
Journal of Software Engineering and Applications, 2020, 13, 1-13
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

Reduction of False Rejection in an
Authentication System by Fingerprint with
Deep Neural Networks

Stéphane Kouamo1, Claude Tangha1, Olaf Kouamo2

1Department of Computer Science, University of Yaounde I, Yaounde, Cameroon
2Department of Mathematics and Statistics, Université Denis Didérot (Paris VII), Paris, France

Abstract
Faultless authentication of individuals by fingerprints results in high false re-
jections rate for rigorously built systems. Indeed, the authors prefer that the
system erroneously reject a pattern when it does not meet a number of pre-
determined correspondence criteria. In this work, after discussing existing
techniques, we propose a new algorithm to reduce the false rejection rate
during the authentication-using fingerprint. This algorithm extracts the mi-
nutiae of the fingerprint with their relative orientations and classifies them
according to the different classes already established; then, make the corres-
pondence between two templates by simple probabilities calculations from a
deep neural network. The merging of these operations provides very promis-
ing results both on the NIST4 international data reference and on the SOCF-
ing database.

Keywords
Authentication, Fingerprint, False Rejection, Neural Networks, Pattern
Recognition, Deep Learning

1. Introduction

Fingerprints form a very specific class of models with singular particularity and
proven statistical characteristics. Thus, the problems of fingerprint recognition
seem to be much more constraining than other classical problems of form rec-
ognition (such as the recognition of manuscript characters) where neural net-
works have already been successfully applied [1] [2] [3]. Faultless authentication
of individuals by fingerprints remains one of the main problems of fingerprint

How to cite this paper: Kouamo, S., Tang-
ha, C. and Kouamo, O. (2020) Reduction of
False Rejection in an Authentication Sys-
tem by Fingerprint with Deep Neural Net-
works. Journal of Software Engineering and
Applications, 13, 1-13.
https://doi.org/10.4236/jsea.2020.131001

Received: January 1, 2020
Accepted: January 28, 2020
Published: January 31, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jsea.2020.131001 Jan. 31, 2020 1 Journal of Software Engineering and Applications

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.131001
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.131001
http://creativecommons.org/licenses/by/4.0/

S. Kouamo et al.

recognition. Indeed, the authors prefer that the system erroneously reject a pat-
tern when it does not meet a number of predetermined correspondence criteria.
This phenomenon tends to lead to an increase in false rejection rates when the
fingerprint recognition system is designed for authentication [4] [5].

The main question we will address here is: how to design an algorithm that
will reduce the rates of false rejections in a fingerprint authentication process
while maintaining a minimum number of acceptable minutiae’s?

The approach chosen for our work is to conduct a deep supervised learning
from the neural network model. The system built for authentication will then be
applied to data from an international NIST4 [6] database and the SOCFing da-
tabase. Neural networks have proven their worth in many areas, including the
pattern recognition [7] [8]. One of their particularities is the ability to adapt to
the data to be processed and the ability to perform the calculations in parallel,
allowing them to intervene in various fields of application.

We are working on a system for authentication, which is a one-to-one com-
parison. This kind of system tends to be more rigorous and, therefore, prefers to
reject a pattern that does not have all the required criteria, even if the latter be-
longs to the correct class (which implies high false rejections). Our idea is to
propose an algorithm that produces good results (compared to those existing),
while at least avoiding rejecting a pattern of the correct class. This implies acting
on the internal structure of the neural network and optimizing the recognition
algorithm so that it rejects as little as possible a pattern erroneously.

Then, we propose a new algorithm for extracting and classifying minutiae by a
parsimonious approach as well as the appropriate deep neural network structure
with three hidden layers that use different activation functions at each looping
during learning. This enabled us to improve the false rejection score (by 0.4 per-
centage on average), compared to existing ones.

The network we propose has an input layer, an output layer and a hidden layer
consisting of 3 sub-layers (two sub-layers of classification and one sub-layer of
correspondence whose size is strictly greater than that of the previous two). We
opted for three (03) hidden layers due to the three major operations that under-
lie the authentication process, namely:
 The identification of the minutiae and their relative orientations;
 The constitution of the characteristic vectors according to the type of detail

and the orientation of these;
 Finally, the correspondence of the templates constituted.

