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Abstract

The second derivative method which is A-stable is derived using Interpola-
tion Collocation approach. The continuous method obtained are used to
generate the main method and complementary methods to solve initial value
problems of ordinary differential equation via boundary value technique.
Numerical result obtained via the methods shows that the new method can
compete with the existing ones in the literature.
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1. Introduction

Differential Equations (DEs) are important tools of solving real-life problems
and a wide variety of natural phenomena are modeled into differential equa-
tions. DEs which normally arise in biological models, circuit theory models, cir-
cuit theory models, fluid and chemical kinetics models may or may not have ex-
act solutions, thus a need for a numerical solution.

Consider the initial value problem of the form
y'=f(xy), y(a)=y, xelab] (1)

Several numerical methods for the solution of (1) were proposed such as Tau

method (Onumanyi [1]) and the Finite Difference method (Fox [2]). Interpolation
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collocation methods have been proposed for the numerical solution of Equation
(1). Multiderivative method for solving systems of ODE was proposed by
Obrenchkoff [3] and special cases of the Obrenchkoff were later proposed by
Enright [3], Cash [4], Jia-Xiang, Jiao-Xun in recent article of Ehigie, Jator,
Sofoluwe and Okunuga [5]. And of these methods, the justification for including
higher term in such method was clearly stated by Enright [3], which will include
method with higher order, obtain stability at infinity and obtain a method with
reasonable stability properties on the neighborhood of the origin. This class of
Enright’s schemes is a special class of the Obrenchkoff cited in Ehigie [5] methods
which are found to be of order p=k+2 for a kstep method.

In this paper, a continuous form of the second derivative multistep method
shall be derived through a multistep collocation technique so that the method
derived shall recover the Enright’s second derivative method and other possible
method. The method will be in block and will be implemented on IVP. This
paper will further discuss the implementation of the newly developed methods
using Boundary Value Methods as it was also implemented in Axelsson and
Verwer [6], Amodio and Mazzia [7], Brugnano and Trigiante [8], Jator and Sahi
[9], Ehigie [5], so that we can obtain the numerical solution simultaneously. The
advantages of this approach are that the global error at the end of the integration
is smaller than the accumulation of the various local truncation error obtained
via step by step implementation (Lambert [10]), more also the block method is
known to relax the A-stability criteria of other higher methods (Axelsson and
Verwer [6]).

2. Theoretical Procedure

The second derivative multistep methods are derived using collocation technique
as discussed in Ehigie [5].
The general second derivative formula for solving Equation (1) using 4-step

second derivative linear multistep method is of the form.
k k ) Kk
Zajyn+j:h2ﬂjfn+j+h Z5jgn+j ()
j=0 j=0 =0

where Yoo ® y(xn + jh) ,
fo; = f(xn +jhy(x, + jh))

df (x,y(x)) e

gn+j = dx

Y=Yn+j

X, isadiscrete pointat n, @;, f; and y; are coefficients to be determined.
To obtained the method of the form (1), y(X) is approximated by (2) where
T, achebyshev polynomial of the form

y(X)=§anTn(X)- (3)
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Equation (3) will be considered for the derivation of the main and comple-
mentary methods for the two classes of continuous second derivatives multistep
method of Enright which is a special case of (2).

Interpolating y(X) at point X, ;, collocating y'(X) at points X,,; ,

j=0,1,2,---,k and collocating y"(X) atpoint X, , e

Xnik-1 = Ynika
y,(x): fn+j
y”(X) = gn+jl J =012,k

The system of equations generated are solved to obtained the coefficients of
a;,
method of Enright of the form

j=01,2,--- k+4 which are used to generate the continous multistep

3
y(X): yn+k—1+h2ﬂj fn+—j +h2§jgn+k (4)
j=0

Evaluating (4) at X=X,,, yields the second drivative multistep method of
Enright also evaluating at X=X, ;, j=01,2,--- . k-2 gives (k —1) methods,
which will be called complementary methods to complete the k block for the
system. The Enright’s method is obtained in the form.

