) is also possible. However, the ion-particle binding energy is 
higher than case II. To absolutely guarantee that the four-body system is bound, 
it must have a total energy lower than the sum of the binding energies of all 
possible dissociation channels. (Remember that in case I, 12 ab mµ µ= = , and 

( )4 4 2
12 2abE E mZ e= = − 

, whilst in case II 12 2mµ = , 2ab Mµ = ,  

( ) ( )4 4 2
12 2 2E m Z e= − 

 and ( ) ( )4 4 22 2abE M Z e= − 

. Remember also that 
1em m −= =  and e2 = 1 mean that energies are measured in Hartree atomic 

units, whilst 1 2em m −= =  and e2 = 2 indicate that energies are measured in 
Rydberg). 

Let us now define the binding energy W(σ) by 

( ) ( ) ( )12 abW E E Eσ σ= − +                       (6) 

Clearly, the system is bound if and only if 

( ) 0,W σ ≤                             (7) 

i.e. if the total energy E(σ) is located lower than the sum of the binding energies of 
the dissociated clusters in the negative energy domain of the total Hamiltonian H. 
We refer to this sum as Ethreshold (or Ethr), where ( ) ( )4 4 2I 2 2thrE mZ e= −   and 

( ) ( ) ( )4 4 2II 21
2thrE m M Z e= − +  . Dividing (6) by Ethr leaves us with 

( ) ( ) 1,ω σ ε σ= −                         (8a) 

where 

( ) ( )
thr

E
E
σ

ε σ =  and ( ) ( )
thr

W
E
σ

ω σ =  with 12thr abE E E= +          (8b) 

Clearly, E(σ) is related to ω(σ) by 

( ) ( )( )1 ,thrE Eσ ω σ= +                      (8c) 

Thus, 

( ) 0,ω σ ≥                             (9) 
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is a sufficient condition for the existence of the four-body system. Which is 
guaranteed if Equation (7) is fulfilled. Since, the potential energy part of H does 
not depend on the masses, therefore, the total Hamiltonian can be written as  

( ) ( )
2

2 2 2 2
1 2

2 2

12 1 2 1 2

2

1 1 1 1 1 1 .

a b

ab a a b b

H M m
mM

Z e
r r r r r r

 = − ∇ + ∇ + ∇ +∇ 

 
+ + − − − − 

 



            (10) 

It is understood here that the indices 1, 2, a and b are dummy. Defining the 
mass ratio 

m Mσ =                          (11a) 

and the reduced mass µ   

1 1 1 1 ,M m
m M mM m

σ
µ

+ +
= + = =                (11b) 

the Hamiltonian takes the form 

( ) ( ) ( )
2

2 2 2 2
1 2

2 2

12 1 2 1 2

2

1 1 1 1 1 1

a b

ab a a b b

H M m
M m

Z e
r r r r r r

µ
 = − ∇ + ∇ + ∇ +∇ +

 
+ + − − − − 

 



         (12) 

( ) ( )
2

2 2 2 2
1 2

2 2

12 1 2 1 2

1
2 1 1

1 1 1 1 1 1 .

a b

ab a a b b

Z e
r r r r r r

σ
µ σ σ
 = − ∇ + ∇ + ∇ +∇ + + 

 
+ + − − − − 

 



           (13) 

Now, let us define the units of energy and length, respectively, as  
4 4

22
Z eµ


 is the unit of energy               (14a) 

2

2 2Z eµ
  is the unit of length               (14b) 

Multiply the Hamiltonian by the reciprocal of the energy unit leaves us with 

( ) ( )

( ) ( )

2 2
2 2 2 2
1 24 4

2
2 2

4 4
12 1 2 1 2

22
2 2 2 2
1 22 2

2

2 2
12 1 2 1 2

2 1
2 1 1

2 1 1 1 1 1 1

1
1 1

1 1 1 1 1 12 .

a b

a b a a b b

a b

a b a a b b

H
Z e

Z e
Z e r r r r r r

Z e

Z e r r r r r r

σ
µ µ σ σ

µ

σ
µ σ σ

µ

 = − ∇ + ∇ + ∇ +∇ + + 

 
+ + − − − −  

 

   = − ∇ + ∇ + ∇ +∇   + +  
  

+ + − − − −     

 







        (15) 

Since we took 
2

2 2Z eµ
  to be equal to unity, then the Hamiltonian could final-
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ly be given by:  

( )2 2 2 2
1 2

12 1 2 1 2

1 2 2 2 2 2 2 ,
1 a b

T ab a a b b V

H
r r r r r r

σ
σ

 −  = ∇ + ∇ + ∇ +∇ + + − − − −    +   
 (16) 

where T and V assign, respectively, the total kinetic and potential energy opera-
tors of the system. 

It is important from now on to indicate that the units of energy and length de-
fined at (14a, 14b) are independent of the choices mentioned at Equations (4) 
and (5), i.e. independent of the subclusters, or dissociation channels, of the mo-
lecule. The same argument is also valid for the Hamiltonian (16).  

Now, if { }kψ  is the set of exact wavefunctions of the four-body system, 
such that: 

( )1 2, , ,k k r rψ ψ= 
                     (17) 

and 

d ,k k k k kkτ δ∗
′ ′ ′ ′Ψ Ψ = Ψ Ψ =∫                 (18) 

where dτ  is the volume element, therefore, the bound-states of the system are 
identical with the negative spectrum of the Hamiltonian within the space 

{ }kψ , i.e., they are the eigenvalues of the Schrödinger equation 

,k k kH Eψ ψ=                      (19) 

and can be determined by, 
,k k kE Hψ ψ=                      (20) 

such that 

1, for all 1.k kE E k+≤ ≥                    (21) 

Obviously, if 0kE ≥  for all k’s, then the total Hamiltonian H does not pos-
sess any negative spectrum and the quantum mechanical system cannot form a 
bound-state, in other words, the molecule consisting of the four bodies ( 1m− , 

2m+ , am− , and bm+ ) simply cannot exist.  

