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Abstract 
Faultless authentication of individuals by fingerprints results in high false re-
jections rate for rigorously built systems. Indeed, the authors prefer that the 
system erroneously reject a pattern when it does not meet a number of pre-
determined correspondence criteria. In this work, after discussing existing 
techniques, we propose a new algorithm to reduce the false rejection rate 
during the authentication-using fingerprint. This algorithm extracts the mi-
nutiae of the fingerprint with their relative orientations and classifies them 
according to the different classes already established; then, make the corres-
pondence between two templates by simple probabilities calculations from a 
deep neural network. The merging of these operations provides very promis-
ing results both on the NIST4 international data reference and on the SOCF-
ing database. 
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1. Introduction 

Fingerprints form a very specific class of models with singular particularity and 
proven statistical characteristics. Thus, the problems of fingerprint recognition 
seem to be much more constraining than other classical problems of form rec-
ognition (such as the recognition of manuscript characters) where neural net-
works have already been successfully applied [1] [2] [3]. Faultless authentication 
of individuals by fingerprints remains one of the main problems of fingerprint 
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recognition. Indeed, the authors prefer that the system erroneously reject a pat-
tern when it does not meet a number of predetermined correspondence criteria. 
This phenomenon tends to lead to an increase in false rejection rates when the 
fingerprint recognition system is designed for authentication [4] [5]. 

The main question we will address here is: how to design an algorithm that 
will reduce the rates of false rejections in a fingerprint authentication process 
while maintaining a minimum number of acceptable minutiae’s? 

The approach chosen for our work is to conduct a deep supervised learning 
from the neural network model. The system built for authentication will then be 
applied to data from an international NIST4 [6] database and the SOCFing da-
tabase. Neural networks have proven their worth in many areas, including the 
pattern recognition [7] [8]. One of their particularities is the ability to adapt to 
the data to be processed and the ability to perform the calculations in parallel, 
allowing them to intervene in various fields of application. 

We are working on a system for authentication, which is a one-to-one com-
parison. This kind of system tends to be more rigorous and, therefore, prefers to 
reject a pattern that does not have all the required criteria, even if the latter be-
longs to the correct class (which implies high false rejections). Our idea is to 
propose an algorithm that produces good results (compared to those existing), 
while at least avoiding rejecting a pattern of the correct class. This implies acting 
on the internal structure of the neural network and optimizing the recognition 
algorithm so that it rejects as little as possible a pattern erroneously. 

Then, we propose a new algorithm for extracting and classifying minutiae by a 
parsimonious approach as well as the appropriate deep neural network structure 
with three hidden layers that use different activation functions at each looping 
during learning. This enabled us to improve the false rejection score (by 0.4 per-
centage on average), compared to existing ones. 

The network we propose has an input layer, an output layer and a hidden layer 
consisting of 3 sub-layers (two sub-layers of classification and one sub-layer of 
correspondence whose size is strictly greater than that of the previous two). We 
opted for three (03) hidden layers due to the three major operations that under-
lie the authentication process, namely: 
 The identification of the minutiae and their relative orientations; 
 The constitution of the characteristic vectors according to the type of detail 

and the orientation of these; 
 Finally, the correspondence of the templates constituted. 

Each of these three operations will then be carried out at each of the hidden 
layers and the outputs/results of the upper layers will be used as inputs for the 
following layers, this in a hierarchical manner [9]. 

On the other hand, based on the theoretical basis of fingerprint authentication, 
it takes an average of 12 to 30 minutes to establish a match between two tem-
plates [10] [11]. This constraint also guided us in the choice of 03 hidden layers 
in the following way: the prototypes of the first hidden layer use the first 12 mi-
nutiae detected, those of the second hidden layer use the remaining minutiae 
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and the whole is reconstituted at the corresponding layer (something that no 
technique had yet explored). 

We also use a different activation function at each hidden layer and a leapfrog 
symplectic integrator for optimization of the result. 

The rest of the document is organized into three sections. The first presents 
the main algorithms for fingerprint recognition. The second describes the pro-
posed method and the third presents some of the results obtained. We’ll end up 
with a conclusion. 

2. Related Works 

The henry classification reveals five major classes of fingerprint [12], this from 
the overall texture of the fingerprint image. We will focus more on the aspect of 
the correspondence which deals with a set of much more subtle elements to es-
tablish the match between two fingerprints namely (the minutiae’s, the striations, 
their relative orientations, etc.). In fact, there are two main classes of algorithm 
processing a fingerprint using a deep learning to know: those that use locally 
connected neural networks and those that are based on probabilistic or convolu-
tional algorithms, but let’s present first the old classic method. 