K
Ynik = Yook T hZﬂj (X) fooj+ h27j9n+k (5)
=0

3. Specification of the Derived Methods
3.1. Four-Step Method

The objective is to derive the multi-derivative main method of the form:
4 4
zajynﬂ :hZﬁj fn+j+h2}/jgn+4 (6)
i=3 =0

where «;, f;, y; are coefficients. In order to obtain Equation (6), we proceed
by seeking an approximation to the exact solution by assuming a continuous
solution Y(X) of the form

¥()= 34T, (x) o

6
F(x)=y'(x)=2aT{(x), (8)
j=0
with second derivative given by
9(x)=y"(x) =2 aT{(x), ©)

Interpolating (7) at X=X,,;, collocating (8) at X=X, ;,] =0(1)6 and
collocating (9) at X =X,,, where nis the grid index using maple we obtain the

coefficients a;s :
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22729 54275 hf 103817 47411

a. = JE— — — -
0= Y03 " 35864 "° 5gog24 " 110592 " 49152 M
198005 6269 |,

+ - 3
1760472 ™* 147456 9

_ 7459 1669 1489 899
a =———hf +——hf, , ———hf,, +_hfn+3
49152 3072 4096 3072
_ 6103 L 215 2
49152 " 4096 "

3365 731 15811 955
a=-__—-ni - n+3 T nia T —o—=hf .,
73728 24576 1179648 32768

571 g 22081
98304 " 393216 "
a = 961 . 3181 . 571 v 589 .
24576 294912 18432 18432
3847 45 g, .

+ n+4
294912 8192

91 155 1967 119
a'4 = TAroo fn+3 + hfn+l - hfn+4 T Al 'n+2
12288 36864 589824 16384
7, 199
t— gn+4 R L LIS
49152 196608
133 19 1 17
a =— + hf . — h?g , ————Nf
5~ 201520 " " 20060 ™2 8102 9" 30720
T hf ., + 23 hf ,
30720 491520
a6 = L hzgn+4 +thn+3 + 1 hfn+l - 1 I«n(n
294912 73728 221184 1179648
S Y -
98304 3538944

Substituting the values of ajs in the approximate solution (7), will generate

a continuous form of the scheme of the form:

y(x)=

3, +2,(2x— 1)+, (8X* ~8x +1) + 2, (32x° - 48x” +18x - 1)
+a,(128x* —256x° +160x" —32x +1)

Ynia = Ynis

17

Yni2 = Ynus

(10)
+ag(512x° —1280x* +1120x" — 400x” +50x 1)
+ (2048X6 —6144x° +6912x* — 3584x° + 840x” — 72X + 1)
On evaluating (10) at X=X,,4, X=X, X=X, X=X,
1 41 47 3133, | .3 (11)
"N T Ewan fn +_fn+l__fn+2 Tttt | =N -0,
5760 45 480 90 5760 32

7 83 19 1831 1 .11 (12)

n T oE n+l__fn+2 __fn+3+— n+4 -h Zag Inia

135 160 30 17280 " | 288

=h —if +
1920
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1 17 19 17 1
—yoa=h|—f —=—f —=f = f 4 —f 13
yn+l yn+3 |:90 n 45 n+1 15 n+2 45 n+3 90 n+4:| ( )
Yo~ Ynus
g 20Ly Ty 99 9 W9 3y (14)
640 n 5 n+l 160 n+2 10 n+3 640 n+4 32 n+4

Equations (11)-(14) will be taken as Boundary Value Method for & = 4
denoted as BVM4. To implement (10), we use a modified block method defined
as follows:

q q q q
hlz;aij Yo = hiz(:)eu‘ y, +he? |:Z;dij fo+ Z;bij fn+j:| (15)
j= j= j= j=

where A is the power of the derivative of the continuous method and p is the
order of the problem to be solved; g=r+s. In vector notation, (15) can be

written as
h‘ay, =h'ey, +h**[df (y,)+bF(Y,)] (16)
The matrices & = (aij ), b= (b ) , B= (eij ) , d= (dij) are constant

1j
R
coefficient matrices and Y, = (y,Hvi s Yo y,'Hvi , y(Hl) )