2.1. The Rayleigh-Ritz’ Variational Method 

Since H is a four-body Hamiltonian, the non-separability of V ceases the possi-
bility of obtaining any exact solution for Equation (19), and we are obliged to 
choose between different approximations. The most mathematically reliable one 
is the conventional Rayleigh-Ritz’ variational method [48]. It is the first varia-
tional method of bound state type which has been employed in the treatment of 
the ground states of atomic, molecular and nuclear systems. It was also extended 
by Hylleraas-Undheim (see [48]) to the treatment of the excited states of any 
quantum mechanical system. 

The method can be displayed as follows: consider the non-relativistic time in-
dependent quantum mechanical system defined in the preceding section, The 
Schrödinger’s equation is equivalent in form to the conventional eigenvalue 
problem: 
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,H Eψ ψ=                          (22) 

or 

( ) 0,H E ψ− =                         (23) 

where E and H are the total energy and Hamiltonian, respectively, of a quantum 
mechanical system described by the vector ψ . The Schrödinger constraint can 
be stated according to Equation (23) as follows: a true physical system or process 
described by the observable ( H E− ) is well expressed, microscopically, by the 
expansion space ψ  if and only if Schrödinger vector ( )H E ψ−  defines a 
null space. Also, Equation (23) fulfills the variational principle: 

0H Eψ ψ∂ − =                         (24) 

and possesses the eigenvalues: 

k k k k kE Hψ ψ ψ ψ=                     (25) 

Equations (23), (24) and (25) imply a one-to-one correspondence between the 

kE ’s and kψ ’s once the degeneracy has been removed. Consequently, one can 
order the kE ’s such that  

1, for 1,2, ,k kE E k+≤ =                      (26) 

where 1E  is the first (lowest) eigenvalue. 
Now, the verification of Schrödinger’s constraint requires the exact knowledge 

of the terms E, H and ψ . In practice, however, ψ  is always unknown and 
the parameter E is not given for the boundary value problems. For this, there 
was a necessity of using approximate methods to get a solution for physical 
problems. 

In Rayleigh-Ritz variational method a trial expansion space ( )n
tψ  is selected 

which defines a hypothetical physical system such that 

( )
n

n
t k tk

k
aψ ψ= ∑                          (27) 

where n is the dimension of ( )n
tkψ , and 

( ) ( ) , for , 1,2, ,n n
tk tk kk k k nψ ψ δ′ ′ ′= =                 (28) 

where kkδ ′  is the Kroneker-delta. Equation (28) will then reduce to 
( ) ( ) 0n n
t tH Eψ ψ∂ − =                      (29) 

All ( )n
tkψ ’s are, due to Rayleigh-Ritz variational method, generated from one 

basis set of vectors { }i HDχ ⊂  where HD  is the H-domain, i.e., 

( )

1

n
n

tk ik i
i

cψ χ
=

= ∑                        (30) 

Consequently, Equation (29) can be written for each k as the system of secular 
equations: 

1
0, 1,2, ,

n

jk i j nk i j
j

c H E i nχ χ χ χ
=

 − = = ∑           (31) 
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which is meaningful if and only if the determinant nk∆  satisfies the relation 

( )det 0nk ij nk ijH E S∆ = − = ,                  (32) 

where 

ij i jH Hχ χ= ,                     (33a) 

and 

ij i jS χ χ=                        (33b) 

The eigenvalues obtained by (31) are ordered such that: 

1 2n n nnE E E≤ ≤ ≤ ,                     (34) 

is satisfied. 
Rayleigh and Ritz (see e.g. [34] [35]) proved the important relation between 

1nE  and the first exact energy level of the system 1E , namely that 

1 1, for 0nE E n≤ > ,                    (35a) 

i.e., for any choice of the components ( )n
tkψ , the first variational energy is an 

upper bound to the exact one. Hylleraas and Undheim (see e.g. [34]), moreover, 
have shown that if the condition (34) is fulfilled, we then get 

, for 1,2, ,k n kE E k n≤ =  .                (35b) 

McDonald (see also [48] and references therein), on the other hand, demon-
strated that, if the trial expansion space is enlarged by exactly one component 
such that 

( ) ( )1 1 , for , 1,2, , 1n n
tk tk kk k k nψ ψ δ+ +

′ ′ ′= = + ,           (36) 

then the following successive relations are always valid: 

11 1 12 1 1 1,n n n n n n n n nE E E E E E+ + + + +≤ ≤ ≤ ≤ ≤ ≤           (37a) 

1 1 for ,n k n kE E k k′+ + ′≤ ≤                    (37b) 

1 1 for ,n k n kE E k k′+ + ′≤ >                    (37c) 

1 1 1 .k n k n k n k kE E E E E+ −≤ ≤ ≤ ≤ ≤               (37d) 

Equations (37) imply that the existence of any negative nkE  ensures the exis-
tence of corresponding bound state of the four-body system, and for this reason 
we are led to say that Rayleigh-Ritz’ variational method provides an approximate 
solution of (22).  

2.2. Theoretical Proof of the Existence of Four-Body Molecules 

The four-body theorem states that “If σ  is the mass ratio characteristic to any 
particle-antiparticle pair, then the existence of two molecules with 0σ =  and 

1σ =  is a sufficient condition for the existence of all molecules with σ  lying 
between 0 and 1”. 

