
American Journal of Computational Mathematics, 2020, 10, 118-146
https://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211
ISSN Print: 2161-1203

DOI: 10.4236/ajcm.2020.101008 Mar. 24, 2020 118 American Journal of Computational Mathematics

Push-Pull Finite-Time Convergence Distributed
Optimization Algorithm

Xiaobiao Chen1, Kaixin Yan2, Yu Gao3, Xuefeng Xu4, Kang Yan5, Jing Wang6

1Department of Science, Taiyuan University of Technology, Taiyuan, China
2Department of Automation, Taiyuan University of Technology, Taiyuan, China
3Department of Automation, School of Control and Computer Engineering, North China Electric Power University, Beijing,
China
4Department of Economics and Management, Taiyuan University of Technology, Taiyuan, China
5Department of Mechanical and Electrical Engineering, Shanxi Energy Institute, Taiyuan, China
6School of Medicine, Clinical Medicine, Datong University, Datong, China

Abstract

With the widespread application of distributed systems, many problems need
to be solved urgently. How to design distributed optimization strategies has
become a research hotspot. This article focuses on the solution rate of the
distributed convex optimization algorithm. Each agent in the network has its
own convex cost function. We consider a gradient-based distributed method
and use a push-pull gradient algorithm to minimize the total cost function.
Inspired by the current multi-agent consensus cooperation protocol for dis-
tributed convex optimization algorithm, a distributed convex optimization
algorithm with finite time convergence is proposed and studied. In the end,
based on a fixed undirected distributed network topology, a fast convergent
distributed cooperative learning method based on a linear parameterized
neural network is proposed, which is different from the existing distributed
convex optimization algorithms that can achieve exponential convergence.
The algorithm can achieve finite-time convergence. The convergence of the
algorithm can be guaranteed by the Lyapunov method. The corresponding
simulation examples also show the effectiveness of the algorithm intuitively.
Compared with other algorithms, this algorithm is competitive.

Keywords

Distributed Optimization, Finite Time Convergence, Linear Parameterized
Neural Network, Push-Pull Algorithm, Undirected Graph

How to cite this paper: Chen, X.B., Yan,
K.X., Gao, Y., Xu, X.F., Yan, K. and Wang,
J. (2020) Push-Pull Finite-Time Conver-
gence Distributed Optimization Algorithm.
American Journal of Computational Ma-
thematics, 10, 118-146.
https://doi.org/10.4236/ajcm.2020.101008

Received: February 21, 2020
Accepted: March 21, 2020
Published: March 24, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2020.101008
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2020.101008
http://creativecommons.org/licenses/by/4.0/

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 119 American Journal of Computational Mathematics

1. Introduction

Consider a network with N nodes. Each node on the network has its own cost
function, expressed as : , 1,2, ,n

if i N→ =   . It is strictly convex. All nodes
cooperate to achieve the optimal value of the target cost function.

()* arg minx F x= (1-1)

Among them, () () *
1 ,N n

iiF x f x x
=

= ∈∑  is the optimal value of function
()F x . Generally, a problem of the form (1-1) is called an unconstrained convex

optimization problem [1] [2], and similar to it is the resource positioning prob-
lem [3], formation control [4], sensor scheduling [5] and distributed message
routing [6], etc.

At present, a series of algorithms on problem (1-1) have been extensively stu-
died. In general, these algorithms can be divided into two categories: dis-
crete-time algorithms [1] [2] [7] [8] [9] and continuous-time algorithms
[10]-[16]. Most of the former adopt iterative method, and based on the consis-
tency of the dynamic system to achieve the goal. For example, in reference [1],
the authors propose a non-gradient distributed random iterative algorithm,
which can achieve asymptotic convergence with less information transmission,
which is better than some existing gradient-based algorithms. In [2], the authors
propose a new event-driven zero-gradient and algorithm that can be widely ap-
plied to most network models. It can achieve exponential convergence when the
network topology is strongly connected and is a detail balance graph. The latter
are mostly designed in continuous time, and the study of their convergence
properties uses control theory as the main tool. In [10], the researchers proposed
a distributed zero-gradient sum algorithm based on continuous time. The initial
value of the algorithm is the optimal value of the cost function of each node.
Exponential convergence can be achieved when the network is a connected and
undirected fixed topology. In [13], the author pointed out that the algorithm can
achieve exponential convergence when the local cost function of the node is
strongly convex and the gradient meets the global Lipschitz continuity condi-
tion. However, most of the existing algorithms on problem (3-1) can only
achieve asymptotic or exponential convergence. In real engineering systems, we
all hope that the nodes can reach the optimal value x* in a certain time. Some
effective methods have also been studied to improve the speed of consensus
convergence, for example, by designing optimal topology and optimal commu-
nication weights [17] [18] [19] [20] [21]. Although these consensus algorithms
have fast convergence speed, they cannot solve the problem in a limited time
(1-1).

Based on the above research, a finite-time convergence algorithm is proposed
in this chapter, using the Hessian inverse matrix to solve the problem (1-1). This
algorithm was inspired by references [22] and [23], and extended the existing
continuous-time exponential convergence ZGS algorithm to finite-time conver-
gence. The convergence of the algorithm can be guaranteed by the Lyapunov
method. Corresponding numerical simulations also verify the effectiveness of

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 120 American Journal of Computational Mathematics

our algorithm.

1.1. Summary

Distributed optimization theory and applications have become one of the im-
portant development directions of contemporary systems and control science.
Among them, the design of optimization algorithms, proof of convergence, and
algorithm complexity analysis are several key issues in the research of optimiza-
tion theory. According to whether the optimized objective function has convex-
ity, it can be divided into two categories: distributed non-convex optimization
and distributed convex optimization. Because convexity has many excellent
characteristics, solving distributed convex optimization is relatively simpler than
solving distributed non-convex optimization. Therefore, for non-convex opti-
mization problems, we often use some methods to convert it into convex opti-
mization to solve. For distributed convex optimization, their objective function
is generally the sum of the local objective functions of the nodes in the network.
Common research methods include gradient descent method (including hybrid
steepest descent method [24], random gradient descent method [25]), distri-
buted projection sub-gradient method [26] [27], incremental gradient method
[28] [29], ADMM method [30] [31] and so on. Angelia Nedic proposed an over-
view of distributed first-order optimization methods for solving minimally con-
strained convex optimization problems in article [32], and can be widely used in
distributed control, network node coordination, distributed estimation, wireless
networks Signal processing issues. According to the structural characteristics of
the network topology, the corresponding distributed convex optimization re-
search algorithms can be divided into [10] based on fixed connected topology
graphs, [33] on directed graphs, [11] on detail balance graphs, and time-varying
topological graphs [7] [12] [34] of switching topology, etc. According to the time
domain characteristics of the algorithm, it can be divided into discrete-time dis-
tributed convex optimization algorithms [1] [2] [7] [8] [9] and continuous-time
distributed convex optimization algorithms [10]-[16]. According to the conver-
gence characteristics of the distributed convex optimization algorithm, it can be
divided into asymptotic convergence [10] and exponential convergence [13].
Event-driven scheduling algorithms have received widespread attention due to
the advantages of fewer analog components and high algorithm execution speed.
Therefore, many distributed convex optimization-related tasks have also taken
event-driven scheduling into account [13] [35].

Consistency is the theoretical basis of distributed computing, an important
performance indicator of distributed optimization and distributed cooperative
learning, and convergence is a key indicator of consistency algorithms. However,
most of the existing literature is about evolution Results of near-consistent con-
vergence [10] [23]. With the in-depth study of collaborative control, the research
on consistency issues has developed rapidly, and the corresponding references
give various methods to achieve consistency [36] [37] [38]. From the perspective
of time cost, it is very meaningful if the state of multiple agents can be consistent

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 121 American Journal of Computational Mathematics

within a certain time. Therefore, the problem of finite-time consistency control
of multi-agents has attracted widespread attention from scholars [39] [40].

For distributed learning, the learning speed is as important as the learning ef-
fect. At present, many algorithms are dedicated to finding an optimal learning
strategy [41] [42] [43]. In reference [41], the author gives a distributed coopera-
tive learning algorithm that can achieve exponential convergence. In reference
[42], the authors propose a distributed optimization algorithm based on the
ADMM method. Under this strategy, the algorithm can achieve global goal
problems with asymptotic convergence speed. In [43], the authors proposed two
distributed cooperative learning algorithms based on decentralized consensus
strategy (DAC) and ADMM strategy. Algorithms based on the ADMM strategy
can only achieve asymptotic convergence, but algorithms using the DAC strate-
gy can achieve exponential convergence.

1.2. Major Outcomes

Based on the existing research results in related fields, this paper proposes a fi-
nite-time convergence distributed optimization algorithm and a fast-convergent
distributed cooperative learning algorithm. The effectiveness of our algorithm is
verified theoretically and experimentally. . First, a new distributed optimization
method and its graph variants are used. Based on this, a neural network-based
finite-time convergence algorithm is used to solve the distributed strong convex
optimization based on the fixed-time undirected topology network's finite-time
convergence problem. The proposed distributed convex optimization algorithm
can clearly give the upper bound of the convergence time, which is closely re-
lated to the initial state of the algorithm, the algorithm parameters, and the net-
work topology graph. Secondly, the proposed distributed cooperative learning
algorithm is a privacy protection algorithm, and the global optimization goal can
be solved by simply exchanging the learning weights of the neural network. Un-
like previous distributed cooperative learning algorithms that can only achieve
asymptotic or exponential convergence, this algorithm can achieve rapid con-
vergence.