Each of these three operations will then be carried out at each of the hidden
layers and the outputs/results of the upper layers will be used as inputs for the
following layers, this in a hierarchical manner [9].

On the other hand, based on the theoretical basis of fingerprint authentication,
it takes an average of 12 to 30 minutes to establish a match between two tem-
plates [10] [11]. This constraint also guided us in the choice of 03 hidden layers
in the following way: the prototypes of the first hidden layer use the first 12 mi-
nutiae detected, those of the second hidden layer use the remaining minutiae

DOI: 10.4236/jsea.2020.131001 2 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

and the whole is reconstituted at the corresponding layer (something that no
technique had yet explored).

We also use a different activation function at each hidden layer and a leapfrog
symplectic integrator for optimization of the result.

The rest of the document is organized into three sections. The first presents
the main algorithms for fingerprint recognition. The second describes the pro-
posed method and the third presents some of the results obtained. We’ll end up
with a conclusion.

2. Related Works

The henry classification reveals five major classes of fingerprint [12], this from
the overall texture of the fingerprint image. We will focus more on the aspect of
the correspondence which deals with a set of much more subtle elements to es-
tablish the match between two fingerprints namely (the minutiae’s, the striations,
their relative orientations, etc.). In fact, there are two main classes of algorithm
processing a fingerprint using a deep learning to know: those that use locally
connected neural networks and those that are based on probabilistic or convolu-
tional algorithms, but let’s present first the old classic method.

2.1. Classic Method

This method consists of comparing the pixel matrices of the images of two fin-
gerprints, and calculating the correlation that exists between these pixels. The
image to be recognized (M) as well as the images in the database are all scanned
and recorded as a pixel matrix rated Mi. Recognition therefore consists in com-
paring the input matrix to all the Mi. matrices of the database for the case of
identification, or to a single specific M matrix in the case of authentication [13]
[14] [15].

There are also some classic methods that use minutiae’s events to compare
fingerprints. These minutiae’s are extracted from two fingerprints, and
represented as a set of points in the two-dimensional plane according to the
coordinate model. The comparison is to find a good alignment of minutiae of
two fingerprints (I and J) that produces a maximum of pairs of similar minutiae.
This method uses an intermediate algorithm to extract main characteristics of
fingerprint image, and simply compare formed vectors.

Limits
 Use of fingerprint image pixels that can vary significantly depending on the

scan device, etc;
 No learning is required;
 The result depends on the algorithm of extraction of the main characteristics

of fingerprint image.

2.2. Probabilistic Neural Network

Algorithm of this class of method use to deal exclusively with the aspect of cor-

DOI: 10.4236/jsea.2020.131001 3 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

respondence, instead of also taking into account the aspect of classification [16]
[17]. Here, operations consist of two main steps, namely: a treatment stage and a
decision stage. The processing phase essentially aligns the two images and ex-
tracts from each one “a central region”. Both central regions are used to feed the
decision stage, which is the most appropriate part of the neural network of the
algorithm and is subject to the formation of examples.

While the treatment phase is fairly standard (i.e., uses existing treatment algo-
rithms [16] [17]), the decision phase proposed by authors is quite innovative and
is based on probabilistic neural networks that use a Bayesian approach to assess
the probability that two P templates are identical. The network is formed by the
descent of the gradient using a set of learning pairs of images from several dif-
ferent fingerprints. The addition of a few additional fingers to perform the phase
of use consolidates the robustness of the neural network created and tested be-
forehand.

This technique uses a central image region with data alignment and compres-
sion; and then, calculation of probabilities to match two patterns provided as
network input after multiple successive filters.

Limits
 Using complex formulas to calculate probabilities;
 Treatment and events on minutiae are associated with a single layer of the

network;
 Usable for a limited number of images including the learning phase.

2.3. Locally Connected Neural Networks

In this algorithm, the process of recognition of a fingerprint consists of two im-
portant phases: the extraction of minutiae and the classification of the template
[18].
 In the first step, an image is passed through the system input and is reduced

to a vector of characteristic features, through various transformations, calcu-
lation of moments, etc.) and the prototype vectors are formed by database
data class;

 In the second step, a direct classification or comparison that will lead to the
recognition or not of the pattern is carried out between the characteristic in-
put vector and the prototypes of the database. This locally connected neural
network-based method is more appropriate for verification, security and
identification applications.