To prove this theorem, let us go back to Equations (6) and (8) and define the 
following quantities: ( )1E σ  is the ground-state energy of the whole system, 
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and ( )W σ  is the binding energy with which the four-body system is stable 
against any possible dissociation. Thus, it is obvious that the molecule is bound 
if and only if ( )W σ  satisfies the relation: 

( ) ( )1 0thrW E Eσ σ= − < .                   (38) 

Now, from (16) we have 

( )
( )2 2 2 2

1 22
1

1
a b

H
σ σ
∂

= ∇ +∇ −∇ −∇
∂ +

               (39) 

and 
2

2
2

1
H H
σ σ σ
∂ ∂

= −
∂ + ∂

                       (40) 

Remember that H is the total Hamiltonian of the system without any restric-
tion, but the one regarding the definition of the unit energy and unit length. On 
the other hand, Equation (8a) yields 

2 2

2 2andω ε ω ε
σ σ σ σ
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

.                 (41a) 

While Equations (6) and (8b) imply 
2 2

2 2andW E W E
σ σ σ σ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
.                (41b) 

Now, let us restrict ourselves to the ground state of the four-body system and 
assume that ( )1E σ  and 1ψ  are, respectively, the corresponding exact ground 
state energy and wavefunction. Therefore, they satisfy the relations: 

( )1 1 1 1 1or 0H E H Eψ ψ ψ= − = ,              (42) 

which imply 

( ) ( )1 1
1 1

H E
H E ψψ

σ σ
∂ − ∂

= − −
∂ ∂

                (43) 

and 

( ) ( )1 1
1 1 1 1

H E
H E ψψ ψ ψ

σ σ
∂ − ∂

= − −
∂ ∂

             (44) 

Since H is Hermitian, the right-hand side of (44) is zero, and we have; 

( )
2 2 2 21

1 1 1 1 2 12
1

1
a b

E Hψ ψ ψ ψ
σ σ σ

∂ ∂
= = ∇ +∇ −∇ −∇

∂ ∂ +
       (45) 

Defining the expectation values for the kinetic energy operators aT  and bT  
as 

( )

( )

2 2
1 1 1

2 2
1 2 1

1
1

1
1

a a

b b

T

T

ψ ψ
σ

ψ ψ
σ

−
= ∇ +∇

+
−

= ∇ +∇
+

.

                  (46) 

Equations (45) can then be written as: 

1 1
1

b
a

TE T
σ σ σ

 ∂
= − ∂ +  

.                   (47) 
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Since 1ψ  is symmetric with respect to the coordinates of the two particles a 
and b, we expect that aT  equals bT  at 1σ = , so that 

1

1

0E

σσ =

∂
=

∂
.                         (48) 

Using (41b), we get 

1

1

0W

σσ =

∂
=

∂
.                         (49) 

Now, operate with 1ψ
σ

∂
∂

 on (43) from the left, we get: 

( ) ( )11 1 1
1 1

H E
H Eψ ψ ψψ

σ σ σ σ
∂ −∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

             (50) 

The variational theory demands that (50) 

( )1 1
1 0H Eψ ψ

σ σ
∂ ∂

− ≥
∂ ∂

.                    (51) 

Therefore (50) leads to 

( )11
1 0

H Eψ ψ
σ σ

∂ −∂
− ≥

∂ ∂
.                   (52) 

On the other hand, Equation (43) provides us with 

( ) ( )1 1 1
1

H E H E ψψ
σ σ σ σ σ

∂ − ∂ −   ∂ ∂ ∂
= −   ∂ ∂ ∂ ∂ ∂   

.          (53) 

( ) ( ) ( ) ( )
2 2

1 1 11 1 1
1 12 2

H E H E H E
H Eψ ψ ψψ

σ σ σ σ σ σ
∂ − ∂ − ∂ −∂ ∂ ∂

∴ + = − − −
∂ ∂ ∂ ∂ ∂ ∂

 

or 

( ) ( ) ( )
2 2

1 1 1 1
1 12 22 0

H E H E
H Eψ ψψ

σ σ σ σ
∂ − ∂ − ∂ ∂

+ + − =
∂ ∂ ∂ ∂

       (54) 

Operating on this equation by 1ψ  from the left, we obtain 

( ) ( ) ( )
2 2

1 1 1 1
1 1 1 1 12 22 0.

H E H E
H Eψ ψψ ψ ψ ψ

σ σ σ σ
∂ − ∂ − ∂ ∂

+ + − =
∂ ∂ ∂ ∂

 (55) 

Again, the Hermeticity of H yields 

( )
2

1
1 1 2 0H E ψψ

σ
∂

− =
∂

,                    (56) 

so that 

( ) ( )2
1 1 1

1 1 12 2
H E H E ψψ ψ ψ
σ σ σ

∂ − ∂ − ∂
= −

∂ ∂ ∂
 

using (52) we get 

( )2
1

1 12 0
H E

ψ ψ
σ

∂ −
≥

∂
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so that 
2 2

1
1 12 2

E Hψ ψ
σ σ

∂ ∂
≤

∂ ∂
,                    (57) 

substituting from (45) into (57), we find 
2

1
1 12

2
1

E Hψ ψ
σ σ σ

∂ ∂
≤ −

∂ + ∂
,                  (58) 

using (45) 
2

1 1
2

2
1

E E
σ σ σ

∂ ∂
≤ −

∂ + ∂
,                      (59) 

and using (41a, 41b) 
2

1 1
2

2
1

W W
σ σ σ

∂ ∂
≤ −

∂ + ∂
,                     (60) 

Now, Equation (47) states that 1E
σ

∂
∂

, and consequently 1E
σ

∂
∂

, is a continuous 

function of σ  in the interval (0, 1). This continuity together with the boundary 
condition (49) and the inequality (60) demand 

( )1 0 for all 0,1
W

σ
σ

∂
≥ ∈

∂
,                  (61) 

that is to say ( )1W σ  is a monotonic function of σ  in this interval. Also (60) 
and (61) lead to the inequality: 

( )
2

1
2 0 for all 0,1W σ

σ
∂

≤ ∈
∂

.                 (62) 

Thus ( )1W σ  is a concave function with the characteristics 

( ) ( ) ( ) ( )1 1 10 1 for all 0,1W W Wσ σ≤ ≤ ∈             (63) 

and it is bound within the triangle ( )( ) ( )( ) ( )( )1 1 10, 0 , 0, 1 , 1, 1W W W , see Figure 2. 
The inequality (63) states that: if ( )1 0W  and ( )1 1W  are negative, then 
( )1W σ  will be negative at all ( )0,1σ ∈ . That is to say if the four-body system 

has a ground state at 0σ = , which corresponds in case I with 1Z = , to the 
adiabatic treatment of H2 molecule, and at 1σ = , corresponds, at the same 
condition, to the positronium molecule Ps2 that is a bound state composed of  
 

 

Figure 2. Behavior of ( )1W σ  with the variation of σ . 
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two electrons and two positrons, it has a ground state at all ( )0,1σ ∈ . In fact, it 
has been shown [28] [29] [30] that, starting from the inequality (56), the exis-
tence of a four-body system with 1σ =  is a sufficient condition for the exis-
tence of any molecule with 0 1σ≤ ≤ , so that the existence of a positronium 
molecule for example implies the existence of molecule composed of a hydrogen 
and antihydrogen. Further, more the following points have been concluded: 

1) If the four-body system defined by the Hamiltonian (16), exists at 0σ =  
and 1σ = , then all molecules with σ  lying between 0 and ∞ should exist. 