1.3. Organization of the Paper

We first give the basic assumptions of symbols and descriptions in Section 1.4.
Then introduce the push-pull gradient algorithm in the second section and
prove its convergence. An introduction to the finite-time convergence algorithm
and proof of convergence are given in Section 3. In the fourth section, we intro-
duce a push-pull fast convergence distributed cooperative learning algorithm,
demonstrate its convergence, and give numerical simulation. Section 5 gives si-
mulations and comparisons with other algorithms to prove their competitive-
ness, and gives the conclusion

1.4. Notation

Let’s start with a brief description of the symbols that will be used later.  and

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 122 American Journal of Computational Mathematics

+ represent the real number set and the non-negative real number set, respec-
tively; ⋅ represents the Euclidean norm on the set n ; Table ⊗ Real Kroneck
Product, { }11 1 1, , , , , , np mq

m n nmC D c D c D c D c D ×⊗ = ∈    , among them
n m

ijC c × = ∈   , p qD ×∈ , n n
nI ×∈ is the unit matrix; f∇ and 2 f∇

represent the gradient and Hessian matrix of function : nf →  , respective-
ly. a b is defined as []T1 1 2 2, , , n na b a b a b

, among them
()T

1 2, , , n
na a a a= ∈  , ()T

1 2, , , n
nb b b b= ∈  ;

() () () ()()T
1 2, , , nsig a sig a sig a sig a=  , and ()sig ⋅ means symbolic function;

()T

1 2, , , , 0a a a a
na a a a a= > is a constant.

Consider the following system

()() () 0, , 0, 0, nx g t x t g t x U= = ∈ ⊂  (1-2)

where 0: ng U +× →  is continuous in an open neighborhood 0U contain-
ing the origin 0x = . Suppose there is a continuous positive definite Lyapunov
function ()()V x t on the set U +× , where 0U U∈ is a neighborhood about
the origin. If there exists a real number ()0, 0,1aλ > ∈ such that aV Vλ≤ −
holds on the set U, then the system is stable in finite time, and the bound of its
convergence time T

()()
()

1
0

1

aV x t
T

aλ

−

≤
−

 (1-3)

For a linear parameterized neural network with m-dimensional input,
n-dimensional output, and l hidden neuron, it can be modeled as follows

() () ()1
l

i iif x s x w S x W
=

= =∑ (1-4)

where mx ⊂  represents the m-dimensional input vector, is represents the
output of the i-th hidden node, and n

iw ⊂  is the neural network learning
weight connecting the output node with the i-th hidden node.

2. Push-Pull Gradient Method

In this section, the default vector is a column, let { }1,2, ,=  nN , be a group of
agents, each agent ∈i N , and it holds a local copy of the decision variable

p
ix ∈ and the auxiliary variable p

iy ∈ of the average tracking gradient,
and their iteration values are obtained by ,i jx , ,i jy , k respectively. Instead, use
{∙} to represent the trajectory of the matrix by default. Make:

[]T1 2 3, , , , p n
nx x x x x ∗= ∈  (2-1.a)

[]T1 2 3, , , , p n
ny y y y y ∗= ∈  (2-1.b)

Define ()F x as the sum function of local variables

() ()1 ,n
iiF x f x

=
= ∑ (2-2)

Write it as

() () () ()T T T
1 1 2 2, , , p n

n nF x f x f x f x ∗ ∇ = ∇ ∇ ∇ ∈   (2-3)

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 123 American Journal of Computational Mathematics

Definition 2.1 Given an arbitrary vector ⋅ on p , for any p nx ∗∈ we
define

() () ()1 2

2
, , , ,px x x ⋅ =   (2-5)

where () () ()1 2, , , p nx x x ∈  are members of the x column.
Assumption 2.1 is strongly convex and continuous for each node function

() () 2
2,i if x f x x x x xµ′ ′∇ −∇ − ≥ − (2-6.a)

() () 2
22i if x f x L x x′∇ −∇ ≤ − (2-6.b)

Under this assumption we studied, there is a problem of unique optimal solu-
tion.

For the interactive topology graph between the nodes to be used, we model it
abstractly as a directed graph. A histogram (),=   consisting of a pair of
nodes  and ordered edge sets  . Here we think that if a message from
node i reaches node j in the graph, and ,i j is within the directed edge  , then
i is defined as the parent node and j is the child node. Information can be passed
from parent to child nodes. In graph  , a directed edge path is a subsequence
of edges, such as () (), , , ,i j j k  In addition, directed trees are directed graphs,
in other words, each vertex has only one parent. A tree generated by a directed
graph is a directed tree that will follow all vertices in the graph.

2.1. Detailed Push-Pull Gradient Method

The algebraic form of the push-pull gradient method can be written as:

()1 ,k k kx R x ay+ = − (2-7.a)

() ()1 1 ,k k k ky Cy F x F x+ += + ∇ −∇ (2-2.b)

where { }1 2, , , na diag a a a=  is a non-negative diagonal matrix, and
, n n

ij ijR R C C R ∗   = =    We derive the hypothesis after this.
Assume 2.2, the matrix n nR ∗∈ is non-negative random, and n nC ∗∈ is

also non-negative random, that is, T T1 1,1 1R C= = . In addition, we show that
the diagonal terms of R and C are positive, that is, 0iiR > , 0iiC > for i∈ .

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 124 American Journal of Computational Mathematics

Inductive by column random C

()T T1 11 1 ,k ky F x k
n n

= ∇ ∀ (2-8)

The above relationship has a very important relationship to the average

tracking speed of the subset ()T1 kF x
n

∇
.

Now, we give the graphs R and TC
 derived from the matrices R and TC ,

respectively. Here we want to explain that R and TC
 are the same, but all

edges are opposite.
Assume 2.3. For graphs R and TC

 , each contains at least one spanning
tree. In addition, at least one node is followed by a spanning tree of R and

TC
 , that is, TR C

R R ≠ ∅ , and RR is the set of all possible spanning tree
roots in graph R .

For the choice of step size, we assume that at least one node in the range has a
positive step size.

From the above prerequisites and assumptions we can get some constraints
and the scope of the argument, which intuitively opens the way for the algo-
rithm, so we explain our algorithm from another angle.

In order to show the feasibility of the push-pull algorithm, we first calculate in
the optimal form

{ }* ,x null I R∈ − (2-9.a)

()T *1 0F x∇ = (2-9.b)

where * *T1x x= , and meet the conditions introduced above, now consider the
algorithm proposed above, assuming that the algorithm generates two sequences
{ }kx and { }ky , which converge to x∞ and y∞ , respectively, We can get

()() 0,I R x ay ay∞ ∞ ∞− − + = (2-10.a)

() 0.I R y∞− = (2-10.b)

Here we want to show that if ()I R− does not intersect the span of
{ }a null I C⋅ − , we will get { }x null I R∞ ∈ − , 0ay∞ = ,Therefore, x∞ satisfies

the optimal condition of { }*x null I R∈ − . From ()T T1 11 1 1k ky F x
n n

= ∇ ,

()T * T1 1 0F x y∞∇ = = is the exactly Optimal condition in ()T *1 0F x∇ = .

We now reproduce the feasibility of the push-pull algorithm, and from the
above assumptions and conditions we know that it is linearly convergent

T T1 1lim ,limk k
k k

u vR C
n n→∞ →∞= = (2-11)

Therefore, in the case of relatively small step sizes, the above relationship

means that
T

11 k
k

u xx
n

+≈ , ()T1 k
k

v F x
y

n
∇

≈ , kx means that the entire network

only pulls the state information of the agent Ri R∈ , while yk means pushing
back the agent TC

j R∈ and tracking the average gradient information. This

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 125 American Journal of Computational Mathematics

form of “push” and “pull” information gives the name of our proposed algo-
rithm. The information that TR C

R R ≠ ∅ essentially represents is that at least
every agent needs to be pushed and pulled at the same time.

The algorithm in (2-7) is similar in structure to the DIGing algorithm pro-
posed in [44], with mixed matrix distortion. The x update can be viewed as an
inexact gradient step with a formula, and it can be viewed as a gradient tracking
step. This asymmetric R-C structure design has been used in the literature of av-
erage consensus [45], but this algorithm has a gradient term and nonlinear dy-
namic characteristics, so it cannot explain linear dynamic systems.