T — T
ym :(yn—(r—l)’yn—(r—z)’.“’ yn) s F(Ym) =(fn+vi y fn+j) and
f(Yn)=(f,ii- f,), i=1---,q. The normalized version of (16) is given by
AY_ =h*Ey,_+h** [5f (Yn)+BF (Ym)] (17)

The modified block formulae (15) and (16) are employed to simultaneously

obtain value for Y,.1, Yn.2> Yniz> Yn:a needed to implement (11). Ze
Combining (11)-(14) in the form of (15) and (16), yield the block method below:
1 41 47 3133
45 480 90 5760
1 -1 0 0)(y,.) (0 7 83 19 1831 | M
0 -1 1 0 Y| O(y)+h 135 160 30 17280 || f.
0 -1 0 1|y, | [0 | 17 19 17 1 |f,
0 -1 0 o)ly,, 1 45 15 45 90 £
7 99 9 149
5 160 10 640
A 3
5760 3
_ 11 11
en| () +h| 288 |(g,.0)
] 0
90
201 3
~620 32

using (16) to obtain the block solution as
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46 311 47 1277
45 480 90 5760

100 0)Vua) (1 196 1 4 137 | foa
0100 yms:l(y)mﬁ 10 15 1080 || i
001 0fVy,| [1]" 7 99 9 149 | f ,
000 1)y, (1 5 160 10 640 | f,.,

64 8 64 14
45 15 45 45

1873 3
i E:
120 »
+h (f,)+h? 18 |(9,..)
201 3
640 Py
32
14 0
45
Written the above explicitly gives:
1873 46 311 47 1277 3
=y +hl—f +— —f ., +t— -———f +h*= 18
yn+1 yn |:5760 n 45 n+1 480 n+2 90 n+3 5760 n+4:| 32 gn+4 ( )
37 196 1 4 137 1
=y, +hl —f +—f  +—f +—f ——— +h? = 19
yn+2 yn |:120 n 135 n+1l 10 n+2 15 n+3 1080 n+4:| 18 gn+4 ( )
201 7 99 9 149 3
=y +h| =—=f +—f  +—f +—f . ——— +h? = 20
yn+3 yn [640 n 5 n+1 160 n+2 10 n+3 640 n+4:| 32 gn+4 ( )
14 64 8 64 14
=y +h|l—=f +—f  +—f ,+—f . +—f 21
yn+4 yn ‘:45 n 45 n+l 15 n+2 45 n+3 45 n+4:| ( )
3.2. Five-Step Method
The objective is to derive the multi-derivative main method of the form:
5 5
zajynﬂ ZhZﬂj fn+j+h27jgn+5 (22)
j=4 j=0

where «;, f;, y; are coefficients are to be determined. In order to obtain
Equation (22), I proceed by seeking an approximation to the exact solution by
assuming a continuous solution y(X) of the form

7

y(x)=2aT;(x) (23)
with first derivative given by
f(x)=y'(x)=2aT{(x), (24)

with second derivative given by

7

g(x)=y"(x)=2a;T{(x), (25)

i=0

Interpolating (23) at X =X,,,, collocating (24) at x=xX,,;,j=0(1)5 and
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collocating (25) at X =X,,; where n is the grid index using maple we obtain the

coefficients a js:

463807 hf 316403 hf — 181051 h 903161 hf

a'0 = yn+4 - n+3 n n+l n+2
368640 3686400 184320 1105920
265139 13987 623 |,
- n+4 + n+5 + h gn+5’
737280 5529600 184320
237263 153505 138739 27969
al = hfn + h n+l n+2 t— n+3
1638400 262144 294912 65536
20081 7059707 47011 ,
- n+a T h n+5 gn+5'
65536 58982400 983040
azz:327hfn+1_47.111hfn+717hfn+2_799hfn+3
8192 819200 16384 16384
1237 6207 251 ,
+——hf +n+4- nes Ons
32768 409600 40960
56431 9485 44029 8695
3 = hfn - n+l + h n+2 n+3
4915200 262144 884736 196608
2053 2152541 14293 ,
+ h n+d4 n+s T gn+5’
65536 176947200 2949120
a4 = 209 hfn + 23 hfn+l - 89 hfn+2 + %9 hfn+3
409600 4096 8192 8192
- 153 hfn+4 + 767 hfn+5 _ihzgmﬁ'
16384 204800 20480
961 1561 1603 443
a; = h n+4 -———h n+l n+s T hfn+2
983040 3932160 3932160 491520
1 1129 73
+ gn+5 T aanman h+3 +—hfn7
65536 983040 983040
71 5 1 7
a, = hf . — hf . — h?g . +——hf
°~ 3686400 "° 147456 " 122880 "0 147456 "
TR e LI
73728 7372800 294912
1 1 1 1
a=—-—h’g . — hf . — hf  +———hf
"~ 6881280 0™5 1376256 ™° 5505024 " 34406400 "
1 1 137