2) If 2 k
k k abW E E= − , where ab

kE  is the kth state of the pair am− , bm+ , the fol-
lowing two conclusions are true: 

a) If the kth state of 1 2 3 4m m m m− + − +  exists at 0σ =  and 1σ = , the k-th state of 

1 2 3 4m m m m− + − +  exists at all 0 1σ≤ ≤ . 
b) ( ) ( ) ( )0 1k k kW W Wσ≤ ≤                                       (64) 
The above theorem and conclusions suggest that systems like e eπ π− + − + , 

, ,e eµ µ µ π π µ− + − + − + − +


 etc. may also exist as molecular structures. 
On the other hand, the preceding theorem has been extended [30] to the cases 

at which M is replaced by nM, where 1n > , which predicts the existence of 
systems like antihydrogen-deuterium ( HD ) and antihydrogen-tritium ( HT ) as 
bound states. Figure 3 shows a general schematic diagram for systems with M is 
replaced by nM where 1n > .  

For these systems, the Hamiltonian (1) is replaced by: 

( )
2 2 2

2 2 2 2
1 2

2 2

12 1 2 1 2

2 2 2

1 1 1 1 1 1 ,

a b
e p p

ab a a b b

H
m M nM

Z e
r r r r r r

= − ∇ +∇ − ∇ − ∇

 
+ + − − − − 

 

  

          (65) 

Also, Equation (16) takes the following form 
 

 
Figure 3. Various four-body systems. 
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2 2 2 2
1 2

12 1 2 1 2

1 1
1

2 2 2 2 2 2 ,

a b
T

ab a a b b V

H
n

r r r r r r

σ
σ

 −   = ∇ + ∇ + ∇ + ∇   +    

 
+ + − − − − 
 

            (66) 

where 2n =  for HD  and 3n =  for HT  molecules. 
The binding energy ( )1W σ  for such molecules will be given by: 

( ) ( )1 1 thrW E Eσ σ= − − ∆                    (67) 

where 

( )
( )

1
2 1

n
n

σ
σ
−

∆ =
+

                       (68) 

It is clear that ∆  is always positive definite, so if ( )1W σ  is negative for 
1n = , it is necessarily negative for all 1n > . This means that if the four-body 

molecule 1 2 3 4m m m m− + − +  exists at 1n =  for a given σ , it exists at all values of n 
for the same σ . This in turn means that the existence of HH  molecule implies 
the existence of HD  and HT  molecules. In particular, the following conclu-
sions are valid: 

1) If 2 1a b
k k k kW E E E= − −  where 2a

kE  and 1b
kE  are both the k-th excited 

states of the clusters a-2 and 1-b, respectively, and kE  is the corresponding 
singlet excited state of the four-body system, the following statements are true: 

a) If the k-th excited state of 12ab exists at 1σ = , 1n = , then the k-th ex-
cited state of 12ab exists also at 0 1σ≤ ≤  for all 1n ≥ . 

b) ( ) ( ) ( )0 1k k kW W Wσ≤ ≤ . 
The proof of a) follows from the definition of kW  and the generalization of 

the theorem for 1k > , while b) is a result of a) and is a generalization of (64). 

2.3. The Virial Theorem 

This theory predicts the upper bound energies v
kE  to the real bound state ener-

gies kE  by replacing the coordinates ijr  by ijrα  where α  is a variational  

parameter. Since the kinetic energy operator is second order in (
ijr
∂
∂

) while the 

potential energy operator is first order of ( 1

ijr
), we may define the virial Hamil-

tonian as 

2
1 1

vH T V
α α

= +                         (69) 

and since the virial energy kE  is 

( ) ( )

( ) ( )

n n
tk tkv

k n n
tk tk

H
E

ψ ψ

ψ ψ
= , 

we have 
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( ) ( )
2

2( ) ( )

1 1
1 1

n n
tk tk

v
k ex exn n

tk tk

T V
E T V

ψ ψ
α α

α αψ ψ

+
= = + ,            (70) 

where, 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
and

n n n n
tk tk tk tk

ex exn n n n
tk tk tk tk

T V
T V

ψ ψ ψ ψ

ψ ψ ψ ψ
= =             (71) 

Now, the upper bound states are obtained by minimization with respect to α. 
Doing so, Equation (70) gives: 

3 2
2 1 0

v
k

ex ex
E T V
α α α

∂
= − − =

∂
,                 (72) 

and 

2 ex

ex

T
V

α = − .                         (73) 

Substituting from (74) into (71), we obtain 

( ) ( )

( ) ( )

2
2

( ) ( ) ( ) ( )4 4

n n
tk tkv ex

k n n n n n n
ex tk tk tk tk tk tk

VVE
T T

ψ ψ

ψ ψ ψ ψ ψ ψ

−−
= = ,       (74) 

this is known as the virial energy. 

3. Numerical Treatment of Four-Body Systems 

Although the theory and corollaries presented in the preceding section provide 
us with a rigorous proof for the possible formation of the four-body systems de-
fined by the Hamiltonian (1), the values of their total energies as well as the 
forms of their wavefunctions remain undefined. The present section is devoted 
to the numerical investigation of these quantities within the framework of Ray-
leigh-Ritz variational method discussed in Section 2.2. The next two subsections 
are concerned with the representation of the operators and the wavefunctions 
adherent to the four-body systems. 

