
World Journal of Mechanics, 2020, 10, 11-25 
https://www.scirp.org/journal/wjm 

ISSN Online: 2160-0503 
ISSN Print: 2160-049X 

 

DOI: 10.4236/wjm.2020.102002  Feb. 28, 2020 11 World Journal of Mechanics 
 

 
 
 

Analysis of the Behavior of a Square Plate in 
Free Vibration by FEM in Ansys 

Pascal Kuate Nkounhawa1, Dieunedort Ndapeu2, Bienvenu Kenmeugne3, Tibi Beda4 

1Department of Physics, Faculty of Sciences, University of Dschang, Dschang, Cameroon   
2Dschang University/IUT-FV Bandjoun, Dschang, Cameroon 
3National Advanced School of Engineering (ENSP), Yaounde Department of Industrial and Mechanical Engineering, University of 
Yaounde I, Yaounde, Cameroon 
4Department of Physics, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon 

 
 
 

Abstract 
In the realization of mechanical structures, achieving stability and balance is a 
problem commonly encountered by engineers in the field of civil engineering, 
mechanics, aeronautics, biomechanics and many others. The study of plate 
behavior is a very sensitive subject because it is part of the structural ele-
ments. The study of the dynamic behavior of free vibration structures is done 
by modal analysis in order to calculate natural frequencies and modal defor-
mations. In this paper, we present the modal analysis of a thin rectangular 
plate simply supported. The analytical solution of the differential equation is 
obtained by applying the method of separating the variables. We are talking 
about the exact solution of the problem to the limit values. However, numer-
ical methods such as the finite element method allow us to approximate these 
functions with greater accuracy. It is one of the most powerful computational 
methods for predicting dynamic response in a complex structure subject to 
arbitrary boundary conditions. The results obtained by MEF through Ansys 
15.0 are then compared with those obtained by the analytical method. 
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1. Introduction 

Structures and buildings are generally subject to increasingly complex excita-
tions. It appears essential to characterize them and then to control their vibrato-
ry behavior in order to preserve them against fatigue and rupture [1]. Structural 
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failure is generally caused by structural fatigue due to acoustic radiation and 
amplitude of vibration amplitudes in response to a deterministic or random 
forced excitation. The increasing use of the plate element in the various industri-
al sectors, shows the imperative need of the study of their vibrational behavior 
which thus becomes of great importance in order to help the engineers to design 
better structures. Vibration analysis is an important current topic, both from an 
academic and an industrial point of view. The latter affects many areas, such as 
space technology, naval and civil engineering, automotive, aeronautics, and 
bridges, buildings, or nuclear engineering. To ensure the desired and desirable 
mechanical performance in favor of the supporting structure, the determination 
of the dynamic characteristics of the plates is essential. Rectangular plates are 
widely used in various engineering disciplines and, from a technical point of view, 
it becomes necessary to know the natural frequencies of such structures [2]. 

As the excellent review articles by Leissa [3] [4], Liew, Xiang and Kitipornchai 
[5] show, vibration analysis is not a recent science. And yet during these dec-
ades, it will know a renewed interest for the needs of design and dimensioning of 
structures responding to the best operating conditions, safety, economy, aes-
thetics and sound insulation. In addition, it is to optimize, lighten the structures 
commonly used and subject to significant levels of excitement. For over a hun-
dred years, plaque behavior has been the subject of exhaustive research. It is 
clear that this research based on the classical Kirchhoff hypothesis neglects the 
effect of shear deformation and rotational inertia, unlike the Risner-Mindlin 
plates which take into account these effects. 

Born out of the need to solve problems of elasticity and structural analysis in-
volving complex fields of civil engineering and aeronautics, the finite element 
method was born between the 1960s and the 1970s by the work of the research-
ers Argyris, Clough, and Zienkiewicz [6] [7]. As a result, several MEFs will be 
developed for dynamic analysis of structures such as thin and thick plates. Iso 
parametric elements are the most widely used in plate dynamics [6] [8]. The fi-
nite element method is certainly the most favorable because it is one of the most 
powerful calculation methods for predicting the dynamic response in a complex 
structure with arbitrary boundary conditions [9]. 