+ —hfn+2 + ITl:n+4 - hfn+5
2064384 1376256 412876800

Substituting the values of a;s in the approximate solution (23), I obtain a

continuous form of the scheme of the form:
y(X)=a,+a,(2x—1)+a, (8x* ~8x+1) +a,(32x° — 48x* +18x - 1)
+a, (128" —256x° +160x° ~32x +1)
+a5(512x° ~1280x" +1120x° — 400x° +50x —1) (26)
+8,(2048x° —6144x° +6912x" — 3584x° +840x” — 72X +1)
+a,(8192x" - 28672x" +39424x° — 26880x" + 9408x° —1568x” +98x —1)

On evaluating (26) at X=X,.5, X=X,,3, X=X,2, X=X, X=X, we
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generate the main methods and complementary methods which invariably

complete the boundary value techniques.

41

Yiis = Ynia = h‘:
2837

+ nea T n+s |
5040 604800

19

Yiiz =™ Ynaa = h|:
323

1
Yoio = Ynea = h‘:

263

33
Yoir = Ynea = h|:

339

158

Yo = Ynia = h‘:__ f

525
2

[ — +— —
560 "' 604800 ”*5}

il Sl
630 " 7560 "*°

83 ler, 337, 1023
2800 " 4480 "' 280 "? 1120 "

——hat fn+5
560 22400

35 " 4725

89 677 1933
fn - fn+1 + n+2 n+3
8400 4480 7560 3360
48467 , 271
10080 O

53 382 773
Y fn + N+l aap fn+2 Y fn+3
630 2520 945 630
221 1
——— h?
:| 126 gn+5
337 1023

n+5

-
1120
52 344

2201 } 39,

176

n g n+1_% n+2_ﬁ n+3

548

16
foo|+—=h?
n+5:| 315 gn+5

529 373 1271
25200 " 40320 ™ 7560 ™? 10080 "
317731 , 863

mgms

(27)

(28)

(29)

(30)

(31)

Equations (27)-(31) will be taken as Boundary Value method for & = 5 and
denoted as BVM5. The modified block formulae (15) and (16) are employed to
simultaneously obtain value for V..., Yn.2> Ynizs> Ynia»> Ynes needed to
implement (27), i.e., combining (27)-(31) in the form of (15) and (16), yield the

block method below:
1 -1 0 0 0)y,.
0 -110 0y,
0 -1 010y,
0 -100 1|y,
0 -100 0y,
520 373 1271 2837 317731
40320 7560 10080 5040 604800
0 89 677 1933 323 48467 |(f .
0 4480 7560 3360 560 604800 [
—lo|(y,)+h| > 38 18 263 221 )y
2520 945 630 630 7560
0 1737 337 1023 339 2201 || 2
1 4480 280 1120 560 22400 |\ foa
52 344 176 2 548
35 945 105 35 4725
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41 863
25200 10080

19 271
8400 10080

1 2 1

+h ~530 (f,)+h D6 (9nss)