The particularity of this technique is the use of the characteristic vectors that
are invariant both to the translation and the rotation of the fingerprint image.
Qian et al., in their article [19], proposed a model of CNN that, when applied to
fingerprint verification, through the Fingerprint Verification for Convolutional
Neural Network (FVCNN) system, produces interesting, though perfectible re-
sults.

This technique is based on three classification algorithms: the middle classes,
the nearest neighbour and the nearest neighbours [19] [20] [21].

DOI: 10.4236/jsea.2020.131001 4 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

The main advantage of this method is the use of prototypes (characteristic
vectors of fingerprint images following predefined classes) invariants to transla-
tion/rotation to perform the recognition. This algorithm is appropriate for iden-
tifying an individual in a large database and uses the nearest neighbours to per-
form classification in a deep learning context.

Limits
 Using thresholds and activation calculations to match;
 Treatment and events on minutiae are associated with a single layer of the

network;
 Learning times are high.

2.4. A Three Hidden Layers Neural Network

In order to reduce false rejection while maintaining a high recognition rate, we
propose a new algorithm based on the use of deep neural network to perform
learning and using stage, that contribute to reduce false rejection rate according
to the existing methods. The structure of our neural network is then that of a lo-
cally connected neural network with three hidden layers, which uses the proba-
bility calculation to classify the sub-blocks of the image as input, taking into ac-
count Henry’s classification. The first hidden layer is connected to the second
hidden layer and is initialized with the prototypes of each class of data. Then the
second classification layer is strictly connected to the correspondence layer, and
the neurones of this correspondence are initialized with the whole data of the
database. One of the particularities of the structure we propose is that at the
hidden layers, the output of the upper level constitutes the entrances of the lower
level and so on.

We choose two prototypes for each class of data (arch, whorl, left and right
loop) according to the Henry’s classification [22] and initialize the two first hid-
den layers with those prototypes, in order to facilitate the convergence of our
algorithm. We also use a threshold (to determine if there is a match between two
templates), a symplectic integrator and the basic retro propagation algorithm for
the learning of the deep neural network. Figure 1 shows the structure of the
proposed deep neural network.

Where xi is the input image vector while oi is the expected output; hi
represents prototypes of each class of data, wji the connection weight between
the input layer and the 1st classification layer; zik the connection weight between
the two classification layer; gk are prototypes of the second classification layer,

klz′ the connection weight between the 2nd classification layer and the corres-
pondence layer, lh′ are the vectors of the entire database for the correspon-
dence layer and liw′ the connection weight between the correspondence layer
and the output layer.

Since it takes an average of 12 to 30 minutiae to establish the correspondence
between two fingerprints, the structure of our network will be the following: the
first hidden layer will be used to detect the first 12 minutiae, the second hidden
layer will be used to detect the rest of the minutiae present which may be a

DOI: 10.4236/jsea.2020.131001 5 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

Figure 1. Structure of the proposed neural network.

number n (with []0,n N∈ , N being the total number of detectable minutiae of
the fingerprint in question), and the third hidden layer is used to reconstruct all
the minutiae, to detect and reconstruct the essential characteristics of the finger-
print.

Then the proposed algorithm can be applied for deep learning like this:
Algorithm: Fingerprint authentication and reduction of false rejection
1) Choose the initial prototypes two by two for each data class, according to

the classification of Henry.
2) Initialize neurone of the first classification layer by the first prototype of

each data class (according to the first 12 minutiae).
3) Initialize neurone of the second classification layer by the second prototype

of each data class (according to the other remaining minutiae).
4) Initialize every correspondence layer neurone weight with the database

pattern class by class.
5) Apply an input vector and then a dropout regularization.
6) Apply the data transformation on the detection minutiae layer (using func-

tion: ReLU, Leaky ReLU).
7) Apply the data transformation on 2nd classification layer.
8) Apply the data transformation on the correspondence layer.
9) Select the winner.
10) Make comparison between predictions y and the true target y, obtain

loss function and loss score.
11) Optimize connection weights of each layer (using the leapfrog integrator).
12) Return to (5) till finishing input vectors.
End Algorithm
We propose to use one of those three functions (ReLU, Sigmoid and Leaky

ReLU) at each level of data transformation, and for one looping during the
learning stage, all the three are used at different levels of the hidden layer to
propagate the signal. For example, if at the first hidden layer for the ith looping,
we use the function ReLU, at the second hidden layer we will use Sigmoid and at
the third hidden layer we will use Leaky ReLU.