2.1. Classic Method 

This method consists of comparing the pixel matrices of the images of two fin-
gerprints, and calculating the correlation that exists between these pixels. The 
image to be recognized (M) as well as the images in the database are all scanned 
and recorded as a pixel matrix rated Mi. Recognition therefore consists in com-
paring the input matrix to all the Mi. matrices of the database for the case of 
identification, or to a single specific M matrix in the case of authentication [13] 
[14] [15]. 

There are also some classic methods that use minutiae’s events to compare 
fingerprints. These minutiae’s are extracted from two fingerprints, and 
represented as a set of points in the two-dimensional plane according to the 
coordinate model. The comparison is to find a good alignment of minutiae of 
two fingerprints (I and J) that produces a maximum of pairs of similar minutiae. 
This method uses an intermediate algorithm to extract main characteristics of 
fingerprint image, and simply compare formed vectors. 

Limits 
 Use of fingerprint image pixels that can vary significantly depending on the 

scan device, etc; 
 No learning is required; 
 The result depends on the algorithm of extraction of the main characteristics 

of fingerprint image. 

2.2. Probabilistic Neural Network 

Algorithm of this class of method use to deal exclusively with the aspect of cor-
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respondence, instead of also taking into account the aspect of classification [16] 
[17]. Here, operations consist of two main steps, namely: a treatment stage and a 
decision stage. The processing phase essentially aligns the two images and ex-
tracts from each one “a central region”. Both central regions are used to feed the 
decision stage, which is the most appropriate part of the neural network of the 
algorithm and is subject to the formation of examples. 

While the treatment phase is fairly standard (i.e., uses existing treatment algo-
rithms [16] [17]), the decision phase proposed by authors is quite innovative and 
is based on probabilistic neural networks that use a Bayesian approach to assess 
the probability that two P templates are identical. The network is formed by the 
descent of the gradient using a set of learning pairs of images from several dif-
ferent fingerprints. The addition of a few additional fingers to perform the phase 
of use consolidates the robustness of the neural network created and tested be-
forehand. 

This technique uses a central image region with data alignment and compres-
sion; and then, calculation of probabilities to match two patterns provided as 
network input after multiple successive filters. 

Limits 
 Using complex formulas to calculate probabilities; 
 Treatment and events on minutiae are associated with a single layer of the 

network; 
 Usable for a limited number of images including the learning phase. 

2.3. Locally Connected Neural Networks 

In this algorithm, the process of recognition of a fingerprint consists of two im-
portant phases: the extraction of minutiae and the classification of the template 
[18]. 
 In the first step, an image is passed through the system input and is reduced 

to a vector of characteristic features, through various transformations, calcu-
lation of moments, etc.) and the prototype vectors are formed by database 
data class; 

 In the second step, a direct classification or comparison that will lead to the 
recognition or not of the pattern is carried out between the characteristic in-
put vector and the prototypes of the database. This locally connected neural 
network-based method is more appropriate for verification, security and 
identification applications. 

The particularity of this technique is the use of the characteristic vectors that 
are invariant both to the translation and the rotation of the fingerprint image. 
Qian et al., in their article [19], proposed a model of CNN that, when applied to 
fingerprint verification, through the Fingerprint Verification for Convolutional 
Neural Network (FVCNN) system, produces interesting, though perfectible re-
sults. 

This technique is based on three classification algorithms: the middle classes, 
the nearest neighbour and the nearest neighbours [19] [20] [21]. 
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The main advantage of this method is the use of prototypes (characteristic 
vectors of fingerprint images following predefined classes) invariants to transla-
tion/rotation to perform the recognition. This algorithm is appropriate for iden-
tifying an individual in a large database and uses the nearest neighbours to per-
form classification in a deep learning context. 

Limits 
 Using thresholds and activation calculations to match; 
 Treatment and events on minutiae are associated with a single layer of the 

network; 
 Learning times are high. 