Above we have explained the rationality of this method mathematically, now
we conceptually explain it as a push-pull algorithm and its reliability. In the cur-
rent calculation, we still put it in a static network, discuss and analyze it. But in
fact, many networks in the real world are dynamic or even unreliable. We need
to expand the scope of the discussion. The original algorithm was actually calcu-
lated from [44], and it also gave us some inspiration. In a dynamic network, if
we need to disseminate or integrate information, we need to know the weight of
the scatter or know how to derive its weight. When in an unreliable network, the
connection between the dissemination and receiving nodes is not reliable. We
need some specific strategies to specify the weight distribution or customization

In order to keep the part of the network we specified converge, a relatively ef-
fective method is to make the receiver perform the task of scaling and combin-
ing. When the network environment changes, as the underlying sender, it is dif-
ficult to know the entire network change and we can adjust the weight accor-
dingly. We can also continue to use the push protocol to communicate and let
the surrounding nodes continue to send messages to it. However, it is difficult to
determine whether it is still alive (expired) in the network, because we do not
know its status should not or cannot respond as death). We can “subjectively”
judge whether a certain node or agent is dead. The important reason is that we
cannot fully synchronize. If a node waits for a certain period of time without
responding, we can consider it to be dead until he again Answer. In fact, a pull
communication protocol can also be used to allow agents to pull information
from neighbors or nodes for effective coordination and synchronization.

To sum up, for the general implementation of Algorithm 1, the push protocol
is indispensable, and using the pull protocol on this basis can improve the net-
work operation efficiency, but it cannot be operated only by the pull network.

2.2. Unify Different Distributed Computing Architecture Systems

We now show how the proposed algorithm unifies different types of distributed
architectures to a limited extent. For a completely decentralized case, for exam-
ple, there is an undirected connection graph  , we can set R C= =   , and
let R C= , then it becomes a symmetric matrix. In this case, the algorithm can
be regarded as [44] [46]. If the graph is directional and closely connected, we can
also let R C= =   and set the corresponding R and C weights.

While it may not be straightforward to implement in a centralized or

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 126 American Journal of Computational Mathematics

semi-centralized network, let us illustrate by example. Consider a four-node star
network consisting of {1, 2, 3, 4}. Let node 1 be located in the center, and nodes
2, 3, and 4 be connected to node 1. In this case, we can use the matrices R and C
are set to

1 0 0 0
0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5

R

 
 
 =
 
 
 

,

1 0.5 0.5 0.5
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

C

 
 
 =
 
 
 

As an illustration, Figure 1 shows the network topology diagram of R and

C . The central node pushes information such as 1,kx to other neighbor nodes
through R . And other nodes or neighbors can only passively wait for the in-
formation of the sending node.

At the same time, the node collects information about ,i ky from the feed-
back information through C , and other nodes can only passively comply with
the request from node 1. This very intuitively shows the name of the push-pull
algorithm. Although the related nodes 2, 3, and 4 update their information, these
numbers do not need to participate in the optimization process. Due to the last
three rows of C weights, they are geometrically fast, will disappear. In this case,
we can set the local step size of 2, 3, 4 to 0 as a matter of course. In general, we
can assume that ()1 0,f x x= ∀ , then we can make ()4

2 ii f x
=∑ become a cen-

tralized algorithm. The master node uses 2, 3, 4 Calculated by distributed gra-
dient method.

The above example is more of a semi-centralized case. Node 1 cannot be re-
placed by a strongly connected subnet in R and C, but 2, 3, and 4 can be replaced
by different nodes, as long as the information of these subnodes can be passed to

R . In the subordinate agent layer of the above, the theory is discussed in the
next section. The layer in C , using the concept of the root tree, can be unders-
tood as the specific requirement of the subnet connectivity. In the network, his
role is similar to the role of node 1, we call it the leader, and other nodes are
called followers. One thing we want to emphasize here is that a subnet can be
used to replace a node, but after the replacement, all subnet structures are de-
centralized, and the relationship between the leader and the subnet is subordi-
nate. This is what we call a semi-centralized architecture.

Figure 1. Network topology of R and C .

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 127 American Journal of Computational Mathematics

2.3. Proof of Convergence
In this section, we will study the convergence of the algorithm. First, we define

T1
k kx u x

n
= , T11k ky y

n
= . Our thinking is based on the linear constraint

1kx x+ −


 , 1 11k k Rx x+ +−


, 1 1k k Cy y+ +−


 for binding. Among them, R⋅

and C⋅ are defined later. He is a specific specification. On this basis, a linear
system can be established, which belongs to the inequality.

Algorithm analysis According to Formula (2-7), we can get

()T T
1

1 1
k k k k kx u R x y x u y

n n
α α+ = − = −
 

 (2-12)

() ()()

() ()()

T
1 1

T
1

11

11

k k k k

k k k

Cy F x F x
n

y

Fy F x x
n

+ +

+

+ ∇ ⋅∇

= + ∇ ⋅∇

=
 (2-13)

Let’s further define, ()T11 1k kg F x
n

∇= ,

T1a u
n

α′ =  (2-14)

From (2-8) and (2-10) we get 0a′ >
Then we can get

()

() ()

T
1

T

1

1

k k k k k

k k k k k k

x x u y y y
n

x a g a y g u y y
n

α

+ = − − +

′ ′= − − − − −

 

    

 


 (2-15)

According to the above definition we can get

()

()

()

T
1 1

T

T T

11 1

11

1 11

k k k k k k

k k k

k k k

x R x y u y
n

R x R u y
n

R u x R u y

x x

x

x
n n

α α

α

α

+ +− = − − +

 = − − − 
 

   = − − − −   
   

  

  

   

 (2-16)

Similarly available

()

() ()()

T
1 1

T
1

11

11 1

k k k k

k k

y y C y y
n

F x F x
n

+ +

+

 − = − − 
 
 + − ∇ −∇ 
 

  

 

 


 (2-17)

According to 1kx x+ −


 , 1 11k k Rx x+ +−


, 1 1k k Cy y+ +−


 lemma we build a
linear system of inequality

1

1 1

1 1

1 1
k k

k k k kR R

k k k kC C

x x x x

x x A x x
y y y y

+

+ +

+ +

   − −
   

− ≤ −   
   − −      

 

 

 

 

 

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 128 American Journal of Computational Mathematics

Here the inequality is calculated by component, and the transformation ma-
trix element ijA a =   can be obtained

11

21
2

31 ,2 2 2

1
ˆ

ˆ
R R

o C

a a
a a L
a ac R L

µ
σ ν

δ υ

′ − 
   =   
     



12

22

32

,2 2 2 2

ˆ

ˆ1

ˆ

R R

o C

aL
na

La a
na

Lc L R I a R
n

σ ν

δ υ

 
 
       = +           − +     

2
12

22
,

32 2
,2 2

ˆ

ˆ
ˆ

R R C

C o C

a u
a

na
ac

a
ac R L

δ
σ δ

 
   
   =   
     +  

It’s here ˆ max ia a= , T11o
C

c I
n

υ= − .

According to the previous inequality linear system, we know that when the
spectral radius () 1Aρ < is satisfied, 1kx x+ −



 , 1 11k k Rx x+ +−


, 1 1k k Cy y+ +−



converge to 0 at a linear rate ℴ ()()kAρ . The problem to be explained next is
() 1Aρ < .
Given a nonnegative irreducible matrix 3 3

ijmM ∗ ∈=    , 1,2,3i = and
*

ijm λ< , then () *Mρ λ< is ()* 0I Mλ − > Necessary and sufficient condi-
tions.

We now give convergence results for the proposed algorithm.
We assume that in the algorithm (1-1), 0M > in ˆa Ma′ ≥ , we get

()3
2

,2 22 2 1 3

12ˆ min ,
24

C

C C

ca
R Lc c c c

σ
σ δ

 − ≤  
+ +  

 (2-18)

Among them 1 2 3, ,c c c will be given later. In this way, when the spectral ra-
dius () 1Aρ < is satisfied, 1kx x+ −



 , 1 11k k Rx x+ +−


, 1 1k k Cy y+ +−


 con-
verges to 0 at a linear rate ℴ ()()kAρ .

We prove that according to the above lemma, we guarantee that 11 22 33, , 1a a a < ,
and

()
()()()
() () ()

()()()

11 22 33 23 31 13 21 32

22 13 31 11 23 32 11 12 21

3
2

11 22 33 , 2, 2 2

2
2

2, 2 2 2 2

det

1 1 1

1 1 1

ˆ1 1 1

ˆ ˆ

R o R C C

R o C R

I A

a a a a a a a a

a a a a a a a a a

La a a a a c R v
n

L La c u v R I a R v
n n

σ δ δ

σ δ

−

= − − − − −

− − − − − −

′= − − − −

 − − + 
 

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 129 American Journal of Computational Mathematics

()

()

()

2
2

2, 222 2 2

, 2, 112 2 2

2

332

ˆ 1

ˆ ˆ 1

ˆ 1 0

o C

R o R C C

R

La c R v u a
n

La c L R I a R v a
n

La a v a
n

δ

σ δ δ

σ

− −

 − − + − 
 

′− − >

 (2-19)

The small problem now is to explain that 11 22 33, , 1a a a < make the above
formula hold.

