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Abstract 
In this paper, an extended car-following model is proposed based on an op-
timal velocity model (OVM), which takes the speed limit into consideration. 
The model is analyzed by using the linear stability theory and nonlinear anal-
ysis method. The linear stability condition shows that the speed limit can en-
large the stable region of traffic flow. By applying the reductive perturbation 
method, the time-dependent Ginzburg-Landau (TDGL) equation and the 
modified Korteweg-de Vries (mKdV) equation are derived to describe the 
traffic flow near the critical point. Furthermore, the relation between TDGL 
and mKdV equations is also given. It is clarified that the speed limit is essen-
tially equivalent to the parameter adjusting of the driver’s sensitivity. 
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1. Introduction 

With the development of social economy and the increasing number of motor 
vehicles, traffic jam has become the common bottleneck of urban development. 
The problem of traffic congestion can be attributed to the stability and solitary 
waves of traffic flow models. Generally speaking, traffic flow models have been 
divided into macroscopic models, microscopic models, and mesoscopic models 
according to the aggregation level. There are many microscopic models in traffic 
flow, and the most commonly studied model is the car-following model. The 
car-following model is a microscopic traffic flow model used to describe the be-
havior of a single driver. In order to study the complex characteristics of traffic 
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flow, scholars have proposed various car-following models to understand the 
formation and transmission mechanism of traffic congestion. 

The early research work on the car-following theory was originated from 
Reuschel [1] and Pipes [2]. Since then, scholars have carried out many related 
research works. In 1961, Newell [3] proposed a car-following model of veloci-
ty-governing equation by assuming that the velocity adjustment of the rear car 
depends on the optimized velocity of the headway. In 1995, Bando et al. [4] 
proposed the optimal velocity model (OVM), in which the optimal velocity was 
determined only by the headway with the forward vehicle. Despite the simplicity 
and few parameters, the OVM can be used to describe various characteristics of 
the actual traffic flow, such as stop-and-go phenomenon, the instability of traffic 
flow and the evolution of traffic jams. In 1998, Helbing and Tilch [5] verified 
OVM by using empirical data and proposed a generalized force model (GFM), 
which overcomes the problems of unrealistic deceleration and excessive accele-
ration of OVM. In 2001, Jiang et al. [6] found that the GFM could not be used 
well to describe the delay time and the kinematic wave speed at jam density and 
proposed a full velocity difference model (FVDM) by considering the influence 
of positive and negative speed differences on the car-following models. In 2008, 
in order to overcome the high deceleration of FVDM, Ge et al. [7] proposed a 
two-velocity difference model (TVDM) based on the application of intelligent 
transportation system (ITS). Recently, some new car-following models were 
submitted to describe traffic nature more realistically [8] [9] [10] [11] [12]. Un-
doubtedly, these scholars have made various contributions to the establishment 
and development of traffic flow. For the above car-following models, there have 
been many researches focusing on the stability and density waves in the past 
time. 

In the past, more research has focused on the density waves for the 
car-following models. However, it is still enormous significance to derive ther-
modynamic theory of traffic flow model and to link traffic meta-stability with 
spinodal decomposition in first-order phase transition [13]. The TDGL equation 
can refer to non-equilibrium phase transition [14]. Nagatani [15] firstly pro-
posed the thermodynamic theory of traffic flow, and derived the TDGL equation 
of two simple lattice hydrodynamic models near the critical point and the ther-
modynamic potential of traffic flow by applying the reduced perturbation me-
thod. So far, there has been little research on deriving TDGL equation from 
car-following models [16] [17] [18] [19]. Since the TDGL equation of the traffic 
flow model can be used to represent the thermodynamics theory of jamming 
transition, it is very important to establish the traffic flow model and derive the 
corresponding TDGL equation. 

In recent years, traffic jams are still intense as the number of cars in big cities 
increases and road infrastructure becomes more complex. Exploitation of intel-
ligent transport system is a part of the best ways for settling transport problems. 
Considering the influence of an intelligent transportation system, many re-
searchers have established some car-following models to describe the real nature 
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of traffic flow [20] [21] [22] [23] [24]. In fact, intelligent vehicle navigation sys-
tem can provide service for the vehicles, when the actual speed of the vehicle de-
viates from the speed limit. If the vehicle overspeeds, it is easy to cause traffic 
congestion and traffic accidents, and the driver can learn the speed limit infor-
mation in advance, he can adjust in advance to achieve a stable speed. At this 
time, the traffic can develop smoothly. In other words, drivers’ knowledge of 
speed limit information in advance plays an important role in stabilizing the 
traffic flow. However, most of the car-following models have not considered the 
effect of the speed limit. 