2.4. A Three Hidden Layers Neural Network 

In order to reduce false rejection while maintaining a high recognition rate, we 
propose a new algorithm based on the use of deep neural network to perform 
learning and using stage, that contribute to reduce false rejection rate according 
to the existing methods. The structure of our neural network is then that of a lo-
cally connected neural network with three hidden layers, which uses the proba-
bility calculation to classify the sub-blocks of the image as input, taking into ac-
count Henry’s classification. The first hidden layer is connected to the second 
hidden layer and is initialized with the prototypes of each class of data. Then the 
second classification layer is strictly connected to the correspondence layer, and 
the neurones of this correspondence are initialized with the whole data of the 
database. One of the particularities of the structure we propose is that at the 
hidden layers, the output of the upper level constitutes the entrances of the lower 
level and so on. 

We choose two prototypes for each class of data (arch, whorl, left and right 
loop) according to the Henry’s classification [22] and initialize the two first hid-
den layers with those prototypes, in order to facilitate the convergence of our 
algorithm. We also use a threshold (to determine if there is a match between two 
templates), a symplectic integrator and the basic retro propagation algorithm for 
the learning of the deep neural network. Figure 1 shows the structure of the 
proposed deep neural network. 

Where xi is the input image vector while oi is the expected output; hi 
represents prototypes of each class of data, wji the connection weight between 
the input layer and the 1st classification layer; zik the connection weight between 
the two classification layer; gk are prototypes of the second classification layer, 

klz′  the connection weight between the 2nd classification layer and the corres-
pondence layer, lh′  are the vectors of the entire database for the correspon-
dence layer and liw′  the connection weight between the correspondence layer 
and the output layer. 

Since it takes an average of 12 to 30 minutiae to establish the correspondence 
between two fingerprints, the structure of our network will be the following: the 
first hidden layer will be used to detect the first 12 minutiae, the second hidden 
layer will be used to detect the rest of the minutiae present which may be a  
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Figure 1. Structure of the proposed neural network. 

 
number n (with [ ]0,n N∈ , N being the total number of detectable minutiae of 
the fingerprint in question), and the third hidden layer is used to reconstruct all 
the minutiae, to detect and reconstruct the essential characteristics of the finger-
print. 

Then the proposed algorithm can be applied for deep learning like this: 
Algorithm: Fingerprint authentication and reduction of false rejection 
1) Choose the initial prototypes two by two for each data class, according to 

the classification of Henry. 
2) Initialize neurone of the first classification layer by the first prototype of 

each data class (according to the first 12 minutiae). 
3) Initialize neurone of the second classification layer by the second prototype 

of each data class (according to the other remaining minutiae). 
4) Initialize every correspondence layer neurone weight with the database 

pattern class by class. 
5) Apply an input vector and then a dropout regularization. 
6) Apply the data transformation on the detection minutiae layer (using func-

tion: ReLU, Leaky ReLU). 
7) Apply the data transformation on 2nd classification layer. 
8) Apply the data transformation on the correspondence layer. 
9) Select the winner. 
10) Make comparison between predictions y  and the true target y, obtain 

loss function and loss score. 
11) Optimize connection weights of each layer (using the leapfrog integrator). 
12) Return to (5) till finishing input vectors. 
End Algorithm 
We propose to use one of those three functions (ReLU, Sigmoid and Leaky 

ReLU) at each level of data transformation, and for one looping during the 
learning stage, all the three are used at different levels of the hidden layer to 
propagate the signal. For example, if at the first hidden layer for the ith looping, 
we use the function ReLU, at the second hidden layer we will use Sigmoid and at 
the third hidden layer we will use Leaky ReLU. 
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Then, for ith + 1 looping, we change the order of use of those functions 
through the hidden layers to compute the signal, and so on. This helps the net-
work to improve system’s capacities to adapt itself to a new pattern. The execu-
tion flowchart for this algorithm is proposed below by Figure 2. 

By performing the training stage, the input vector to be recognized has there-
fore successively passed to the classification and matching layers. The prototypes 
of classification layers are used to make decision by probability calculations, be-
tween input and hidden layers; and the output at each level are used like to the 
input of the next level (see Figure 3). 

3. Implementation and Results 

To compute different training stage and test we use: a computer MacBook Pro 
CPU 2.5 GHz Intel Core i5 with 6Go 1600 MHz DDR3 memory; a computer In-
tel Core i5 CPU 2.5 GHz 2.5 GHz with 4Go of RAM; a computer Intel Pentium 
CPU G645@ 2.90 GHz 2.90 GHz with 2Go of RAM Operating system Ubuntu 
12.10, Mac OS High Sierra and the application Octave 3.6.1, Jupyter notebook 
server 5.6.0, Python 3.70 and the library Openmpi. 