First, 11 1a < , ()
22

1
1

2
Ra

σ−
− ≥ and ()

33
1

1
2

Ca
σ−

− ≥ are guaranteed in

the selected
()

2a
Lµ

′ ≤
+

, we can get

() ()
,2 2

1 1
ˆ min ,

2 2
C C

R o CR

n
a

v L c R L
σ σ

σ δ

 − − ≤  
  

 (2-20)

Secondly, the sufficient condition for making ()det 0I A− > is to replace
()111 a− with ()1 2Cσ− , and the rest is similar, so that ˆa Ma′ = . We can get

2
1 2 3ˆ ˆ 0c a c a c+ − < .
Here we explain 1 2 3, ,c c c

()

3 2

1 ,2 , ,2 ,2 2 2 2

3

,2 2 2

2

,2 ,2 2 2

R o C R C R o C R C

R o C R

R o C R C R

L Lc M c R v M c R v
n n
Lc R v u

n n
Lc R v M n L v u L

n n

σ δ δ µσ δ δ

σ δ

σ δ δ µ

= +

+

 = + + 

 (2-21)

get

()

()

2

2 ,2 2 2 2

2

,2 2 2

2

,2 , 2

1
2

1
2

R o C R

o C CR

R
R o C R C C R

Lc c R v u R I
n

Lc R v u
n

LM c R I L M v
n

σ δ

δ σ

σσ δ δ µ σ

= −

+ −

+ − + −

 (2-22)

And then

()()
3

1 1
4

C Rc M
σ σ

µ
− −

= (2-23)

As discussed above

3
2

2 2 1 3

2ˆ
4

ca
c c c c

≤
+ +

 (2-24)

From this we get the final limit of â .

3. Finite-Time Convergence Algorithm

Now we introduce the optimization algorithm for finite-time convergence.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 130 American Journal of Computational Mathematics

Compared with most existing distributed convex optimization algorithms that
can only achieve exponential convergence, this algorithm can achieve finite-time
convergence. The convergence of the algorithm can be guaranteed by Lyapu-
nov’s finite-time stability theory.

3.1. Algorithm Introduction

Consider a network with N nodes. Each node on the network has its own cost
function, expressed as :if

+ →  , which is strictly convex. All nodes coope-
rate to obtain the optimal value of the target cost function. In order to better de-
sign the algorithm, we give the following assumptions:

Assumption 3.1: The upper-layer communication topology network is undi-
rected and connected.

Assumption 3.2: For each proxy node i∈ of the network, his cost function

if is second-order continuously differentiable strongly convex, the convex pa-
rameter 0iθ > , and the Hessian matrix 2

if∇ meets the local Lipschitz condi-
tion.

From this we get

() ()()() () ()
()

12

*0 ,
i

a
i i i ij j ij

i i

x t f x t a Sig x t x t

x x i

γ
−

∈
 = ∇ −

 = ∀ ∈

∑ 


 (3-1)

where n
ix ∈ represents the state of node i, and γ +∈ is a gain constant

that can be used to improve the convergence speed of Aijie;
() (){ }: ,iN j i j= ∈ ∈   means The set of all neighbor nodes of node i; ija is

an element of the adjacency matrix A; 0 1a< < .
And *

ix is the optimal value of cost function if .
Note 3.1: The algorithm (3-1) is inspired by continuous time zero gradient

[10] and finite time consistency protocol [20]. From the first formula,

()() ()()() () () ()2d 0
d

a
i i i i i ij j i

i i i i
f x t f x t x t a Sig x t x t

t ∈ ∈ ∈ ∈

∇ = ∇ = − =∑ ∑ ∑∑
   

.

From the second formula, we can get ()()0 0i ii f x
∈
∇ =∑ 

, So it is easy to get

the gradient and satisfy

()() 0, 0i ii f x t i
∈
∇ = ∀ ≥∑ 

where () ()
i

a
ij j ij a Sig x t x t

∈
−∑ 

 can ensure that the algorithm achieves fi-
nite-time consistent convergence, that is, there is a convergence time T and a
convergence state x . For i∀ ∈ , both have ()limt T ix xt→ =  and

() () 0ii f Fx x
∈
∇ = ∇ =∑  


. From the hypothesis 2, we know that ()()F x t

Strongly convex has only one optimal value *x , and satisfies

() ()* * 0iiF x f x
∈

∇ = ∇ =∑ 
. The above analysis shows that *x x= , which shows

that at the upper level, this algorithm can solve the problem we raised. It should
be noted that when 1α = , the algorithm only achieves progressive convergence.

3.2. Convergence Analysis

Theorem 3.1: Based on assumptions 1 and 2, our proposed algorithm can solve

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 131 American Journal of Computational Mathematics

the target problem in a finite time, and the bound of its convergence time is T. It
also shows that () *limt T x t x→ = Where T satisfies:

()()

()

1
2

0
1

22

4

41

a

a

V t
T

a

x

λγ

−

+≤
 −  Θ 



 (3-2)

Among them () () () ()()TT T T
1 2, , , nN

Nx t x t x t x t= ∈  ;

()T* *T *T *T, , ,x x x x=  ; () ()T*T *T *T
0 1 2, , , Nx t x x x=  , ()V x is a continuous posi-

tive definite Lyapunov function, 2λ is the algebraic connectivity related to the
topological graph, and 0Θ > is a constant related to ()if i∈ .

Proof: This part of the Lyapunov method gives a proof of Theorem 3.1. First,

()() () ()() ()() ()()T* *
i i i i i ii VV x t f x f x t f x t x x t

∈
= − −∇ −∑ (3-3)

This function is given in [10]. Based on Hypothesis 3.2, ()()V x t is a
second-order continuously differentiable function. It is also known that

()()V x t is a locally strongly convex function.
Next, for convenience of derivation, we give the following definitions:
For i V∈ , if is a local strongly convex function. From the above formula,

we know that iU is a compact set. In order to take advantage of the strong
convex function, we need to find another convex compact set, so we let

()i iU conv U U∈=  , where “ conv “ represents a convex set From hypothesis 3.2,
we can know that ()iU i∈ is a compact set, U is a convex compact set and sa-
tisfies *0, , it i x U U∀ ≥ ∀ ∈ ∈ ⊂ is based on the convex compact set U, for
every i∈ , combined with hypothesis 3.2, there will be i iθΘ ≥ satisfying

() ()() () ()
2 2* * ,

2 2
i i

i ii ix x t V x t x x t x t Uθ
∈ ∈

Θ
− ≥ ≥ − ∈∑ ∑ 

 (3-5)

From (3-5), we can get V ()() 0V x t ≥ , when ()x t U∀ ∈ . Considering the
derivative of V with respect to time, then for ()x t U∀ ∈ , the following relation-
ship exists

()() () ()()T

2 i j i iji j NV x t x t x tγ ϕ
∈ ∈

= −∑ ∑ (3-6)

where () () a
ij ij j ia Sig x t x tϕ = − , we can get

() ()() () () ()T 1
0, 0

a
j i ij j ix t x t x t x t Vϕ

+
− ≥ − ≥ ≤ if and only if the equation

() *x t x= holds, so V can be used to prove Theorem 3.1.

In addition, ()() ()()() ()2d 0
d i

i i i i i ij
i i i ij N

f x t f x t x t
t

γ ϕ
∈ ∈ ∈ ∈

∇ = ∇ = =∑ ∑ ∑ ∑
  

, com-

bining the existing initial conditions, we can get the following properties

()() 0i ii f x t
∈
∇ =∑ 

. We set () ()1
iit x t U

N
η

∈
= ∈∑ 

, there are

() ()()*F x F tη≤ And can get the following inequality

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 132 American Journal of Computational Mathematics

()() ()() ()() ()() () ()()T
i i i i iiV x t F t f x t f x t t x tη η

∈
≤ − −∇ −∑  (3-7)

Combining (1-4) for ()x t U∈ , (3-7) can be written as

()() () () () ()() ()
2

T1 ,
2 2

i i
i i ni jV x t x t x t x t I x t

N N∈ ∈

Θ Θ
≤ − = ⊗∑ ∑ 

  (3-8)

where { }max i i∈Θ = Θ


,  is the complete graph of graph  , then combining
Cauchy's inequality and (3-6), we can get

()() () ()

() ()

() ()() ()()

1
2 2

1
22

1
T 2

2

1 12
2 2

12
2

i

i

a

j ii j N

a

j ii j N

a

n

V x t x t x t

a x t x t

a x t I x t

γ

γ

γ

+

∈ ∈

+

∈ ∈

+

 ≤ − −

 
 

 

−
≤ − −

−
= −

 

⊗

∑ ∑

∑ ∑





 

 (3-9)

Due to () ()() ()() () ()()()()T T
2 n nx t I x t N x t I x tλ ⊗ ≤ ⊗    , Combining

(3-8) we get:

()() ()()
1

122 2
4

2

a
a

V x t V x tγ λ
+

+ 
 
 

≤ −
Θ

 (3-10)

Combined with the finite-time stability theorem proposed earlier, we can get
that our algorithm is convergent, then there is a time T, ()()lim 0t T V x t→ =

()() ()0V x t t T≡ > . That is ()() *limt T V x t x→ = , In addition, the bound of T

can be obtained from Theorem (3.1)
()()

()

1
2

0
1

22

4

41

a

a

V t
T

a

x

λγ

−

+

 
− 



≤

 Θ



. Among them, the

convergence speed is related to parameters such as algebraic connectivity 2λ ,
function curvature , ,,if γ αΘ , etc.