33 39
2800 1120

158 16
525 315

using (16) to obtain the block solution as

100 0 0)y,,
0100 0|vy,.,
0010 0|V,
0001 O0|Y,.
0000 1)y,
4919 6347 2563 307 129571
4480 7520 3360 560 604800
L 3797 38 283 227 5489 |
1 2520 945 630 630 37800 || {
6567 127 1233 291 4393
=|1|(y,)+h| oL 22T 2 2 B g
X 4480 280 1120 560 22400 |
52 344 176 2 548 n+4
1 35 945 105 35 4725 |\fns
11875 625 3125 625 15515
8064 1512 2016 1008 24192
2627 863
8400 10080
943 37
3150 630
849 | 87
+h'§iﬁ (f.)+h —Iﬁﬁ-(gmd
158 16
525 315
305 275
1008 2016
Written the above explicitly gives:
{2627 4919 6347 2563
Yo=Yt h nt n+l ne2 T n+3
8400 " 4480 7560 3360 32)
307 129571 863 ,
~Zan e T onn n+5:|_—h Onss
560 604800 10080
Yoo =V +h{£f+ﬁ —ﬁf +&
Mz 3150 " 2520 Mt 945 ™ 630 M
227 5489 } 37 ., (55
T Ran n+4+—fn+5 -——N Onss
630 37800 630
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yo—y +h{849 ; 6567, 127 1233
3 2800 " 4480 " 280 "7 1120 " )
201, 4393 }_ 87 g
560 " 22400 "°| 1120 "*°
158 . 52 344 176
=y +h—f +—f +—F ,+—f
yn+4 yn [525 n 35 n+l 945 n+2 105 n+3
2 548 16 (35)
+— 1:n+4 +t— fn+5:l__hzgn+5
35 4725 315
y o=y +h[305 11875 625 , 3125
s 1008 " 8064 "t 1512 "? 2016 "*° G6)
, 625 , 15515 }_ 275 2
1008 "** 24192 "*°| 2016 "

4. Analysis and Implementation of the Method

Order, Error Constant and Consistency of the Method

Basic properties of the main schemes and their associated block schemes, are
analysed to establish their validity. These properties, namely: order, error
constant, consistency and zero stability reveal the nature of convergence of the
schemes. The region of absolute stability of the methods have also been obtained
in this section.

Order of the Scheme

Let the linear difference operator L associated with the continuous multi-
derivative method (2) be defined as

LLy(x);h]

k
=X {a;y (%, + ih)=hB;y' (%, + ih)=h*B;y" (%, + jh); j =1,2,---,m}

j=0

(37)

where Y(X) is an arbitrary test function that is continuously differentiable in
the interval [a,b]. Expanding y(X,+ jh) and y’(X,+jh), j=01,2,--- in

Taylor series about X, and collecting like terms in 4 and y gives:
L[ y(x);h]=Coy(x)+Cihy™ (x)+C,h2y® (X) ++++ C,hPyP (x) +:- (38)

Definition (4.1.1). The difference operator L and the associated continuous
multistep method (2) are said to be of order p
G, =C=C,=C=--=C,=C,=0, C,,,#0 Lambert [10].
Order of the Block Scheme
The order of the block will be defined following the method of Chollom [11].
Let the multi-derivative method be defined by:

Z“iﬁﬂ) (t) Yo = hZﬂé“) (t) fouj + hZZVS“) (1), (39)
] ] ]

where 4 is the degree of the derivative of the continuous cofficients ¢; (1),

7y and S;(t).
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The linear difference operator, L, associated with the implicit block hybrid
one step method (15) is described by the formula:

LLy(x);h]

=@y (% + i) =hB,y (x, + ih)=h?y; (x, + h) ] o
]

where Y(X) isan arbitrary test function continuously differentiable on [a,b].
Expanding Yy(X,+ jh) and y"(X,+ jh), in Taylor series and collecting terms
in (41) gives:

L[ y(x):h] =Coy(x)+ Chy" (x)+ C,h?y? (x) +--+ C Py (x)  (41)

where the C,,i=0,1,---,p are vectors.
Consistency
Given a continuous multi-derivative method (2), the first and second charac-

teristic polynomials are defined as

Koo

,L)(Z):Z()(J-ZJ (42)
j=0
Koo

a(z)=Zﬁjz’ (43)
j=0

where zis the principal root, @, #0 and o + 5 #0.