The sampling is successively made by 40%, 50% and 80% of data from each 
database exactly as in [7] [8]. Then: 
 For the SOCOFing database: 2400, 3000 and 4800 images also distributed 

between the individuals in the database; 
 For the NIST4 database: 800, 1000 and 1600 images. 
 

 
Figure 2. Execution flowchart of proposed method. 
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Figure 3. Probability calculation. 

 
These images are proportionately distributed among the subclasses defined by 

Henry (ark, tempted ark, vortex, and loops). 
The system performances will be evaluated by: 

 The recognition rate (or Acceptation Rate) MAR
N

= ; 

 The error rate constituted of false rejection rate (FRR) and false acceptation 
rate (FAR) 

; ;R AFRR FAR
N N

= =  

 The training and recognition time. 
To ensure that our model does not over-learn, we use a “Dropout” regulariza-

tion. This technique consists of disabling certain neurones at each looping so 
that the neurons are not dependent on each other (see Figure 4). 

Thus, we place a “dropout” at the entrance of the hidden layers. It will be re-
sponsible for disabling 1% of the neurones (it is not recommended to go beyond 
4% of neurones disabled by risk of facing under fitting). 

Table 1 and Table 2 below show training results, while Table 3 and Table 4 
show obtained testing results with both NIST4 and SOCOFing database. 

3.1. Discussions 

An analysis of the 2000 central images of the NIST4 database shows an average 
intensity of 102 with a standard deviation of 26. The minimum value of the main 
intensity is 21 and the maximum is197. On the other side, the analysis of the 
6000 images in the SOCOFing database shows an average intensity of 254 with a 
standard deviation of 37. Gaussian noise with a standard deviation of 29 was 
added to each pixel of each sample in order to emulate the sound and later to 
increase the difference between samples of the same fingerprint. 

The use of blocks size should be an arrangement depending on what the au-
thor finds. If we split fingerprint image into high blocks size we’ll obtain a gain 
on training time but the performance of recognition rate will be not very good. 
In another way, if we use low block size, we’ll have better performance on recog-
nition rate but worst training time. 
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Figure 4. Dropout regularization. 

 
Table 1. Training results with images sub-blocs sized of 8 × 8. 

80% of NIST4 PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 94.6 49.8 88.3 94.6 96.7 97.1 

FRR (in %) 4.8 17.3 11.3 4.8 2.8 2.4 

FAR (in %) 0.6 32.9 0.4 0.6 0.5 0.5 

80% of  
SOCOFing 

PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 94.7 49.9 88.9 95.3 97.4 97.7 

FRR (in %) 4.6 17.1 10.6 4.0 2.0 1.7 

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6 

 
Table 2. Training results with images sub-blocs sized of 16 × 16. 

80% of NIST4 PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.8 49.1 87.6 94.0 96.1 96.5 

FRR (in %) 5.5 17.9 11.9 5.3 3.3. 2.9 

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6 

80% of  
SOCOFing 

PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.9 49.2 88.2 95.0 97.1 97.6 

FRR (in %) 5.4 17.8 11.3 4.3 2.3 1.8 

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6 

 
Table 3. Testing results with images sub-blocs sized of 8 × 8. 

80% of NIST4 PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.7 48.8 87.3 93.9 95.7 96.0 

FRR (in %) 5.7 18.3 12.3 5.5 3.8 3.5 

FAR (in %) 0.6 32.9 0.4 0.6 0.5 0.5 

80% of  
SOCOFing 

PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.8 48.9 87.9 94.4 96.5 94.9 

FRR (in %) 5.5 18.1 11.6 4.9 3.0 2.5 

FAR (in %) 0.7 33.0 0.5 0.7 0.5 0.6 
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Table 4. Testing results with images sub-blocs sized of 16 × 16. 