In this modest work, we are therefore involved in this vast and important 
field, whose objective is to determine the eigenfrequencies as well as the modes 
of the vibrations of homogeneous thin isotropic plates in free dynamics by dif-
ferent methods (analytic, finite element method). To treat these vibratory prob-
lems, the general idea is to express the deflection of the plate w by a linear com-
bination of the eigen modes. The whole problem then amounts to expressing the 

mnA  coefficients of the proposed form functions. Either we express them expe-
rimentally by replacing in the theoretical expression w by the experimental def-
lection, or by trying to calculate them theoretically by proposing mathematical 
models, finally, calculate the matrices of mass and rigidity of the plate and solve 
the problem with the eigenvalues to obtain the natural frequencies of the plate. 

To achieve this, the work done is structured in different sections. Section 2 gives 
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a brief description of the kinematics of rectangular plates and governs the equation 
of motion. In section 3, the study of frequencies and modes of vibration is done by 
analytical resolution. Section 3 deals with the formulation of dynamic plate beha-
vior by MEF on Ansys. In Section 4, the numerical results are compared to the 
analytical results for a rectangular plate simply supported on two opposite sides. 

2. Description of the Problem 

We consider a plate having a length a = 1 m, a width b = 1 m and a thickness h = 
0.020 m. The properties of the structure illustrated in Figure 1 are given: 

Material: steel; 
Poisson coefficient v: 0.3; 
Young’s modulus E in a: 2 × 1011; 
Density ρ in kg/m3: 7850; 

2.1. Geometry of the Plate 

The plate being simply supported (no displacement and no moment) on two 
edges, the conditions of fixity make it possible to write: 
• No displacement: 

( ), , 0w x y t =  for 0,x x a= =                  (1a) 

( ), , 0w x y t =  for 0,y y b= =                  (1b) 

• No moment: 

( )2

2

, ,
0

w x y t
x

∂
=

∂
 for 0,x x a= =                 (2a) 

( )2

2

, ,
0

w x y t
y

∂
=

∂
 for 0,y y b= =                 (2b) 

2.2. Fields of Displacement 

In the classical Kirchhoff model, the normal remains straight and is perpendicu-
lar to the average surface after deformation. Kirchhoff’s field of displacement is 
then written: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0

0

0

, , , , ,

, , , , ,

, , ,

x

y

u x y t u x y z x y t

v x y t v x y z x y t

w x y t w x y

β

β

 = +


= +
 =

                 (3) 

 

 
Figure 1. Simply supported rectangular plate and caractéristics. 
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0u  and 0v  are displacements of the membrane in x and y direction and w 
the displacement according to oz or displacement of bending. On the other 
hand, the rotations are given by: 

x y
w
x

β θ ∂
= = −

∂
;                       (4a) 

y x
w
y

β θ ∂
= − = −

∂
;                      (4b) 

0z
w
z

β ∂
= =

∂
;                        (4c) 

Which allows to write:  

( ) ( )

( ) ( )

( ) ( )

0

0

0

, , ,

, , ,

, , ,

wu x y t u x y z
x
wv x y t v x y z
y

w x y t w x y

∂ = − ∂ ∂ = −
 ∂


=

                   (5) 

2.3. Deformation 

The state of deformation of a plate can be considered as the state of superposi-
tion of membrane deformations and flexural deformations. In small deforma-
tion, we know that: 

2

2xx
wz

x
ε ∂

= −
∂

, 
2

2yy
wz

y
ε ∂

= −
∂

, 
2

xy
wz

x y
γ ∂

= −
∂ ∂

            (6) 

0zz xz xzε γ γ= = =  
What causes these constraints: 

2

1 0
1 0

1
10 0

2

xx xx

yy yy

xy xy

v
E v

v

σ ε
σ ε

ν
τ ε

 
    
    =     −     −    
 

                 (7) 

2.4. Expression of Bending Moments 

The bending moments per unit length in the plate Mx, My and Mxy are obtained 
by integrating the constraints on the thickness of the plate. 