3.1. Kinetic and Potential Energy Operators 

Let us consider Figure 1 and recall the Hamiltonian (16) 

( )2 2 2 2
1 2

12 1 2 1 2

1
1

2 2 2 2 2 2 ,

a b
T

ab a a b b V

H

r r r r r r

σ
σ

−  = ∇ + ∇ + ∇ +∇  + 

 
+ + − − − − 
 

 

which can be written as 

( )1 2
1

1 a bH T T T T Vσ
σ

−
= + + + +  +

                (75) 

The kinetic energy operator contains terms of the form 
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2; 1, ,2,i iT i a b= −∇ =                        (76) 

In terms of the coordinate system given in Figure 1, the operator in (76) can 
be written as 

2 2
2

,2
, ,

2 2 cosi ij ik
j i j k j i k iij ij ij ij ikr r r r r

θ
≠ < ≠ ≠

 ∂ ∂ ∂
∇ = + +  ∂ ∂ ∂ ∂ 

∑ ∑∑           (77) 

and 
2 2 2

,cos
2

ij ik jk
ij ik

ij ik

r r r
r r

θ
+ −

=                       (78) 

3.2. Hylleraas’ Coordinates 

Our system must be described in a more suitable system of coordinates; this is 
because the components of the spherical polar coordinates ijr  are not ortho-
gonal to each other and so highly dependent. Besides, the new system must take 
in consideration the correlation relation between different particles in the mole-
cule. We notice that the interaction relation between different particles in our 
system is not one-to-one particle interaction; instead, it is one-to-two. 

Let us replace the relative coordinates with a Hylleraas’ coordinate system 
consisting of confocal ellipses and hyperbolas defined as 

( ) ; 1,2i ia ib abs r r r i= + =                   (79a) 

( ) ; 1,2i ia ib abt r r r i= − =                   (79b) 

( ) ( )1 2 12 1 2 12, ,a a a b b bs r r r s r r r= + = +              (79c) 

( ) ( )1 2 12 1 2 12, ,a a a b b bt r r r t r r r= − = −              (79d) 

12 , .ab abu r r v r= =                      (79e) 

As it is evident ,i as s  and bs  are constants on ellipses the distance between 
their two foci are abr  for is  and 12r  for as  and bs , while ,i at t  and bt  are 
constants on hyperbolas again the distances between their two foci are abr  for 

it  and 12r  for at  and bt . It is clear that s goes from 1 to infinity, t goes from 
−1 to 1, and v goes from 0 to infinity. In addition to these variables there are also 
the angles of rotation Φ ’s about the axis joining the two foci. 

The point now is to write the Hamiltonian of the system in terms of these 
coordinates. The partial derivatives with respect to iar  and ibr  can be ex-
pressed in terms of is  and it  as follows: 

1 1

1 1 1 1 1a a a

s t
r r s r t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

                    (80) 

then 

2 2 2 2

2 2 2 2
1 1 1 1 1 1 1 1

1 1, 2 ,
a ar v s t r v s s t t

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

       (81a) 

https://doi.org/10.4236/oalib.1106064


M. A. Abdel-Raouf 
 

 

DOI: 10.4236/oalib.1106064 16 Open Access Library Journal 
 

and so on. Finally, we have 
2 2

2 2 2
12 12

1 1,
r v u r v u
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

                 (81b) 

We also have 

( ) ( )

( )( )

2 2 2

,

2
2 2 2

2

cos , 1,2
2

4 ,
2
4

ij ik jk
ij ik

ij ik

i i i i

i i i i

r r r
i

r r

v s t s t v

v s t s t

θ
+ −

= =

 + + − − =
+ −

 

2 2

, 2 2
2cos i i

ia ib
i i

s t
s t

θ + −
∴ =

−
.                   (82) 

Now, the kinetic energy operator (for example) T1 can be written as 

( ) ( )

( )

( )

2 2
2 2

1 1 1 1 12 2 2 2 2
1 1 1 1 1 1

12,1 12,12
1

12,1 12,1
1

4 1 1 1 2 2

1 2 2 cos cos

2 cos cos ,

a b

a b

T s t s t
v s t s t s t

v u u s

t u

θ θ

θ θ

 ∂ ∂ ∂ ∂
= − − + − + − − ∂ ∂ ∂ ∂ 

 ∂ ∂
− + + +∂ ∂

∂ ∂
+ − ∂ ∂

    (83) 

Similar forms can be derived for T2, Ta and Tb. 
On the other hand, the potential energy operator which is given by: 

12 1 2 1 2

1 1 1 1 1 12
ab a a b b

V
r r r r r r

 
= + − − − − 

 
, 

will be modified to 

1 2
2 2 2 2
1 1 2 2

2 1 4 41 s sV
v u s t s t
  = + − −   − −  

                (84) 

3.3. The Volume Element of the System 

Two forms for the volume element dτ  could be distinguished (see Equation 
(79)): 

1) v is variable: 

( )( )
8

2 2 2 2
1 1 2 2 1 2 1 2 1 2d d d d d d sin d d d d

64 v v v
v s t s t s s t t vτ θ θ ϕ= − − Φ Φ      (85) 

1 , 1 1, 0 ,i is t v≤ ≤ ∞ − ≤ ≤ ≤ ≤ ∞                 (86) 

0 , 0 2 , 0 2 .v v iθ ϕ≤ ≤ π ≤ ≤ π ≤ Φ ≤ π                (87) 

2) rab is Constant: In this case, the volume element is reduced to 

( )( )
6

2 2 2 2
1 1 2 2 1 2 1 2 1 2d d d d d d d

64
v s t s t s s t tτ = − − Φ Φ             (88) 
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3.4. Trial Wavefunctions 

The most suitable form of the trial wavefunctions for describing the four-body 
system is the one developed from Hilbert space components depending on Hyl-
leraas’ coordinates. 

( ) ( )1 2
1 2 1 2 1 2e cosh ej j j j j j j jm n s s k p q v

j js s t t t t u vα γχ β− + − = − 
 .      (89) 

The total wavefunction of the system is then defined as the superposition of 
these components 

0 ,k kj jj c χ∞

=
Ψ = ∑                        (90) 

where k stands for the state of the system; 1k =  identifies the ground-state, 
2k =  is the first excited state, etc. In practical calculations the number of su-

perpositions is subjected to the convergence of the calculated energies and, 
therefore, limited to a certain value n. 