80% of NIST4 PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.1 48.5 87.0 93.4 95.5 95.8 

FRR (in %) 6.2 18.5 12.5 5.9 3.9 3.6 

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6 

80% of  
SOCOFing 

PM LCNN 
1 ppv 
LCNN 

8 ppv 
LCNN 

FVCNN 
deep l = 2 

Proposed 
method 

AR (in %) 93.2 48.9 87.8 94.1 96.1 96.5 

FRR (in %) 6.1 18.1 11.7 5.2 3.3 2.9 

FAR (in %) 0.7 33.0 0.5 0.7 0.6 0.6 

 
The use of a dropout regularization helps the network to make good decision 

without under-learning and provide the ability to our proposed method to offer 
best results in terms of recognition rate and false rejection rate as shown by Ta-
ble 3 and Table 4. We also use a particular technique to optimize our recogni-
tion result called Tuning. This technique consists on testing the neural network 
model by changing some parameter’s values and at the end, to keep only those 
which provide better results. As we use different activation functions at each 
hidden layer to perform the training, associate with the fact that we permute 
them during all the stage, to give the ability to the network to adapt the right 
function with the particularities of data of a hidden layer, strongly contribute to 
reduce the proportion of error rate, especially false rejection rate as we expected. 
The leapfrog symplectic integrator [23] [24] [25] use and the input of hidden 
layers contribute to stabilizing our algorithm convergence. 

In fact, our proposed algorithm performs matching in less than 2 s on average, 
on both databases used, with 18 minutiae. The overall system performs a false 
rejection rate by 2.7% on average against 3.2% on average for the other best tech-
niques. 

3.2. Proposition 

In a context of deep learning, choose the number of hidden layers according to 
the number of major operations to be carried out in the field in question, and 
according to the characteristics underlying the problem to be solved, in order to 
optimize the choice of hidden layers (where the prediction itself is made) and to 
avoid introducing unnecessary layers. Each of these operations could then con-
stitute a level of abstraction. These levels of abstraction would be treated indivi-
dually, while considering the outputs/results of some as inputs of others and will 
avoid costly operations in time of calculating the “pooling”. 

Construction of a neural network (NR) according to the problem to be solved:  
 Simple neural networks: use of several parameters to deal with the insuffi-

cient number of hidden layers. The quality of the result depends on the qual-
ity and number of parameters (which can grow exponentially when moving 
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from a network of depths d to a network of depths d + 1). 
 Deep neural networks: the quality of the result depends on local connections, 

convolutions and pooling. This can lead to too much learning time. 
 Specific deep neural networks (our proposal): the quality of the result de-

pends on the local connections, the operations inherent in the field of study 
and the underlying characteristics of the area. This makes it possible to con-
centrate on the essential and to avoid additional time-related costs and the 
complexity of the data to be processed. 

Let’s have: 
 n : the number of major operations to solve a problem P; 
 N: P’s execution constraints; 

If n ≤ N, select a depth network n (hidden layer) to solve P and divide the 
constraints into n sub-parts. 

4. Conclusions 

The purpose of this paper was to propose a new algorithm allowing the authen-
tication of an individual who wishes to access a computer system, using his fin-
gerprints, in a context of reducing the false rejection rate. The obtained results 
show that our proposed algorithm, computed in a parallel way, perform match-
ing in less than 2 s on average, on both databases used, with 18 minutiae. The 
overall system performs false rejection rate by 2.7% on average against 3.2% on 
average for the other technique. In fact, the proposed method is quite innovative 
and tries to combine the particularity of each data of the fingerprint’s image and 
the way they are linked together when performing training stage. On the other 
hand, we introduce a dropout regularization to deal better with the over-learning. 

One of the strong result of our method is based on the fact that, we made a 
special effort to select at each level layer the best activation function by intro-
ducing a supplementary parameter which helped us to use the right activation 
function at the right hidden layer, and then choosing the right winner neuron of 
the winner class at each level; this gives the capacity to our data to become inva-
riants to translation and rotation. We also use a threshold (10−7 with 18 minutiae) 
to establish the matching between the expected output and that obtained. 

One of the weak points of the technique we propose is that we need a very 
high number of data sampling to train the network. Lack of those data will not 
give the capacity to the network to handle latent images very well. One way to 
solve this problem consists on making pre-learning of some layers or making 
pooling during the training. But these techniques are risky, because the network 
could be better to provide good results only on those data. 

5. Perspectives 

Future work could focus on developing an authentication system that uses in 
addition to fingerprints and other features such as the way how the finger is 
placed on the sensor and some face characteristics [26]. These particular features 
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will provide the system the ability to analyze a set of other elements specific to 
the individual behavior of each user and thus making the system able to identify 
a sudden change of behavior of that user. Other future works could also look at 
the choices and the number of times that dropout operations must be applied, in 
a context of deep learning with comparison of characteristic vectors invariants to 
translation/rotation by probability calculations. Questions about how many 
characteristics to switch to a generative adversarial network to produce the right 
fingerprint image could also be another line of research. 
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