3.3. Simulation

In this section, a simulation experiment is given to demonstrate the effectiveness
of the algorithm in this section. We set up a 6-node network topology diagram,
as shown in Figure 2. His adjacency matrix is 1 ijA a =   and 2 ijA a =   . The
cost function of each node is

() () ()6 21 3 , 1,2, ,6.
8 4if x x i x i i= − + − =  (3-11)

It can be obtained that the optimal value of each node satisfies *
ix i= ,

{ }1,2, ,6i∈  . The optimal value of Equation (1-1) is calculated as * 3.5x = ,
()()0 130.168V x = . Combining the convex compact set U in the proof, we can

get 1 41.6538Θ = , 2 115.7049Θ = , 3 1041.3Θ = , 4 1041.3Θ = , 5 115.7049Θ = ,

6 41.6538Θ = , which means 1041.3Θ = .
In the simulation, we use the parameter values ()2 1 0.5858λ = , 0.5α = ,

10γ = , and the simulation results are shown in Figure 3.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 133 American Journal of Computational Mathematics

Figure 2. Six-node network topology.

Figure 3. ()2 1 0.5858, 0.5, 10λ α γ= = = .

4. Push-Pull Fast Convergent Distributed Cooperative
Learning Algorithm

This chapter aims to combine and generalize the previously proposed algorithms
to practical applications, such as common machine learning scenarios. Inspired
by the previous algorithm, we will design a fast convergent distributed coopera-
tive learning (P-DCL) algorithm based on a linear parameterized neural network
based on push-pull mode. In the first step, a P-DCL algorithm based on conti-
nuous-time convergence in push-pull gradient mode is first given. In the second
step, we give a convergence analysis of the algorithm based on the Lyapunov
method. In the third step, for the practical effect of the algorithm, we use the
fourth-order Runge-Kutta (RK4) method to discretize the algorithm. In the
fourth step, the distributed ADMM algorithm and the push-pull gradient-based
(P-DCL) algorithm simulation are given. Experiments show that our proposed
algorithm has higher learning ability and faster convergence speed. Finally, we
give the relationship between the algorithm’s own convergence speed and some
parameters. Simulation results show that the convergence speed of the algorithm
can be effectively improved by properly selecting some adjustable parameters.

Restatement: In order to construct the algorithm systematically, the problem
formation is given first, and then the local cost function is analyzed. Then the

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 134 American Journal of Computational Mathematics

relationship between global cost function and local cost function solution is giv-
en.

Consider a network with N nodes. Each node i∈ in the network contains

iM +∈ samples, and each sample set can be expressed as () (){ }1
i k kM

i k i iD U X Y== ,
Where () (){ }k k

i iX Y , represents the k-th sample on the i-th node, so for each
node, their local cost function can be expressed as:

() () 2 2
22

1
2 2

loc i
i i i i i iE W Y S Y W Wδ

− + (4-1)

l n
iW ×∈ is the learning weight of the i-th node, iM m

iX ×∈ represents the
sample of the i-th node; iY and ()i iS Y W represent the expectations of 𝑖𝑖
With the output, iδ is a non-negative constant. In this way, the optimal learn-
ing weight of node i can be easily obtained.

() ()() ()
1T T*

i i i i l i iW S X S X I S X Yδ
−

= + (4-2)

If all the node samples satisfy
1

N
ii M M

=
=∑ , the adjustment parameters of all

nodes satisfy
1

N
ii Kδ

=
=∑ . Then the W-optimal global cost function (1-7) is

equivalent to the sum function of the local cost functions of each node.

() ()1
Nglob loc

iiE W E W
=

= ∑ (4-3)

As mentioned earlier, there are many distributed solving algorithms for this
problem that can achieve progressive convergence. Next, what needs to be done
is to design a fast distributed optimization algorithm, such as the following re-
quirements:

{ }*lim , 1, ,t T iW W i N→ → ∈  (4-4)

This shows that all nodes can converge to the optimal learning weight *W in
a finite time T.

From the above analysis, the global cost function (1-7) can be written as:

()1
*

min

s.t. 0, 1, ,

N
i ii

i

E W

W W i N
=




− = =

∑


 (4-5)

This is often referred to as global consistency. Unlike the traditional mul-
ti-agent consistency problem, the result of consistency convergence here has no
specific meaning. Consistency has a long history of research. The basic concept
is that all nodes in all networks eventually reach the same state through informa-
tion exchange with neighbors. From the perspective of learning, an efficient
learning algorithm is very necessary. For distributed cooperative learning algo-
rithms, their learning rate is an important measurement index of their algo-
rithm. However, in real life, it is more necessary to reach a valid result within a
certain time, which also prompts us to design a fast consensus learning coopera-
tion algorithm.

4.1. Fast Convergent Distributed Algorithm

Here, based on the linear parameterized neural network, a distributed strategy

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 135 American Journal of Computational Mathematics

for the target problem is given. To build a better construction algorithm, the
following assumptions are given first:

Hypothesis 4.1 assumes that the network topology  is undirected and
connected.

Based on the previous analysis, the distributed cooperative learning algorithm
in continuous time gives:

() () ()() () ()

() () ()() ()

1T

1T T
0

,
ii i i i l j ij N

i i i i l i i

W t S X S X I Sig W t W t

W t S X S X I S X Y

β
ρ δ

δ

−

∈

−

 = + −

 = +

∑
 (4-6)

where Rρ +∈ is a constant used to adjust the convergence rate. 0 1β< < ,

,i ja is an element in the adjacency matrix  ;
() () () ()() () ()j i j i j iSig W t W t Sig W t W t W t W t

β β
− = − − , Figure 4 can show

the operation of the algorithm more intuitively.

Let () () () ()
TT T T

1 2, , , lN n
NW t W t W t W t × = ∈ 



  ,

() () () ()1 2, , , M lN
NQ X diag S X S X S X × ∈=   , ()1 2, , ,l l N ldiag I I Iδ δ δ∆ =  ,

The algorithm can be written as a matrix:

() () ()() () ()() () ()

() () ()() ()

1T

1T T
0

lN l lW t Q X Q X I Sig I W t I W t

W t Q X Q X Q X Y

β
ρ

β

−

−

 = + ∆ − ⊗ ⊗

 = + ∆

  





 
 (4-7)

Note 4.1: The above algorithms are inspired by [47]. Linear consistency algo-
rithms can achieve progressive convergence, while cruise ship consistency algo-
rithms that can achieve limited time convergence mostly use symbolic functions
[20] [39]. ()() () ()d 0

d ii i ij j ii i iE W t a Sig W t W t
t

β

∈ ∈ ∈
∇ = − =∑ ∑ ∑  

, by setting
() *0i iW W= , there is ()() 0i ii E W t

∈
∇ =∑ 

, so it is easy to get the gradient sum
of the node cost function Satisfies ()() 0, 0i ii E W t t

∈
∇ ≡ ∀ ≥∑ 

, and because
()()E W t is a strong convex function, that is, it has only one optimal. The value

also reflects that the algorithm we mentioned does have a solution.
Theorem 4.1: The algorithm (4-7) can achieve the goal in a finite time T,

where time T satisfies:

Figure 4. Algorithm (4-6) running on i-node.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 136 American Journal of Computational Mathematics

()()

()

1
2

0
1

22

4

41

V W t
T

β

β

λρ β

−

+≤
 −  Θ 



 (4-8)

where ()()0V W t is a second-order continuous positive definite function, β is
a constant in the algorithm (4-7), () * *

0 1 ; ; NW t W W =  



; 2λ is related to the

network topology Graph-related algebraic connectivity. Θ is a constant related
to the cost function of all nodes; ρ is the gain constant in the algorithm.

Proof: Based on the Lyapunov method, a rigorous proof of Theorem 4.1 is
given next. Before certification, some related work needs to be prepared. First,
select:

()() ()() ()() ()()

()() () ()() ()()

T* 2 *

T T* *

1
2
1
2

i i i ii

i i i i l ii

V W t W W t E W t W W t

W W t S X S X I W W tδ

∈

∈

= − ∇ −

= − + −

∑

∑







 (4-9)

As a Lyapunov candidate function, : lnNV →  . Since

() ()()T 0i i i lS X S X Iδ+ > , then we can get ()() () *0,V W t W t W> ∀ ≠  , change

In other words, ()()V W t in the Formula (4-9) is positive definite. In addition,

()() ()() ()() ()()
()() ()() ()() () ()()

T T* *

T

i i i ii

i i i i i ii

V W t W W t E W t W W t

E t E W t E W t t W tη η

∈

∈

= − −∇ −

≤ − −∇ − −

∑
∑







,

where () ()1
iit W t

N
η

∈
= ∑ 

, then:

()() () ()

() ()() ()

2

T

1
2

,
2

i
i ji j

n

V W t W t W t
N

W t I W t
N

∈ ∈

Θ
≤ −

Θ
= ⊗

∑ ∑



 

 

 (4-10)

where ()()()2
maxi i iE W tλΘ = ∇ , { }max i i∈Θ = Θ


, ()  , ()  is the Lapla-

cian matrix of  , and  is completely Figure of  .
Next, by calculating the inverse of ()()V W t , we can get

()() ()() () ()() ()

()

T T*

T*

i i

i i i i l ii

ij i iji i N i i N

V W t W W t S X S X I W t

W W t

δ

ϕ ϕ

∈

∈ ∈ ∈ ∈

= − − +

= +

∑

∑ ∑ ∑ ∑





 

 (4-11)

where () (){ }: ,iN j i j ε= ∈ ∈  represents the neighbor of node i,
() ()() () ()ij ij j i j ia sig W t W t W t W t