DOI: 10.4236/jsea.2020.131001 6 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

Then, for ith + 1 looping, we change the order of use of those functions
through the hidden layers to compute the signal, and so on. This helps the net-
work to improve system’s capacities to adapt itself to a new pattern. The execu-
tion flowchart for this algorithm is proposed below by Figure 2.

By performing the training stage, the input vector to be recognized has there-
fore successively passed to the classification and matching layers. The prototypes
of classification layers are used to make decision by probability calculations, be-
tween input and hidden layers; and the output at each level are used like to the
input of the next level (see Figure 3).

3. Implementation and Results

To compute different training stage and test we use: a computer MacBook Pro
CPU 2.5 GHz Intel Core i5 with 6Go 1600 MHz DDR3 memory; a computer In-
tel Core i5 CPU 2.5 GHz 2.5 GHz with 4Go of RAM; a computer Intel Pentium
CPU G645@ 2.90 GHz 2.90 GHz with 2Go of RAM Operating system Ubuntu
12.10, Mac OS High Sierra and the application Octave 3.6.1, Jupyter notebook
server 5.6.0, Python 3.70 and the library Openmpi.

The sampling is successively made by 40%, 50% and 80% of data from each
database exactly as in [7] [8]. Then:
 For the SOCOFing database: 2400, 3000 and 4800 images also distributed

between the individuals in the database;
 For the NIST4 database: 800, 1000 and 1600 images.

Figure 2. Execution flowchart of proposed method.

DOI: 10.4236/jsea.2020.131001 7 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

Figure 3. Probability calculation.

These images are proportionately distributed among the subclasses defined by

Henry (ark, tempted ark, vortex, and loops).
The system performances will be evaluated by:

 The recognition rate (or Acceptation Rate) MAR
N

= ;

 The error rate constituted of false rejection rate (FRR) and false acceptation
rate (FAR)

; ;R AFRR FAR
N N

= =

 The training and recognition time.
To ensure that our model does not over-learn, we use a “Dropout” regulariza-

tion. This technique consists of disabling certain neurones at each looping so
that the neurons are not dependent on each other (see Figure 4).

Thus, we place a “dropout” at the entrance of the hidden layers. It will be re-
sponsible for disabling 1% of the neurones (it is not recommended to go beyond
4% of neurones disabled by risk of facing under fitting).

Table 1 and Table 2 below show training results, while Table 3 and Table 4
show obtained testing results with both NIST4 and SOCOFing database.

3.1. Discussions

An analysis of the 2000 central images of the NIST4 database shows an average
intensity of 102 with a standard deviation of 26. The minimum value of the main
intensity is 21 and the maximum is197. On the other side, the analysis of the
6000 images in the SOCOFing database shows an average intensity of 254 with a
standard deviation of 37. Gaussian noise with a standard deviation of 29 was
added to each pixel of each sample in order to emulate the sound and later to
increase the difference between samples of the same fingerprint.

The use of blocks size should be an arrangement depending on what the au-
thor finds. If we split fingerprint image into high blocks size we’ll obtain a gain
on training time but the performance of recognition rate will be not very good.
In another way, if we use low block size, we’ll have better performance on recog-
nition rate but worst training time.

DOI: 10.4236/jsea.2020.131001 8 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

Figure 4. Dropout regularization.

Table 1. Training results with images sub-blocs sized of 8 × 8.

80% of NIST4 PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 94.6 49.8 88.3 94.6 96.7 97.1

FRR (in %) 4.8 17.3 11.3 4.8 2.8 2.4

FAR (in %) 0.6 32.9 0.4 0.6 0.5 0.5

80% of
SOCOFing

PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 94.7 49.9 88.9 95.3 97.4 97.7

FRR (in %) 4.6 17.1 10.6 4.0 2.0 1.7

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6

Table 2. Training results with images sub-blocs sized of 16 × 16.