Definition (4.1.2). The continuous multi-derivative method (2) is said to be
consistent if it satisfies the following conditions:

1) theorder p>1;

2) Z?:o a;=0;

3) p(l) = p'(l) =0;

1) p'(1)=210(1).

Definition (4.1.3). According to Gurjinder [12]. A block method is said to be
consistent if it has an order of convergence, say p>1.

Applying the definitions for order of the method on the main scheme (11) for
four-step method and order of the block methods on (18)-(21) likewise order of
the main scheme (27) for five-step method and order of the block methods on

(32)-(36) it was derived that the main scheme (11) is of order p=6 with Error

41

Constant Cou= and the additional schemes are of uniform order

p =6, likewise for the five-step method the main scheme (27) is of order
731
846720
uniform order p =7. The order of four-step and five-step block methods are in

tabular form as indicated in Table 1 and Table 2.
The main schemes and additional schemes for four-step method and five-step

p=7 with Error Constant C = . And the additional schemes is of

method are consistent since they have order p>1.
Zero Stability and Convergent
It is known from literature that the stability of linear multi-step method deter-

mine the manner in which the error is propagated as the numerical computation
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Table 1. Order and error constants for Block methods for k= 4.

Method Order Error Constant C_,,
8
18 6 -2
(18) 945
(19) 6 S
1120
1
20 6 =
(20) 126
1) 6 3327
30240

Table 2. Order and error constants for Block methods for k= 5.

Method Order Error Constant C_,,
(32) 7 1375
169344
(33) 7 16
2205
(34) 7 251
31360
(35) 7 187
26460
(36) 7 2633
282240

proceeds hence the investigation of the zero-stability property is necessary.

Definition (4.1.4). The continuous multi-derivative method (2) is said to be
zero-stable if no root of the first characteristic polynomial p(z) has modulus
greater than one, and if every root of modulus one has multiplicity not greater
than one.

Definition (4.1.5). The implicit hybrid block method (17) is said to be zero
stable if the roots Z, s=1,---,n of the first characteristic polynomial p(z),
defined by

ﬁ(z):det[zﬂ—E] (44)

satisfies |ZS| <1 and every root with |ZS| =1 has multiplicity not exceeding two
in the limit as h—0. Lambert [10] The convergence of the continuous
multi-derivative method (2) is considered in the light of the basic properties
discussed earlier in conjunction with the fundamental theorem of Dahlquist
(Henrici, [13]) for linear multistep methods. In what follows, we state Dahlquist’s
theorem without proof. The investigation carried out on the main schemes,
additional schemes and block methods for four-step method and five-step
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method revealed that all the derived schemes are less than or equal to 1 hence
the schemes are zero-stable. Since the consistency and zero-stability of all the
schemes have been established hence, the proposed schemes are converges.

5. Numerical Experiments

In order to study the efficiency of the developed schemes, we present some
numerical experiments with the following five examples. The Four-Step Methods
(4step) and Five-Step Methods (5step) were applied to solve the following test
problems:

Example 1. The linear problem by Enright in Ehigie [5],
y,=-0.1y;, y;(0)=1

y, =-10Yy,, Y, (0):1
Y3 :_100y3’ y3(0)=1
y, =-1000y,, y,(0)=1

is solved in the range 0<x<10.

Exact solution: Yy, =exp(-0.10x), y, =exp(-10x), Yy, =exp(-100x),
y, =exp(—1000x).

Example 2.

Considering a real life problem, which is an epidemical model (SIR model)
that computes the theoretical numbers of people infected with a contagious
illness in a closed population over time. The name of this class of models derive
from the fact that they involves couples equations relating the numbers of
susceptiple people S(#), number of people infected X(#), number of people who
have recovered R(#). This is a good and simple model for many infectious
desease including measles, mumps and rubella Sunday [14]. The SIR model is

described by the three coupled equations.

ds
a{—%4"5)‘/“5 (45)
%%:—yl—yl+ﬂB (46)
d
d—T:—yR+7/I (47)

where 4, y are positive parameters. Defined y to be

y=S+I1+R
Adding Equations (45) to (47) to obtain the following evolution equation for y
y'=u(l-y) (48)

taking 4 =05 and attaching initial condition y(0)=0.5 (for a particular
closed population) to obtain,
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y'(t)=05(1-y), y(0)=05 (49)

whose exact solution is Y (1‘) =1-0.5¢7%%,
Example 3.
The non-linear system solved by Wu and Xia cited in Ehigie [5], is considered.