β
ϕ = − − , we can get ij ijϕ ϕ= − , which also
means

0
i iji i N ϕ∈ ∈

=∑ ∑ (4-12)

In addition, it can be concluded

() ()() ()

() () ()

TT

1

2

2

i i

i

i ij j i iji i N i i N

j ii i N

W t W t W t

W t W t
β

ρϕ ϕ

ρ

∈ ∈ ∈ ∈

+

∈ ∈

= − −

≤ − −

∑ ∑ ∑ ∑

∑ ∑

 



 (4-13)

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 137 American Journal of Computational Mathematics

Combining Formula (4-12) and Formula (4-13) Formula (4-11) can be written
as

()() () () ()

() ()
()

() ()
()

() ()() ()()()

1

12

11
2

2

1 1T2

2

2
12
2

2

i

i

i

j ii i N

j ii i N

j ii i N

n

V W t W t W t

W t W t

W t W t

W t I W t

β

β

ββ

β β

ρ

ρ

ρ

ρ

+

∈ ∈

+

∈ ∈

+−

∈ ∈

− +

≤ − −

 = − −  

 = − − 
 

= − ⊗

∑ ∑

∑ ∑

∑ ∑



 







 

 (4-14)

This indicates that ()()V W t is negative. Since
() ()() ()() () ()() ()()T T

2 n nW t I W t N W t I W tλ ⊗ ≤ ⊗       , Formula (4-14) can
be obtained

()() ()()
1

122 2
4

2
V W t V W t

β
βρ λ

+
+ ≤ −  Θ 

  (4-15)

we can get that the proposed algorithm (4-7) is stable for a finite time, so there is
a time T here, with ()()lim 0t T V W t→ = , ()() ()0V W t t T≡ → , that is,

() *limt T W t W→ =  . Can be combined with theorem 4.1 from Formula (4-15) to
get

()()

()

1
2

1
22

4

41

V W t
T

β

β

λρ β

−

+≤
 −  Θ 



 (4-16)

Based on the above analysis, we can get that the algorithm proposed in this
chapter can indeed find the optimal value of (1-7) in a limited time.

4.2. Fast Convergent Discrete-Time Distributed Cooperative
Learning Algorithm

Based on the algorithm of (4-6), this section gives the discrete form:

() () ()

() () ()()
() () () () ()

() () () () ()

() () () () ()

()

1 2 3 4

1

1
2 1

2
2 2

3
2 3

*

1 2 2
6

, ,

, , ,
2 2 2

, , ,
2 2 2

, ,
2 2 2

0

i

i i

i i

i i

i i i i i i

i i i N

i i i i N N

i i i i N N

i i i i N N

i i

hW k W k

f t k W k W k

h h hf t k W k W k F k

h h hf t k W k W k F k

h h hf t k W k W k F k

W W

µ µ µ µ

µ

µ µ

µ µ

µ µ

 + = + + + +


=


  = + + +   


  = + + +   


  = + + +   


=

 (4-17)

()()iW k i∈ represents the k-th estimate of the i-th node with respect to
*W . h represents the iteration step size; () i

i i

l n N
N j j N

W W ×

∈
= ∈ , where ⋅

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 138 American Journal of Computational Mathematics

represents the cardinality of the set.

() ()() () ()() () ()
1T, ,

i ii i N i i i l ij j ij Nf t W k W k S X S X I a sig W t W t
β

ρ δ
−

∈
= + −∑ ,

() () () i
i i

l n Nm
N jm j N

F k Rµ ×

∈
= ∈ , 1,2,3m∈ . In addition, Figure 5 can more intui-

tively show the iterative process of the discrete algorithm (4-17).
Note 4.2: In order to obtain good control performance or simplify the design

process, usually in the design process of modern industrial control, we need to
discretize a continuous-time system. In addition, effective discretization can not
only reduce time and space costs, but also improve the learning accuracy of the
algorithm. Methods like pulse invariance methods, pole-zero mapping methods,
and triangle-equivalent equivalence are commonly used to convert conti-
nuous-time systems into equivalent discrete systems. Runkutta (RKK) algorithm
with high accuracy and good stability is widely used. Therefore, we use the
fourth-order RK (RK4) to process the discretization algorithm (4-6). However,
for node i, we need to add 4 iN communications for each step. In other words,
using the RK4 method for calculation increases the complexity of the calcula-
tion.

4.3. Two Types of Discrete Distributed Cooperative Learning
Methods

In this section, we present two distributed cooperative learning algorithms to be
compared with our algorithm (4-17). Specific comparison results can be found
in the simulation section.

4.3.1. Distributed ADMM Algorithm
The algorithm achieves the global goal of the algorithm through each commu-
nication with the remaining nodes.

Figure 5. Algorithm (4-17) running at point i.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 139 American Journal of Computational Mathematics

() () ()() () ()

() () ()() ()

1T

1T T

1

0

i i i l i i

i i i l i i

W k S X S X I Y t k k

W S X S X I S X Y

ρ γ γ

γ

−

−

 + = + − +

 = +

z
 (4-18)

where 0γ > is a tuning function, ()1 W tk K
N

γ

γ

+
+ =

+





z ; ()1ˆ 1iiW W k
N ∈

= +∑ 
;

()ˆ
iit t k

∈
= ∑ 

, among them () () () ()()1 1 1i i it k t k W k kγ+ = + + − +z . For a

more detailed description of the algorithm (4-18), you can refer to [42].
Note 4.3: The ADMM algorithm is actually a constrained optimization algo-

rithm, where the constraint is , 1, ,iW i N= = z . From the above algorithm
form, we can know that the ADMM algorithm is not a completely distributed
algorithm, and each iteration of it requires the information of all nodes rather
than the information of neighbors. So this algorithm is only suitable for fully
connected undirected network topologies. It is known from [43] that the algo-
rithm is asymptotically convergent.

4.3.2. Distributed Cooperative Learning Algorithm Based on
Zero-Gradient Sum

Unlike the distributed ADMM algorithm, this algorithm only needs the infor-
mation of the neighbor nodes for each iteration.

() () ()() () ()() ()

() () ()() ()

1T

1T T

1

0

ii i i i l ij j i kj N

i i i i l i i

W k S X S X I a W k W k W k

W S X S X I S X Y

ρ δ

δ

−

∈

−

  + = + − +  

 = +

∑
(4-19)

Lemma ([41]): If the topology graph  is connected, the parameter ρ is

taken from ()max0, p , where
() (){ }max

max max 1

2
max

N
i i

p
λ λ

=

=
Ω

, then the

algorithm (4-19) can find the optimal value of the target cost function, and
() ()()T

i i i i lS X S X IδΩ = + .
Note 4.4: Like the algorithm (4-19), the algorithm mentioned in this chapter is

also constrained by the zero-gradient sum, which can help us find the global best
advantage faster. In particular, when the parameter 1β = in the algorithm
(4-6), it is equivalent to the algorithm (4-19). In addition, the algorithms (4-19)
and (4-6) are completely distributed algorithms and can be applied in distri-
buted connection networks. But the algorithm (4-19) can only achieve asymp-
totic convergence.

5. Simulation

In this section, we consider numerically verifying our conclusions on real data
sets in several different network situations. First, we give the comparison results
of different algorithms based on different parameters of different data sets. Four
different network topologies are given and their algebraic connectivity 2λ is
calculated. Secondly, in order to simplify the calculation, each node is assigned

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 140 American Journal of Computational Mathematics

the same training sample and the same adjustment constant iδ . Finally, maxρ
is calculated by lemma, and corresponding simulation parameters are set, such
as the number of hidden neurons l, gain constants ρ , γ and iδ .

In order to better show the comparison results of the algorithms, the general
form of the mean square error (MSE) is given. The MSE of the k-th iteration of
the i-th node is defined as follows:

() () () 2

2i i i iMSE k Y S Y W k− (5-1)

In addition, the MSE of the entire network at the k-th iteration can be written
as follows:

() () () 2

1 2

1 Nall
i i iiMSE k Y S Y W k

N =
−∑ (5-2)

By using the transformation ()[] ()()1010logall allMSE k db MSE k= to enlarge
the error, the error curve of the iterative process can be more clearly shown.

We choose () ()sinf x x= as the objective function. The sample set { },X Y
is =10,000 samples generated from the random set [−1.1]. We take () { } 1, ,

i
i l

S x x
=

=


as our basis function and choose a four-node network as the network topology
graph, where the adjacency matrix []0,1,0,1;1,0,1,0;0,1,0,1;1,0,1,0= , and

2 2λ = , each node is evenly distributed to 2500iN = samples, where iδ starts
from [0,1] In the experiment, we randomly selected the results: 1 0.3842δ = ,

2 0.7459δ = , 3 0.9625δ = , 4 0.0321δ = , and 2.168K = . The distributed
learning weights are [0.9813, 0.0002, −0.0813, −0.0003, −0.0734, −0.0002,
−0.0196, 0.0001, 0.0078, 0.0001, 0.0156, 0, 0.0130]. By making a difference, it is
obvious that distributed is very close to centralized. In particular, let

()()()2
maxi i iE W tλΘ = ∇ , Then you can get 1 1681.5Θ = , 2 1812.8Θ = ,

3 1840.2Θ = , 4 1742.9Θ = , so { }max 1840.2i iΘ = Θ = , Similarly, we can get
()()0 0.0131V W t = , Combining Lemma gives 31398 sT ≤ , In order to show

the convergence speed of the proposed algorithm more clearly, we randomly se-
lect a component of W to display. Its convergence speed can be seen in Figure 6.
From the figure, the convergence time 130 s 31398 st <  can be obtained.