Applying now the kinetic energy operators given at Equations (83) to the j-th 
component jχ  of the wavefunction, Equation (89), we obtain the following 
relations:  

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 2 2
1 1

2 2
2 2
1 1 1

1 2 1
1

1 4 1 4 1 4 2

4 1 4 1 8
4

8
tanh 4 2 2

j j j j j j j j

j j j j j j
j j

j j
j j j j

T m m k k p m k
v s t

m m k k m
s t s

k
t t m p s

t

χ

α
α β

β
β α

= − − + − − + −− 

   − −
+ − + − −          

  − − + + +   

 ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
1 1 2 1

3 3
1 12 2

1 1 22 2

2 2
1 1

2 2

4 2 2 tanh 4

4 tanh

1 1

j j j j j

j j j j
j j

j j j j j j j j

k p t t t s

p s p t
t t t

u u
p m p k s p m p k t

u u

β β α

α β
β β

   + + + − −  

 + + + − 

   + + + + + +
− +   
      

 

( ) ( )
( )

( )

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )

2 2 2
1 1 1 1 2

1 22 2 2

2 2 2
2 1 2 1 2

2 2 2

2
1 1 2

1 2 1 22 2

1 2 2 1 2 2
1 22

2
2

tanh

tanh tanh

2 2
tanh

j j j j j j j
j

j j j j j j j

j j j j
j j

j j j j
j

p s t p t s p m k s
t t

u u u

p m k t p s s p s t

u u u

p t s p t t
t t t t

u u
p s s t p k s s t

t t
u

α β
β

α α

β β
β β

β
β

 −
   − − − +    

 −
 + − −
  

   − − − −   

 + − + 

( ) ( )
2

1

1 2 2 1 2 2
2 2

1

,
2 2j j j j

j

t u

p t s t p m t s t

u s u

α
χ

+ − 


 (91a) 
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
2 2

2 2
2 2

2 2 2

1 2 2
2

1 4 1 4 1 4 2

4 1 4 1 8
4

8
tanh 4 2 2

j j j j j j j j

j j j j j j
j j

j j
j j j j

T n n l l p n l
v s t

n n l l n
s t s

l
t t n p s

t

χ

α
α β

β
β α

= − − + − − + −− 
   − −

+ − + − −          

  − − + + +   

 

( ) ( )

( ) ( )
( )

( )

( ) ( ) ( )

2 2
2 2

2 2

2 2 2
2 2 2 2 1

1 22 2 2

2 2 2
1 2 1 2 1

2 2 2

1 1

tanh

j j j j j j j j

j j j j j j j
j

j j j j j j j

p n p l s p n p l t

u u

p s t p t s p n l s
t t

u u u

p n l t p s s p s t

u u u

α β
β

α α

   + + + + + +
   − +
      

 −
   − − − +    

 −
 + − −
  

 

( )
( )

( )
( )

( )
( )

( )

( ) ( )

2 2
2 1 2 1

1 2 1 22 2

1 2 1 1 2 1
1 22 2

2

1 1 2 1 1 2
2 2

2

tanh tanh

2 2
t

,

anh

2 2

j j j j
j j

j j j j
j

j j j j
j

p t s p t t
t t t t

u u

p s s t p l s s t
t t

u t u

p t s t p n t s t

u s u

β β
β β

β
β

α
χ

   + − + −   

 − − + 

+ − 


 (91b) 

Now, we deal with our system through the coordinates 1 2 1 2, , , , ,s s t t u v  rather than 
, , , , ,a b a bs s t t u v . We notice from Equations (91) that aT  and bT  are obtained 

from 1T  and 2T , respectively, by replacing 1 2 1 2, , , , ,s s t t u v  by , , , , ,a b a bs s t t u v , 
respectively. Thus, a jT χ  and b jT χ  can be derived via (91a) and (91b), respec-
tively, using the same rearrangement. 

Finally, from (84), applying the potential energy operator to the j-th compo-
nent of the wavefunction, Equation (89), we find 

1 2
2 2 2 2

1 1 2 2

2 1 4 41
j j

s sV
v u s t s tχ χ
  = + − −   − −  

             (91c) 

The forms of the matrix elements required for RRVM or VT are quite com-
plicated and will not be presented here. 

4. Results and Discussion 

The computational part of the work has one main goal, namely, to test the poss-
ible existence and formation of four-body systems built up from electrons, posi-
trons, protons, antiprotons muons antimuons, pions and antipions. Thus, we are 
seeking information about possible coexistences of matter and antimatter which 
would shed light on the relation between universe and antiuniverse. 

The first step in the calculations is to optimize the parameters α, β, and γ in-
volved in the wavefunction Equation (89) with respect to the energy. Many in-
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vestigations have been carried out in this direction for each four-body system 
considered. The second step is to test the quality of the calculated binding ener-
gies when the number of superpositions (n) is increased. (The components of 
the wavefunction are obtained by selecting different values of the indices mj, nj, 
kj, lj, pj and qj and ignoring functions of the same symmetry). It has been shown 
that, monotonic convergence could be achieved with increasing n and n = 25 are 
adequate for obtaining excellent convergence. 

4.1. Binding Energies of Heterohydrogen Molecules 

In the present work a heteromolecule is defined as a molecule composed of an 
atom and its antiatom. Thus, heterohydrogen is the bound states of hydrogen 
and antihydrogen atoms ([49] [50]) which corresponds to case I defined at Equ-
ation (4), with m1 = ma = me and m2 = mb = M and me is the electronic mass, 
taken equals 1/2 in Hartree a.u. The reduced masses, Equation (3), reduced to μ12 
= μab = me and M is set to be infinite. The threshold energy is now given by Ethr = 
−1 Hartree = −27.2 eV. Thus, Equation (8b) state that ε(σ) = E(σ), and ω(σ) = 
W(σ). The optimization of the nonlinear parameters of the wavefunction pro-
vided us with α = 1.95, β = 0.87 and γ = 1.53 when the first five components of 
the wavefunction (see Table 1) are considered.  
 