2

2

d
h

hM z zσ
−

= ∫                          (8) 

2.5. Definition of Efforts 

Let Nx, Ny and Nxy be these efforts, Hooke allows to write: N Sσ= . Proceed-
ing by integration, we have: 

2

2

d
h

hN zσ
−

= ∫                           (9) 
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2.6. Expression of Deformation and Kinetic Energy 

The deformation energy of the plate is calculated by integration on the volume 
of the deformation energy density. 

d dij ijkl klv v
u v c vσε ε ε= =∫ ∫                    (10) 

The kinetic energy T is calculated by integration of the volume element: 

21 d
2 s

T mw s= ∫                          (11) 

2.7. Movement Equation 

The vertical equilibrium of the plate element (dx, dy) gives rise to the relation: 

Fext ma=∑




                        (12) 

We obtain the differential equation of Lagrange which is a partial derivative 
equation verified by the vertical displacement: 

( )
4 4 4

4 4 2 22 , 0w w wD p x y mw
x y x y

 ∂ ∂ ∂
+ + − + = ∂ ∂ ∂ ∂ 

            (13) 

Such vibrations are called free or natural transverse vibrations. As previously 
stated, the natural vibrations depend only on the properties of the material and 
the geometry of the plate, and are inherent properties of the elastic plate regard-
less of any charge. Thus, in the case of free or natural vibration (harmonic 
movement external load ( ),p x y  is equal to zero), the only transverse forces 
acting on the plate are the inertial forces due to mass ρ per unit area, the equa-
tion above becomes: 

( )2
4

2

, ,
0

w x y t
D w h

t
ρ

∂
∇ + =

∂
                   (14) 

Classical equation of plate theory, which for most technical applications is 
sufficient for the study of bending problems. 

( )
3

212 1
EhD

v
=

−
: bending stiffness; 

h: thickness of the plate; 
E: Young’s modulus; 
v: coefficient of poisson; 
( ), ,w x y t : transverse displacement must satisfy the conditions at the limits of 

fixity; 

3. Analytical Study of the Rectangular Plate 

The solution to this equation is obtained by looking for the transverse displace-
ment ( ), ,w x y t  such that: 

( ) ( ) ( ) ( ) ( ), , , e j tw x y t X x Y y T t w x y ω= =              (15) 

Which is a solution of the form function. 
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( ) ( ) ( ),X x Y y w x y=  describes the modes of vibration and some harmonic 
function of a time, ω  is the natural frequency of the vibration of the plate 
which is related to the frequency and period of the vibration by the relation: 

22 f
T

ω π= =
π                         (16) 

By introducing these elements, Equation (14) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 2 2 4

2

2X x Y y T t X x Y y T t X x Y y T t
h X x Y y T t

D
ρ

+ +

= − ⋅
     (17) 

We put: 2D
h

µ
ρ

= , and we consider unknown β  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

4 2 2 4 2
4

2

12
X x X x Y y Y y T t
X x X x Y y Y y T t

β
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+ + = − =      (18a) 

Which results in: 

( ) ( ) ( )
( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2 4

4 2 2 4
4

0

2 0
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X x X x Y y Y y
X x X x Y y Y y

µ β

β

 + =
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

+ + − =
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         (18b) 

Of these two equations, it follows from the equation of complete displacement 
of the plate simply supported on two opposite edges: 

( ) [ ] ( )1 1, , cos sin ,mn mn mn mn mnm nw x y t A t B t x yω ω φ∞ ∞

= =
= +∑ ∑       (19) 

The coefficients mnA  and mnB  depending on the load and/or initial condi-
tions. However, the eigen modes are given by: 

( ) ( ) ( ),m n mn mnX x Y y A x yφ⋅=                  (20) 