Combined with Theorem 4.1, the relationship between the convergence speed
and parameters of the algorithm will be given intuitively in this part. Figure 7
serves as our network topology. Figure 8 shows the comparison of different al-
gorithms on the data set. We use the control variable method for research. The
initialization parameters are 20l = , 0.5ρ = , 0.02β = , 2 2λ = , 0.02h =
and 0.03iδ = . Based on three different algebraic connectivity, Figure 9. The
effect of algebraic connectivity on the convergence speed of the algorithm is
shown intuitively. Figure 10 shows the effect of different parameters ρ : 5ρ = ,

1ρ = and 0.5ρ = on the convergence error. It can be seen from the figure
that the larger the gain constant ρ , the faster the convergence speed. Figure 11
shows the effect of different values of parameter β on the convergence error. The
parameters are 0.02β = , 0.1β = , 0.3β = and 0.6β = respectively. It can be
seen from the figure that the smaller the β, the faster the convergence speed.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 141 American Journal of Computational Mathematics

Figure 6. iW convergence effect diagram.

Figure 7. Random undirected network topology.

Figure 8. Different algorithms working with data sets.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 142 American Journal of Computational Mathematics

Figure 9. Effect of different 2λ on algorithm convergence.

Figure 10. Effect of different ρ on algorithm convergence error.

Figure 11. The effect of different β on the convergence error of the algorithm.

https://doi.org/10.4236/ajcm.2020.101008

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 143 American Journal of Computational Mathematics

6. Conclusions

In this paper, we study the distributed optimization problem on the network.
We propose a new distributed method based on push-pull finite time conver-
gence, in which each node keeps the average gradient estimation of the optimal
decision variable and the principal objective function. Information about gra-
dients is pushed to its neighbors, and information about decision variables is
pulled from its neighbors. This method uses two different graphs for informa-
tion exchange between agents and is applicable to different types of distributed
architectures, including decentralized, centralized, and semi-centralized archi-
tectures. Along with this, we introduced a fast convergent distributed coopera-
tive learning algorithm based on a linear parameterized neural network.
Through strict theoretical proof, the algorithm can achieve finite-time conver-
gence under continuous time conditions. In the simulation, we have investigated
the influence of different parameter changes on the convergence speed, and also
proved the effectiveness of the algorithm compared with some typical algo-
rithms. In the future work, we can properly promote and apply the proposed
distributed cooperative learning algorithm to large-scale distributed machine
learning problems.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Lu, J., Regier, P.R. and Tang, C.Y. (2010) Control of Distributed Convex Optimiza-

tion. Decision and Control, 58, 489-495. https://doi.org/10.1109/CDC.2010.5717015

[2] Chen, W.S. and Ren, W. (2016) Event-Triggered Zero-Gradient-Sum Distributed
Consensus Optimization over Directed Networks. Automatica, 65, 90-97.
https://doi.org/10.1016/j.automatica.2015.11.015

[3] Patriksson, M. and Strömberg, C. (2015) Algorithms for the Continuous Nonlinear
Resource Allocation Problem—New Implementations and Numerical Studies. Eu-
ropean Journal of Operational Research, 243, 703-722.
https://doi.org/10.1016/j.ejor.2015.01.029

[4] Oh, K.K., Park, M.C. and Ahn, H.S. (2015) A Survey of Multi-Agent Formation
Control. Automatica, 53, 424-440. https://doi.org/10.1016/j.automatica.2014.10.022

[5] Li, C. and Elia, N. (2015) Stochastic Sensor Scheduling via Distributed Convex Op-
timization. Automatica, 58, 173-182.
https://doi.org/10.1016/j.automatica.2015.05.014

[6] Shah, S. and Beferulllozano, B. (2012) Power-Aware Joint Sensor Selection and
Routing for Distributed Estimation: A Convex Optimization Approach. IEEE In-
ternational Conference on Distributed Computing in Sensor Systems, Hangzhou,
16-18 May 2012, 230-238. https://doi.org/10.1109/DCOSS.2012.19

[7] Akbari, M., Gharesifard, B. and Linder, T. (2015) Distributed Online Convex Opti-
mization on Time-Varying Directed Graphs. IEEE Transactions on Control of
Network Systems, 4, 417-428.

https://doi.org/10.4236/ajcm.2020.101008
https://doi.org/10.1109/CDC.2010.5717015
https://doi.org/10.1016/j.automatica.2015.11.015
https://doi.org/10.1016/j.ejor.2015.01.029
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1016/j.automatica.2015.05.014
https://doi.org/10.1109/DCOSS.2012.19

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 144 American Journal of Computational Mathematics

[8] Lü, Q., Li, H. and Xia, D. (2017) Distributed Optimization of First-Order Dis-
crete-Time Multi-Agent Systems with Event-Triggered Communication. Neuro-
computing, 235, 255-263. https://doi.org/10.1016/j.neucom.2017.01.021

[9] Nedic, A., Ozdaglar, A. and Parrilo, P.A. (2010) Constrained Consensus and Opti-
mization in Multi-Agent Networks. IEEE Transactions on Automatic Control, 55,
922-938. https://doi.org/10.1109/TAC.2010.2041686

[10] Lu, J. and Tang, C.Y. (2011) Zero-Gradient-Sum Algorithms for Distributed Con-
vex Optimization: The Continuous-Time Case. IEEE Transactions on Automatic
Control, 57, 2348-2354. https://doi.org/10.1109/TAC.2012.2184199

[11] Gharesifard, B. and Corté, S.J. (2012) Distributed Continuous-Time Convex Opti-
mization on Weight Balanced Digraphs. IEEE Transactions on Automatic Control,
59, 781-786. https://doi.org/10.1109/TAC.2013.2278132

[12] Rahili, S. and Ren, W. (2016) Distributed Continuous-Time Convex Optimization
with Time-Varying Cost Functions. IEEE Transactions on Automatic Control, 62,
1590-1605.

[13] Kia, S.S., Cortés, J. and Martínez, S. (2014) Distributed Convex Optimization via
Continuous-Time Coordination Algorithms with Discrete-Time Communication.
Automatica, 55, 254-264. https://doi.org/10.1016/j.automatica.2015.03.001

[14] Kia, S., Cortes, J. and Martinez, S. (2014) Periodic and Event-Triggered Communi-
cation for Distributed Continuous-Time Convex Optimization. American Control
Conference, Portland, 4-6 June 2014, 5010-5015.
https://doi.org/10.1109/ACC.2014.6859122

[15] Liu, S., Qiu, Z. and Xie, L. (2014) Continuous-Time Distributed Convex Optimiza-
tion with Set Constraints. IFAC Proceedings, 47, 9762-9767.
https://doi.org/10.3182/20140824-6-ZA-1003.01377

[16] Doan, T.T. and Tang, C.Y. (2012) Continuous-Time Constrained Distributed Con-
vex Optimization. Allerton Conference on Communication, Control, and Compu-
ting, Monticello, 1-5 October 2012, 1482-1489.
https://doi.org/10.1109/Allerton.2012.6483394

[17] Lu, X., Lu, R., Chen, S., et al. (2013) Finite-Time Distributed Tracking Control for
Multi-Agent Systems with a Virtual Leader. IEEE Transactions on Circuits & Sys-
tems I Regular Papers, 60, 352-362. https://doi.org/10.1109/TCSI.2012.2215786

[18] Sayyaadi, H. and Doostmohammadian, M.R. (2011) Finite-Time Consensus in Di-
rected Switching Network Topologies and Time-Delayed Communications. Scientia
Iranica, 18, 75-85. https://doi.org/10.1016/j.scient.2011.03.010

[19] Chen, S., Shi, P., Zhang, W., et al. (2014) Finite-Time Consensus on Strongly Con-
vex Balls of Riemannian Manifolds with Switching Directed Communication To-
pologies. Journal of Mathematical Analysis & Applications, 409, 663-675.
https://doi.org/10.1016/j.jmaa.2013.07.062

[20] Wang, L. and Xiao, F. (2007) Finite-Time Consensus Problems for Networks of
Dynamic Agents. IEEE Transactions on Automatic Control, 55, 950-955.
https://doi.org/10.1109/TAC.2010.2041610

[21] Huang, J., Wen, C., Wang, W., et al. (2015) Adaptive Finite-Time Consensus Con-
trol of a Group of Uncertain Nonlinear Mechanical Systems. Automatica, 51,
292-301. https://doi.org/10.1016/j.automatica.2014.10.093