80% of NIST4 PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.8 49.1 87.6 94.0 96.1 96.5

FRR (in %) 5.5 17.9 11.9 5.3 3.3. 2.9

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6

80% of
SOCOFing

PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.9 49.2 88.2 95.0 97.1 97.6

FRR (in %) 5.4 17.8 11.3 4.3 2.3 1.8

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6

Table 3. Testing results with images sub-blocs sized of 8 × 8.

80% of NIST4 PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.7 48.8 87.3 93.9 95.7 96.0

FRR (in %) 5.7 18.3 12.3 5.5 3.8 3.5

FAR (in %) 0.6 32.9 0.4 0.6 0.5 0.5

80% of
SOCOFing

PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.8 48.9 87.9 94.4 96.5 94.9

FRR (in %) 5.5 18.1 11.6 4.9 3.0 2.5

FAR (in %) 0.7 33.0 0.5 0.7 0.5 0.6

DOI: 10.4236/jsea.2020.131001 9 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

Table 4. Testing results with images sub-blocs sized of 16 × 16.

80% of NIST4 PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.1 48.5 87.0 93.4 95.5 95.8

FRR (in %) 6.2 18.5 12.5 5.9 3.9 3.6

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6

80% of
SOCOFing

PM LCNN
1 ppv
LCNN

8 ppv
LCNN

FVCNN
deep l = 2

Proposed
method

AR (in %) 93.2 48.9 87.8 94.1 96.1 96.5

FRR (in %) 6.1 18.1 11.7 5.2 3.3 2.9

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6

The use of a dropout regularization helps the network to make good decision

without under-learning and provide the ability to our proposed method to offer
best results in terms of recognition rate and false rejection rate as shown by Ta-
ble 3 and Table 4. We also use a particular technique to optimize our recogni-
tion result called Tuning. This technique consists on testing the neural network
model by changing some parameter’s values and at the end, to keep only those
which provide better results. As we use different activation functions at each
hidden layer to perform the training, associate with the fact that we permute
them during all the stage, to give the ability to the network to adapt the right
function with the particularities of data of a hidden layer, strongly contribute to
reduce the proportion of error rate, especially false rejection rate as we expected.
The leapfrog symplectic integrator [23] [24] [25] use and the input of hidden
layers contribute to stabilizing our algorithm convergence.

In fact, our proposed algorithm performs matching in less than 2 s on average,
on both databases used, with 18 minutiae. The overall system performs a false
rejection rate by 2.7% on average against 3.2% on average for the other best tech-
niques.

3.2. Proposition

In a context of deep learning, choose the number of hidden layers according to
the number of major operations to be carried out in the field in question, and
according to the characteristics underlying the problem to be solved, in order to
optimize the choice of hidden layers (where the prediction itself is made) and to
avoid introducing unnecessary layers. Each of these operations could then con-
stitute a level of abstraction. These levels of abstraction would be treated indivi-
dually, while considering the outputs/results of some as inputs of others and will
avoid costly operations in time of calculating the “pooling”.

Construction of a neural network (NR) according to the problem to be solved:
 Simple neural networks: use of several parameters to deal with the insuffi-

cient number of hidden layers. The quality of the result depends on the qual-
ity and number of parameters (which can grow exponentially when moving

DOI: 10.4236/jsea.2020.131001 10 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

from a network of depths d to a network of depths d + 1).
 Deep neural networks: the quality of the result depends on local connections,

convolutions and pooling. This can lead to too much learning time.
 Specific deep neural networks (our proposal): the quality of the result de-

pends on the local connections, the operations inherent in the field of study
and the underlying characteristics of the area. This makes it possible to con-
centrate on the essential and to avoid additional time-related costs and the
complexity of the data to be processed.

Let’s have:
 n : the number of major operations to solve a problem P;
 N: P’s execution constraints;

If n ≤ N, select a depth network n (hidden layer) to solve P and divide the
constraints into n sub-parts.

4. Conclusions

The purpose of this paper was to propose a new algorithm allowing the authen-
tication of an individual who wishes to access a computer system, using his fin-
gerprints, in a context of reducing the false rejection rate. The obtained results
show that our proposed algorithm, computed in a parallel way, perform match-
ing in less than 2 s on average, on both databases used, with 18 minutiae. The
overall system performs false rejection rate by 2.7% on average against 3.2% on
average for the other technique. In fact, the proposed method is quite innovative
and tries to combine the particularity of each data of the fingerprint’s image and
the way they are linked together when performing training stage. On the other
hand, we introduce a dropout regularization to deal better with the over-learning.