( ), , 0w x y t = , represents the modal lines The form function can be taken as: 

( ) ( )1 1

1 1

, ,

sin sin

mn mnm n

mnm n
x y

w x y C x y
m nC x y
l l

φ∞ ∞

= =

∞ ∞

= =

=

= ⋅

⋅

π π
⋅

∑ ∑

∑ ∑
           (21a) 

( ), sin sinmn
x y

m nx y x y
l l

φ ⋅
π π

=  represents the modal deformed, the own de-

formed, of the nm mode satisfying the supported boundary conditions, a and b 
are respectively the length and the width of the plate, mnC  are the modal coeffi-
cients, corresponding to the projection of the motion in the modal base. This is 
the vibration amplitude for each value of m and n. 

By replacing the expression 

( ) 1 1, sin sinmnm n
x y

m nw x y A x y
l l

∞ ∞

= =

π π
= ⋅∑ ∑            (21b) 

In the main Equation (14), we obtain: 
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4 4 2 2 2 2 4 4
2

4 2 2 42 0m m n n h
Da a b b
ρω+ + −

π π π
=

π              (22) 

The resolution of this equation leads to a natural pulse mnω  of the mode m 
and n such that: 

2 2

.mn
y x

D n m
h l l

ω
ρ

     = +     
π

 
                  (23) 

Eigen frequency: 
2

mn
mnf

ω
=

π
 

In the case of the plate under study, we have: 

( )
3

2
2

146520.15 N m
12 1

EhD
v

= = ⋅
−

, 

The analysis of the first two modes gives us: 

• if 1, 1m n= = , [ ]
2 2

2 2
11 2 21 1 2D D

h hL L
ω

ρ ρ
 = + =

π


π , 11 603.02 rad sω =   

and 11
11 95.97 Hz

2
f ω

π
= =  

• if 1, 2m n= = , [ ]
2

21 12 2 5 1507.53 rad sD
hL

ω ω
ρ

=
π

= =  and  

21
21 12 239.93 Hz

2
f f ω

=
π

= =  

The analysis of natural pulsations by the Rayleigh technique confirms the ve-
racity of these results especially for the first vibratory mode. 

4. Modeling of the Dynamic Behavior  
of Plates by FEM in Ansys 

The finite element method is a widely used and powerful tool for the analysis of 
complex structures. It consists of a discretization of the element into a finite 
number of generally triangular or rectangular elements [10]. This resolution 
technique involves the calculation of the matrix of mass and rigidity of the whole 
structure: 

[ ] [ ]2 0K Mω− =                        (24) 

Equation (24) will be solved to give the eigenfrequencies and the eigen mode 
or modal deformations of the structure using the ANSYS software for a simply 
supported plate. 

Let us always consider our rectangular plate whose characteristics are defined 
in section 1 and represented under Ansys in Figure 2. The plate is modeled on a 
volume of 2, e + 007 mm3 and has a mass of 157 kg. 

The dimensions of the plate illustrated in Figure 2 and Figure 3 are given in 
section 2. The simulations are made on the plate having a referential tempera-
ture of 22˚C and discretized in 2401 elements for 17,300 nodes as seen in Figure 
3. The bar graph indicates the specific frequency of each calculated mode and 
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whose values are given in Table 1 after modal analysis of the structure. 
It is noted that the frequencies grow with vibratory modes as illustrated in 

Figure 4 and Figure 5. On the other hand the displacements of the plate as 
shown in Figure 6 do not follow this law, they oscillate around 6 mm. 

 

 
Figure 2. Plate geometry under Ansys. 

 

 

Figure 3. Mesh of the plate. 
 

Table 1. Frequency values for different plate modes. 