Table 1. Components of the wavefunction defined at Equation (89). 

j mj nj kj ℓj qj pj 
1 0 0 0 0 0 0 
2 0 0 0 0 1 0 
3 0 0 0 0 2 0 
4 0 0 1 1 0 0 
5 0 0 1 1 1 0 
6 0 0 2 2 0 0 
7 0 0 2 2 1 0 
8 1 1 0 0 0 0 
9 1 1 0 0 1 0 

10 1 1 1 1 0 0 
11 1 1 1 1 1 0 
12 1 1 2 2 0 0 
13 1 1 2 2 1 0 
14 0 0 0 0 3 0 
15 0 0 1 1 2 0 
16 0 0 2 2 2 0 
17 1 1 0 0 2 0 
18 1 1 1 1 2 0 
19 1 1 2 2 2 0 
20 0 0 1 1 3 0 
21 0 0 2 2 3 0 
22 1 1 0 0 3 0 
23 1 1 1 1 3 0 
24 1 1 2 2 3 0 
25 0 0 0 0 4 0 
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With these values, the convergence of the total and binding energies of the 
ground-state of the heterohydrogen was investigated. The binding energy ob-
tained using 25 components of the wave function was found to be equal to 
−0.7476 eV. This result is in complete argument with the extension of the theo-
rem of four-body systems. The stability of this molecule against dissociation to 
the lowest threshold state will be discussed in the next subsection. 

The above investigations have been extended to other four-body systems for 
which case I, Equation (4), is valid and σ (=m/M) is changing between 0 and 1. 
In this case the stability of the systems is tested against dissociation into pairs of 
atoms and antiatoms possessing the same mass ratios (σ). The results of these 
investigations are displayed in Figure 4. 

The Figure illustrates the monotonic behavior of the binding energy as a func-
tion of the mass ratio σ, which agrees completely with the prediction presented 
in Figure 2 and confirms the possible formation of the four-body systems. 

4.2. Binding Energies of Positroniums with Protoniums,  
Muoniums and Pioniums 

The results of the preceding section encourage the search for other four-body 
systems with internal clusters supported by case II, Equations (5), i.e. searching 
for exotic molecules stable against dissociation into light and heavy pairs. The 
most interesting systems [51] are those in which a positronium (Ps) is bound to 
a protonium (Pn), true muonium (Mu) or pionium (A2π) exotic atoms. As a 
matter of fact, Pn, Mu and A2π have been synthesized very recently at CERN La-
boratory (see [37] [38] [39], respectively). Thus, in addition to the positronium, 
the lastly mentioned works confirm the possible construction of other three  
 

 
Figure 4. Convergence of the binding energies of four-body systems W(σ) with the in-
crease of the number of superpositions (n) at different values of σ. 
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exotic atoms composed of particles and antiparticles. It has been shown that Pn 
is a neutral boson with zero baryon number, mean lifetime τ ~ 1.0 × 10−6 s and 
ground state energy −12485.845 eV. On the other hand, the true muonium Mu is 
made up of two leptons, a muon, µ−, and an antimuon µ+. The binding energy of 
this exotic atom [38] is equal to −1407 eV (which is very close to the theoretical 
value −1406.024 eV). It is formed in triplet state (ortho-muonium) with lifetime 
1.81 × 10−12 s and in singlet state (para-muonium) with lifetime 0.602 × 10−12 s 
eV. (True muonium should be distinguished from muonium atom which is a 
bound state composed of an electron and a positive muon). Nevertheless, it has 
been shown [39] that pionium, a bound state composed of two bosons; a pion, 
π+, and an antipion π−, possesses a binding energy equals −1860 eV (which is 
very close to the theoretical value –1898.56 eV), and a lifetime 2.89 × 10−15 s.  

The first interesting system is the one composed of e−, e+, p− and p+. The low-
est dissociation channel of this system is consisting of a positronium (Ps) and a 
protonium (Pn), with threshold energy Ethr = −12,492.28 eV. The rigorous ma-
thematical proof of the existence of such system is given in Section 3.3 under the 
consideration of Equations (41a), (61) and (62). To show that the four particle 
system could form a bound state stable against dissociation to a pair of positro-
nium and protonium exotic atoms, the Hamiltonian (1) and the wavefunction 
(89)-(90), are employed within the context of Rayleigh-Ritz’ variational method 
discussed in Section 2.2. A set of 25 components have been employed for devel-
oping the trial wavefunction. Diagonalization of the Hamiltonian and optimiza-
tion of the nonlinear parameters provided us with (see Equations (8a, b), ω(σ) = 
0.000075 and total energy = −12,493.217 eV, i.e. the four body system has a 
binding energy W(σ) = −0.9369 eV. This result indicates that the four body sys-
tem e−, e+, p− and p+ is stable against dissociation to a positronium and a proto-
nium. Thus, on considering the results obtained in the preceding section we re-
mark that HH  is stable against dissociation of any kind. Replacing the proton 
mass in the previous investigation with 2mp+ and 3mp+ allowed us to test whether 
HD  and HT , respectively, are stable against their dissociation to their lowest 
possible thresholds. The decisive answer to this question is demonstrated in Ta-
ble 2 (rows number 6 and 7, respectively). Thus, the present investigations con-
firm, for the first time, that all Hydrogen-Antihydrogen Molecules [41] [50] [51] 
[52] are stable against dissociation of any kind. A conclusion which should end 
contradicted arguments raised in the literature mainly by authors who prefer the 
treatment of four-body systems via Born-Oppenheimer approximations (see for 
example [53] [54] [55] [56]). 

Our second goal in this section is focused on the characteristics of the varia-
tional energies calculated for other four body systems. Again, our main interest 
here is to test their stabilities against dissociation to the lowest possible channels, 
i.e. the positronium-true-muonium and positronium-pionium channels, respec-
tively. Quite elaborate investigations using the same basis set employed in the 
preceding studies have shown that the total variational ground state energies of  
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Table 2. Total, Threshold and binding energies of various four-body systems. 