y'=-1002y, +1000y, Y, (0) =1,

Y=Y~ Y (1+Y,), ¥,(0)=1

—2X —-X

Exact solution y;(X)=€"", y,(x)=e
Example 4.
Considering the moderately stiff problem solve by Jia-Xiang and Jiao-Xun

cited in Ehigie [5],
y'=-y-10z, y(0)=1,
7'=-10y-2z, z(0)=0,

Exact solution y(x)=e"*cos10x, z(x)=esin10x

6. Discussion of Results

In this work, new multi-derivative multistep methods of order (6, 7) are proposed
for the solution of first order Initial Value Problems. The main method and
additional methods for cases (k = 4, 5) are obtained from the same continuous
scheme derived via interpolation and collocation procedures. The stability
properties and region of the method were also discussed. The methods were then
applied in block form as simultaneous numerical integrators over non-overlapping
interval. Numerical results obtained using the proposed block form show that it
is attractive for the solution of linear and non-linear problems.

In Tables 3-7, numerical examples were used to implement the new derived
methods, comparing the accuracy of method with those of Ehigie, Okunuga
Jator and Sofoluwe [5], Wu and Xia, Jia-Xiang and Jiao-Xun, Enright [3] cited in
ehigie [5] and a real life problem in sunday [14]. It can be observed that the new

studies display better accuracy than most of the existing methods considered.

Table 3. Comparison of errors of the new method with exixting one for Example 1 when

h=0.01.

X Step A Y, Y3 A
Enright [3] 1000 4.1x107 - - -
Ehigie [5] 1000 42x107 2.1x10™" 0 0
Four-Step 1000 0 0 0 0
Five-Step 1000 0 0 0 0
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Table 4. Comparison of error of the new methods with existing ones for Example 2 when
h=0.1.

x Four-Step Five-Step Sunday [14]
0.1 3.766x107" 1.54x107" 20x10™"
0.2 2.498x107 1.08x10™ 3.0x10™
0.3 3.013x107 1.23x107° 1.0x107
0.4 2.408x107" 1.00x10™" 2.0x107™
0.5 5.374x107" 1.09x107" 1.0x107™
0.6 4.225x107" 2.24x107" 2.0x10™
0.7 4.538x107" 1.82x107" 1.0x107°
0.8 3.943x107 1.90x107® 2.0x10™
0.9 6.274 %1077 1.67x107" 3.0x10™
1.0 5.242x107" 1.70x10™" 3.0x10™

Table 5. Comparison of error of the new methods with existing one for Example 3.

No. of Four-Step Four-Step Ehigie 5] Ehigie [5]
Steps max |y, -y (x, ) max |z, - z(x)| max |y, - y (x| max |z, -z ()|
125 1.121x10™ 7.224x10™ 8.33x10° 1.32x10°
250 1.225x107" 3.551x10™" 1.13x10” 1.36x10®
500 1.00x10™* 6.780x107"° 8.19x10™ 6.30x10™"

Table 6. Comparison of error of the new methods with existing one for Example 3.

Five-Step
No. of Five-Step maXHZI 3 Z(X.)H Ehigie [5] Ehigie [5]
Steps maXHyi _y(xi )H HZ 7Z(X )H maXHYi _y(xi )H maXHZi _Z(Xi)H
125 1.635x10™" 4.795x10™ 8.33x10™° 1.32x10°
250 2.0x10" 1.6x10™ 1.13x10” 1.36x10®
500 0 0 8.19x10™ 6.30x10™

Table 7. Comparison of error of the new methods with existing one for Example 4.

Method Number of Steps max |y, - y (x| max [z, -z (x|
Wu-Xia [5] 500 2.56x107" 8.02x10°
Four-Step 500 5.68x10” 5.38x10™"
Five-Step 500 4.22x10™" 9.89x107"
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