 Mode Frequency [Hz] Max displacement [mm] 

1 m = 1, n = 1 107.9 4.5143 

2 m = 2, n = 1 128.1 6.8385 

3 m = 2, n = 1 210.6 7.4719 

4 m = 1, n = 2 296.74 4.556 

5 m = 2, n = 2 325.11 6.5421 

6 m = 3, n = 1 384.8 7.548 

7 m = 3, n = 2 422.25 6.8763 

8 m = 1, n = 3 579.94 4.7202 

9 m = 3, n = 2 597.47 7.2271 

10 m = 2, n = 3 610.77 6.5952 

11 m = 3’, n = 1 658.27 7.3154 

12 m = 3, n = 3 711.4 6.6124 
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Figure 4. Frequency evolution. 

 

 
Figure 5. Specific frequency of each mode. 

 

 
Figure 6. Modal displacement of the plate. 

 
As shown in Figure 6, the maximum displacement is observed when m = 3, n 

= 1 and is equal to 7.548 mm. 
These frequencies are geometrically translated by the following modes of Fig-

ure 7 (from (a) to (l)): 
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Figure 7. Vibratory modes of a plate simply supported on two opposite edges (from (a) to (l)). (a) mode 1: m = 1, n = 1; (b) mode 2: m 
= 2, n = 1; (c) mode 3: m = 2, n = 1; (d) mode 4: m = 1, n = 2; (e) mode 5: m = 2, n = 2; (f) mode 6: m = 3, n = 1; (g) mode 7: m = 3, n = 
2; (h) mode 8: m = 1, n = 3; (i) mode 9: m = 3, n = 2; (j) mode 10: m = 2, n = 3; (k) mode 11: m = 3’, n = 1; (l) mode 12: m = 3, n = 3. 

https://doi.org/10.4236/wjm.2020.102002


P. K. Nkounhawa et al. 
 

 

DOI: 10.4236/wjm.2020.102002 23 World Journal of Mechanics 
 

5. Comparison of the Eigenfrequencies Analytic  
and Those Obtained by Finite Elements 

Table 1 and Table 2 show the values of the eigenfrequencies obtained by two 
methods considered, analytical and finite element structure calculation, corres-
ponding to the rectangular configuration. From these two tables and in accor-
dance with Figure 8 and Figure 9, we use Equation (25) to calculate the error of 
the modes m = 1, n = 1; m = 1,n = 2;m = 2, n = 2; m = 3’, n = 1 and m = 3, n = 3: 

( )% fS fC
fC

ε −
=                        (25) 

 
Table 2. Comparison of the eigenfrequencies analytic and those obtained by finite elements. 

Mode 
modal 

deformation 
Frequency 
MEF [Hz] 

Calculated Frequency 
[Hz] 

Gap (Hz) ε (%) 

1 m = 1, n = 1 107.9 95.97 11.93 0.1243 

4 m = 1, n = 2 296.74 239.93 56.81 0.2367 

5 m = 2, n = 2 325.11 383.89 −58.78 0.1531 

11 m = 3’, n = 1 658.27 623.82 34.45 0.0552 

12 m = 3, n = 3 711.4 863.75 −152.35 0.1763 

 

 
Figure 8. Comparison between MEF and calculated frequency. 

 

 
Figure 9. Error graph. 
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The error between the two methods use ın thıs case study is minimized and 
converges to zero according to the error graph illustrated in Figure 9. 

6. Conclusion 

In this paper, we highlight the dynamic analysis of a plate simply supported on 
two opposite edges in free vibration. Two techniques have been deployed to ap-
proach the fundamental eigenfrequencies of the plate to be studied. It is the me-
thod of separable variables based on the modeling of the transversal displace-
ment from the characteristic functions of vibrations of the thin plates and the 
analysis by the method of the finite elements. The responses obtained analytical-
ly and numerically from the nonlinear equations developed for the calculation of 
the eigenvalues of the plate show us that the frequencies increase with the modal 
deformations. The conditions of fixity and their location impose a great influ-
ence on the behavior of the plate structure in vibration. A comparison between 
the frequencies calculated and those obtained by Ansys for the rectangular plates 
reveals a convergence of the two calculation techniques. 
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