System Lowest Channel α β γ σ = m/M E (eV) ω(σ) W(σ) = Eb (eV) Ethr (eV) 

e− e+ e+ e− 2Ps 1.95 0.87 1.53 1.0 −14.0352 0.0320 −0.4352 −13.6 

e− e+ µ− µ+ Ps-Mu 3.02 0.03 1.08 0.005 −1415.6694 0.00197 −2.8451 −1412.8243 

e− e+ π− π+ Ps-A2π 3.18 0.03 2.03 0.004 −1907.225 0.000979 −1.8659 −1905.36 

e− e+ p− p+ Ps-Pn 1.95 0.87 1.53 0.000545 −12493.217 0.000075 −0.9369 −12492.28 

e− e+ p− d+ Ps-p−d+ 1.95 0.87 1.53 0.000408 −16655.531 0.0000563 −0.94099 −16654.59 

e− e+ p− t+ Ps-p−t+ 1.95 0.87 1.53 0.000363 −18736.505 0.0000501 −0.93780 −18735.567 

µ− µ+ π− π+ Mu-A2π 1.40 0.05 1.82 0.757 −3407.003 0.0310 −102.419 −3304.584 

 
the two systems are −1447.161 eV and −1907.225 eV, respectively. Knowing that 
Ethr(Ps Mu) = −1412.824 eV and Ethr(Ps A2π) = −1905.36 eV, we realize (see rows 
3 and 4, in Table 2), that the binding energies of both systems are W(Ps Mu) = 
−2.7852 eV and W(Ps A2π) = −1.8276 eV, i.e. the systems are bound against dis-
sociation to light (Ps) and heavy (Mu or A2π) quasi atoms. Consequently, the 
four-body systems e− e+ µ− µ+ and e− e+ π− π+, are stable against dissociation of 
any kind.  

Remember that ω(σ) is the shift below the threshold which is defined through 
the relation ( )( )1g thE Eω σ= + , where Eth is the sum of the binding energies of 
the dissociated clusters 12 and ab and Eg stands for the total ground state energy 
of the corresponding four-body system. It is obvious that the inequality ω(σ) ≤ 
ω(1) is always fulfilled. Rows 6 and 7 contain information about the quasi mole-
cules Ps-p−d+ and Ps-p−t+, respectively. The bottom raw in Table 2 contains the 
results of our investigations of the four-body system µ− µ+ π− π+. They show that 
the system is stable against dissociation into true muonium and pionium exotic 
atoms.  

5. Implications of the Numerical Results 

Since Hydrogen is the basic element of our universe (world) and the fusion of its 
atoms to Helium is the main process on Stars and Galaxies, the synthesizing of 
Antihydrogens and Antiheliums could be considered as strong supportive ar-
gument for the existence antiuniverse (Antiuniverse). The present section is de-
voted to the discussion of different ideas which could be considered as results of 
our numerical treatments of various four-body systems. Particularly, we are in-
terested in their implementation in the universe-antiuniverse complex as sug-
gested by the Big Bang theory (see Section 1), and in initiating fusion processes 
based on matter-antimatter annihilation. 

5.1. Coexistence of Universe and Antiuniverse 

One of the curious puzzles of Astrophysics is the observation of strong γ-radiations 
inform of ball lightning at distance considered as the edges of our universe 
(Ashby and Whitehead [53], see also [54] [55] [56] [57]), and the appearance of 
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isotopic cosmic background spectrum of Gamma-rays above 1 MeV (David and 
Huges [58], see also [59]). The formation of exotic atoms at CERN composted of 
particles and antiparticles as well as the possible formation of different four-body 
systems (Section 4) support the possible coexistence of matter and antimatter. 
Thus, suggesting the possible existence of an overlap area between the universe 
and antiuniverse. With regarding to the origin of our universe, it seems that 
matter and antimatter were attracted immediately after the big bang to different 
centers of gravity, a process which led to relatively rapid cooling and construc-
tion of not completely separated universe and antiuniverse. This argument could 
also explain a recent discovery that cosmic rays are mainly composed of particles 
and antiparticles [60] [61] [62] [63]. 

5.2. Cold Fusion 

The possible formation of Hydrogen-Antihydrogen Molecules allows us to pro-
pose the following scenario for implementation in cold fusion which is alterna-
tive to a suggestion made by Fleischmann and Pons [64] [65]. In our case (see 
also [66] [67]), we argue that if a thermalized beam of antihydrogens passes 
through a palladium sheet in which hydrogen (deuterium or tritium), atoms are 
localized, a bound-state (or quazimolecular structure) could be formed. Addi-
tionally, if the antihydrogen enters the Coulomb barrier of the localized atom, 
the system could collapse in two different channels, namely the annihilation and 
fusion channels yielding to huge amount of energy which could be considered as 
promising alternatives to nuclear energy sources based on nuclear fission and 
fusion processes.  

6. Conclusions 

The main goal of the present paper was to provide the mathematical proof of the 
possible formation in nature of quasi molecular structures composed of matter 
and antimatter. In order to confirm computationally the result of the theory, a 
computer code was established based on Ritz’ variational method. Quite elabo-
rate calculations were performed using Hylleraas type wavefunctions.  

The most interesting conclusions of the present work can be summarized in 
the following points: 

1) The resultant calculations confirm for the first time the stability of hetero-
hydrogens against dissociation to positronium and protonium (deuterium or tri-
tium) atoms. Also, the possible formation in nature of positronium-muonium and 
positronium-pionium compounds was established for the first time. 

2) The possible coexistence of matter and antimatter is a reliable reasoning for 
possible existence of an overlap area between universe and antiuniverse, a matter 
which could act against the assumption about existing asymmetry immediately 
after the occurrence of the Big Bang. 

3) Coexistence of matter-antimatter systems suggests the possible existence of 
fusion channels applied to produce huge amount of energy. 

4) Formation of matter-antimatter molecular compounds should open the 
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gate in front of a new field of Chemistry to be referred to as “Antimatter Chemi-
stry”. This may lead to new ideas about the nature of global chemical bonds. 
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