One of the strong result of our method is based on the fact that, we made a
special effort to select at each level layer the best activation function by intro-
ducing a supplementary parameter which helped us to use the right activation
function at the right hidden layer, and then choosing the right winner neuron of
the winner class at each level; this gives the capacity to our data to become inva-
riants to translation and rotation. We also use a threshold (10−7 with 18 minutiae)
to establish the matching between the expected output and that obtained.

One of the weak points of the technique we propose is that we need a very
high number of data sampling to train the network. Lack of those data will not
give the capacity to the network to handle latent images very well. One way to
solve this problem consists on making pre-learning of some layers or making
pooling during the training. But these techniques are risky, because the network
could be better to provide good results only on those data.

5. Perspectives

Future work could focus on developing an authentication system that uses in
addition to fingerprints and other features such as the way how the finger is
placed on the sensor and some face characteristics [26]. These particular features

DOI: 10.4236/jsea.2020.131001 11 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001

S. Kouamo et al.

will provide the system the ability to analyze a set of other elements specific to
the individual behavior of each user and thus making the system able to identify
a sudden change of behavior of that user. Other future works could also look at
the choices and the number of times that dropout operations must be applied, in
a context of deep learning with comparison of characteristic vectors invariants to
translation/rotation by probability calculations. Questions about how many
characteristics to switch to a generative adversarial network to produce the right
fingerprint image could also be another line of research.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Jiang, J. (1998) Image Compression with Neural Networks: A Survey. Signal Processing:

Image Communication, 14, 737-760.
https://doi.org/10.1016/S0923-5965(98)00041-1

[2] Kouamo, S. and Tangha, C. (2012) Handwritten Character Recognition with Artificial
Neural Network. In: Distributed Computing and Artificial Intelligence, Advances
in Intelligent and Soft Computing, Vol. 151, Springer Verlag, Berlin, 535-543.
https://doi.org/10.1007/978-3-642-28765-7_64

[3] Kouamo, S. and Tangha, C. (2016) Fingerprint Recognition with Artificial Neural
Networks: Application to E-Learning. Journal of Intelligent Learning Systems and
Applications, 8, 39-49.

[4] Viger, F.P., Nandar, K.W., Li, K. and Chen, J. (2019) Fingerprint Classification and
Identification Algorithms for Criminal Investigation: A Survey. Future Generation
Computer Systems.

[5] Rupali, S.P., Sonali, D.P. and Sudeep, D.T. (2018) Performance Evaluation of Fin-
gerprint Trait Authentication System. Advances in Intelligent Systems and Compu-
ting, Vol. 632, Springer-Verlag, Berlin, 143-151.
https://doi.org/10.1007/978-981-10-5520-1_14

[6] Watson, C.I. and Wilson, C.L. (1992) NIST Special Database 4 Fingerprint Data-
base. National Institute of Standards, Technology, Advanced Systems Division, Im-
age Recognition Group.

[7] LeCun, Y., Chopra, S., Hadsell, R., Marc’Aurelio, R. and Huang, F. (2006) A Tutori-
al on Energy-Based Learning. In: Bakir, G., Hofman, T., Schlkopf, B., Smola, A. and
Taskar, B., Eds., Predicting Structured Data, MIT Press, Cambridge, 10-21.

[8] Maio, D. and Maltoni, D. (1998) Neural Network Based Minutiae Filtering in Fin-
gerprints.

[9] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539

[10] Bengio, Y. and Delalleau, O. (2011) Shallow vs. Deep Sum-Product Networks. Neural
Information Processing Systems, Sierra Nevada, 16-17 December 2011, 1.
https://doi.org/10.1007/978-3-642-24477-3_1

[11] Capelli, R., Lumini, A., Maio, D. and Maltoni, D. (2002) Synthetic Fingerprint-Database
Generation. Proceeding of the 16th International Conference on Pattern Recogni-
tion, Quebec City, August 2002, Vol. 3, 744-747.