[22] Nedic, A., Olshevsky, A. and Rabbat, M.G. (2018) Network Topology and Commu-
nication-Computation Tradeoffs in Decentralized Optimization. Proceedings of the
IEEE, 106, 953-976. https://doi.org/10.1109/JPROC.2018.2817461

https://doi.org/10.4236/ajcm.2020.101008
https://doi.org/10.1016/j.neucom.2017.01.021
https://doi.org/10.1109/TAC.2010.2041686
https://doi.org/10.1109/TAC.2012.2184199
https://doi.org/10.1109/TAC.2013.2278132
https://doi.org/10.1016/j.automatica.2015.03.001
https://doi.org/10.1109/ACC.2014.6859122
https://doi.org/10.3182/20140824-6-ZA-1003.01377
https://doi.org/10.1109/Allerton.2012.6483394
https://doi.org/10.1109/TCSI.2012.2215786
https://doi.org/10.1016/j.scient.2011.03.010
https://doi.org/10.1016/j.jmaa.2013.07.062
https://doi.org/10.1109/TAC.2010.2041610
https://doi.org/10.1016/j.automatica.2014.10.093
https://doi.org/10.1109/JPROC.2018.2817461

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 145 American Journal of Computational Mathematics

[23] Bo, Z., Wei, W. and Hao, Y. (2014) Distributed Consensus Tracking Control of Li-
near Multi-Agent Systems with Actuator Faults. IEEE Conference on Control Ap-
plications, Nice, 8-10 October 2014, 2141-2146.
https://doi.org/10.1109/CCA.2014.6981619

[24] Gerard, M., Schutter, B.D. and Verhaegen, M. (2009) A Hybrid Steepest Descent
Method for S Constrained Convex Optimization. Automatica, 45, 525-531.
https://doi.org/10.1016/j.automatica.2008.08.018

[25] Rakhlin, A., Shamir, O. and Sridharan, K. (2011) Making Gradient Descent Optimal
for Strongly Convex Stochastic Optimization. Proceedings of the 29th International
Conference on Machine Learning, Edinburgh, 1571-1578.

[26] Ram, S.S., Nedi, A. and Veeravalli, V.V. (2010) Distributed Stochastic Subgradient
Projection Algorithmsfor Convex Optimization. Journal of Optimization Theory
and Applications, 147, 516-545. https://doi.org/10.1007/s10957-010-9737-7

[27] Ram, S.S., Nedic, A. and Veeravalli, V.V. (2009) Distributed Subgradient Projection
Algorithm for Convex Optimization. IEEE Journal of Selected Topics in Signal
Processing, 7, 221-229. https://doi.org/10.1109/ICASSP.2009.4960418

[28] Bertsekas, D.P. (2015) Incremental Gradient, Subgradient, and Proximal Methods
for Convex Optimization: A Survey. Optimization, 2010, 691-717.

[29] Defazio, A., Bach, F. and Lacostejulien, S. (2014) SAGA: A Fast Incremental Gra-
dient Method with Support for Non-Strongly Convex Composite Objectives. Ad-
vances in Neural Information Processing Systems, 2, 1646-1654.

[30] Eckstein, J. (2012) Augmented Lagrangian and Alternating Direction Methods for
Convex Optimization: A Tutorial and Some Illustrative Computational Results.

[31] Boyd, S., Parikh, N., Chu, E., et al. (2011) Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Foundations &
Trends in Machine Learning, 3, 1-122. https://doi.org/10.1561/2200000016

[32] Nedi, A. (2014) Distributed Optimization. 1-12.

[33] Gharesifard, B. and Cortes, J. (2012) Continuous-Time Distributed Convex Opti-
mization on Directed Graphs.

[34] Mateos-Núñez, D. and Cortés, J. (2014) Distributed Online Second-Order Dynam-
ics for Convex Optimization over Switching Connected Graphs. IEEE Transactions
on Network Science and Engineering, 1, 23-37.
https://doi.org/10.1109/TNSE.2014.2363554

[35] Liu, J.Y., Chen, W.S. and Dai, H. (2016) Sampled-Data Based Distributed Convex
Optimization with Event Triggered Communication. International Journal of Con-
trol Automation & Systems, 14, 1421-1429.

[36] Cheng, D.Z., Wang, J.H. and Hu, X.M. (2008) An Extension of LaSalle’s Invariance
Principle and Its Application to Multi-Agent Consensus. IEEE Transactions on
Automatic Control, 53, 1765-1770. https://doi.org/10.1109/TAC.2008.928332

[37] Meng, Z.Y., Cao, Y.C. and Ren, W. (2010) Stability and Convergence Analysis of
Multi-Agent Consensus with Information Reuse. International Journal of Control,
83, 1081-1092. https://doi.org/10.1080/00207170903581603

[38] Lewis, F.L. and Hudas, G.R. (2012) Trust Method for Multi-Agent Consensus. Pro-
ceedings of SPIE, Vol. 8387, 1-14.

[39] Cortés, J. (2006) Finite-Time Convergent Gradient Flows with Applications to
Network Consensus. Automatica (Journal of IFAC), 42, 1993-2000.
https://doi.org/10.1016/j.automatica.2006.06.015

https://doi.org/10.4236/ajcm.2020.101008
https://doi.org/10.1109/CCA.2014.6981619
https://doi.org/10.1016/j.automatica.2008.08.018
https://doi.org/10.1007/s10957-010-9737-7
https://doi.org/10.1109/ICASSP.2009.4960418
https://doi.org/10.1561/2200000016
https://doi.org/10.1109/TNSE.2014.2363554
https://doi.org/10.1109/TAC.2008.928332
https://doi.org/10.1080/00207170903581603
https://doi.org/10.1016/j.automatica.2006.06.015

X. B. Chen et al.

DOI: 10.4236/ajcm.2020.101008 146 American Journal of Computational Mathematics

[40] Meng, D., Jia, Y. and Du, J. (2016) Finite-Time Consensus for Multiagent Systems
With Cooperative and Antagonistic Interactions. IEEE Transactions on Neural
Networks & Learning Systems, 27, 762-770.
https://doi.org/10.1109/TNNLS.2015.2424225

[41] Ai, W., Chen, W.S. and Xie, J. (2016) A Zero-Gradient-Sum Algorithm for Distri-
buted Cooperative Learning Using a Feed forward Neural Network with Random
Weights. Information Sciences, 373, 404-418.
https://doi.org/10.1016/j.ins.2016.09.016

[42] Scardapane, S., Wang, D. and Panella, M. (2016) A Decentralized Training Algo-
rithm for Echo State Networks in Distributed Big Data Applications. Neural Net-
works the Official Journal of the International Neural Network Society, 78, 65-74.
https://doi.org/10.1016/j.neunet.2015.07.006

[43] Scardapane, S., Wang, D., Panella, M., et al. (2015) Distributed Learning for Ran-
dom Vector Functional-Link Networks. Information Sciences, 301, 271-284.
https://doi.org/10.1016/j.ins.2015.01.007

[44] Nedic, A., Olshevsky, A. and Shi, W. (2017) Achieving Geometric Convergence for
Distributed Optimization over Time-Varying Graphs. SIAM Journal on Optimiza-
tion, 27, 2597-2633. https://doi.org/10.1137/16M1084316

[45] Cai, K. and Ishii, H. (2012) Average Consensus on General Strongly Connected Di-
graphs. Automatica, 48, 2750-2761.
https://doi.org/10.1016/j.automatica.2012.08.003

[46] Xu, J., Zhu, S., Soh, Y.C. and Xie, L. (2015) Augmented Distributed Gradient Me-
thods for Multi-Agent Optimization under Uncoordinated Constant Stepsizes. 54th
IEEE Annual Conference on Decision and Control, Osaka, 15-18 December 2015,
2055-2060. https://doi.org/10.1109/CDC.2015.7402509

[47] Song, Y. and Chen, W. (2016) Finite-Time Convergent Distributed Consensus Op-
timisation over Networks. IET Control Theory & Applications, 10, 1314-1318.
https://doi.org/10.1049/iet-cta.2015.1051

https://doi.org/10.4236/ajcm.2020.101008
https://doi.org/10.1109/TNNLS.2015.2424225
https://doi.org/10.1016/j.ins.2016.09.016
https://doi.org/10.1016/j.neunet.2015.07.006
https://doi.org/10.1016/j.ins.2015.01.007
https://doi.org/10.1137/16M1084316
https://doi.org/10.1016/j.automatica.2012.08.003
https://doi.org/10.1109/CDC.2015.7402509
https://doi.org/10.1049/iet-cta.2015.1051

	Push-Pull Finite-Time Convergence Distributed Optimization Algorithm
	Abstract
	Keywords
	1. Introduction
	1.1. Summary
	1.2. Major Outcomes
	1.3. Organization of the Paper
	1.4. Notation

	2. Push-Pull Gradient Method
	2.1. Detailed Push-Pull Gradient Method
	2.2. Unify Different Distributed Computing Architecture Systems
	2.3. Proof of Convergence

	3. Finite-Time Convergence Algorithm
	3.1. Algorithm Introduction
	3.2. Convergence Analysis
	3.3. Simulation

	4. Push-Pull Fast Convergent Distributed Cooperative Learning Algorithm
	4.1. Fast Convergent Distributed Algorithm
	4.2. Fast Convergent Discrete-Time Distributed Cooperative Learning Algorithm
	4.3. Two Types of Discrete Distributed Cooperative Learning Methods
	4.3.1. Distributed ADMM Algorithm
	4.3.2. Distributed Cooperative Learning Algorithm Based on Zero-Gradient Sum

	5. Simulation
	6. Conclusions
	Conflicts of Interest
	References