DOI: 10.4236/jsea.2020.131001 12 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001
https://doi.org/10.1016/S0923-5965(98)00041-1
https://doi.org/10.1007/978-3-642-28765-7_64
https://doi.org/10.1007/978-981-10-5520-1_14
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-24477-3_1

S. Kouamo et al.

[12] International Biometric Group (2011) The Henry Classification.
http://www.biometricgroup.com

[13] Kouamo, S. and Tangha, C. (2013) Images Compression with Artificial Neural
Network. Advances in Intelligent and Systems and Computing, Vol. 189, Springer
Verlag, Berlin, 515-524. https://doi.org/10.1007/978-3-642-33018-6_53

[14] Kouamo, O. and Gouy-Pailler, C. (2013) Multi-Scale Test Procedure for Non-Station-
arity in Short and Long Memory Time Series. IEEE, ICASSP, Vancouver, 26-30 May
2013, 5368-5372. https://doi.org/10.1109/ICASSP.2013.6638688

[15] Maltoni, D., Maio, D., Jain, A.K. and Prabhakar, S. (2003) Handbook of Fingerprint
Recognition. Springer, New York.

[16] Baldi, P. and Chauvin, Y. (1993) Neural Networks for Fingerprint Recognition. Neural
Computation, 5, 402-418. https://doi.org/10.1162/neco.1993.5.3.402

[17] Specht, D.F. (1990) Probabilistic Neural Networks. Neural Networks, 3, 109-118.
https://doi.org/10.1016/0893-6080(90)90049-Q

[18] Thomas, T.J. (2000) Locally-Connected Neural Network for Fingerprint Recogni-
tion. Proceedings of the IASTED International Conference, Intelligent Systems and
Control, Honolulu, 2000, 431-441.

[19] Qian, Y., Dong, J., Wang, W. and Tan, T. (2015) Deep Learning for Steganalysis via
Convolutional Neural Networks. Media Watermarking, Security, and Forensics,
Vol. 9409, 1-10. https://doi.org/10.1117/12.2083479

[20] Jagtap, V.N. and Mishra, S.K. (2014) Fast Efficient Artificial Neural Network for
Handwritten Digit Recognition. International Journal of Computer Science and In-
formation Technologies, 5, 2302-2306.

[21] Yunsick, S. (2016) Intelligent Security IT System for Detecting Intruders Based on
Received Signal Strength Indicators. Entropy, 18, 366.
https://doi.org/10.3390/e18100366

[22] Galton, F. (1892) Fingerprint. McMillan, London.

[23] Simo, J.C. and Tarnow, N. (1994) A New Energy and Momentum Conserving Algo-
rithm for the Non-Linear Dynamics of Shells. International Journal for Numerical
Methods in Engineering, 37, 2527-2549. https://doi.org/10.1002/nme.1620371503

[24] Skeel, R.D. (1998) Integration Schemes for Molecular Dynamics and Related Appli-
cations. Department of Computer Science (and Beckman Institute), University of
Illinois, Urbana.

[25] Yoshida, H. (2001) Non-Existence of the Modified First Integral by Symplectic In-
tegration Methods. Physics Letters A, 282, 276-283.
https://doi.org/10.1016/S0375-9601(01)00186-4

[26] Hamayun, A.K. (2017) Feature Fusion and Classifier Ensemble Technique for Ro-
bust Face Recognition. Signal Processing: An International Journal, 11, 1-15.

DOI: 10.4236/jsea.2020.131001 13 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2020.131001
http://www.biometricgroup.com/
https://doi.org/10.1007/978-3-642-33018-6_53
https://doi.org/10.1109/ICASSP.2013.6638688
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1016/0893-6080(90)90049-Q
https://doi.org/10.1117/12.2083479
https://doi.org/10.3390/e18100366
https://doi.org/10.1002/nme.1620371503
https://doi.org/10.1016/S0375-9601(01)00186-4

	Reduction of False Rejection in an Authentication System by Fingerprint with Deep Neural Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	2.1. Classic Method
	2.2. Probabilistic Neural Network
	2.3. Locally Connected Neural Networks
	2.4. A Three Hidden Layers Neural Network

	3. Implementation and Results
	3.1. Discussions
	3.2. Proposition

	4. Conclusions
	5. Perspectives
	Conflicts of Interest
	References