In order to reveal the effect of the speed limit on traffic flow, an extended 
optimal velocity model is introduced by considering the speed limit in this 
paper. The content of this paper is organized as follows. In Section 2, an ex-
tended optimal velocity model with consideration of the speed limit is intro-
duced. In Section 3, the linear stability condition is obtained from the linear 
stability analysis method. In Section 4, the TDGL equation and its corres-
ponding soliton solution are obtained from the reductive perturbation method. 
In Section 5, the mKdV equation is derived in the unstable region. In Section 6, 
conclusions are given. 

2. An Extended OVM with Speed Limit 

In 1995, Bando et al. [4] proposed the OVM based on the analysis of the charac-
teristics of traffic flow. The equation of motion is as follows: 

( ) ( )( ) ( )2

2

d d
,

d d
n n

n
x t x t

a V x t
t t

∆ ∆ 
= ∆ − 

 
                 (1) 

where a is the driver’s sensitivity coefficient, ( ) 0nx t >  is the position of the 
vehicle at time t, )(⋅V  is the optimal velocity function, and  

( ) ( ) ( )1n n nx t x t x t+∆ = −  represents the space headway between the car ahead 
and the car following at time t. 

As people make full use of the latest information of the intelligent transporta-
tion system, some traffic problems are gradually solved. For example, intelligent 
vehicle navigation system uses computer and communication technology to 
provide information relevant to the cars on the road and generate dynamic traf-
fic information, such as the speed limit [25]. It can determine at what appropri-
ate velocity the driver should drive under the current conditions according to 
the current traffic conditions and signal status. When the actual velocity of the 
vehicle deviates from the speed limit by the navigation system, the driver will 
adjust the actual velocity according to the stable speed limit to improve the traf-
fic capacity and relieve traffic congestion. Therefore, we propose the following 
extended optimal velocity model by considering the speed limit: 

( ) ( )( ) ( ) ( )2

2

d d d
,

d d d
n n n

n lim
x t x t x t

a V x t a V
t t t

λ
∆ ∆ ∆   

= ∆ − + −  
   

       (2) 

where limV  is the speed limit provided by the navigation system, and λ  de-
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notes the reactive coefficient related to the speed limit limV . 
We chose the optimal velocity function ( )( )nV x t∆  as proposing in reference 

[4]. 

( )( ) ( )( ) ( )max tanh tanh ,
2n n c c

v
V x t x t h h ∆ = ∆ − +           (3) 

where maxv  is the maximum velocity of the vehicles, ch  is the safety distance 
of the vehicles. The optimal velocity function ( )V ⋅  is a function of ( )nx t∆ , 
and it’s a monotonically increasing function with an upper bound. 

For the convenience of analysis in the following, we discretize Equation (2) 
with asymmetric forward difference [24], and rewrite it in terms of headway as 
follows: 

( ) ( ) ( )( ) ( )( ) ( ) ( )12n n n n n nx t x t V x t V x t x t x tτ τ τ λ τ+ ∆ + = ∆ + + ∆ − ∆ − ∆ + − ∆   
(4) 

where τ  is time step and 1
a

τ = . 

3. Linear Stability Analysis 

In this section, we study the extended optimal velocity model of Equation (4) by 
the method of linear stability analysis. 

First, we assume that the initial state is stable, the headway of the vehicle is h 
and the corresponding optimal velocity is ( )V h . At this time, the vehicle posi-
tion of the steady-state traffic flow can be expressed as 

( ) ( )0 , ,nx t hn V h t h L N= + =                     (5) 

where N is the number of cars, L is the road length, and h is the average headway. 
Let ( )ny t  be a small deviation from the steady-state solution ( )0

nx t , then the 
perturbed solution is given as 

( ) ( ) ( )0 .n n nx t x t y t= +                         (6) 

Substituting (6) into Equation (4), we obtain the following formulation: 

( ) ( ) ( ) ( ) ( ) ( )12 ,n n n n n ny t y t V y t y t y t y tτ τ τ λ τ+′∆ + = ∆ + + ∆ − ∆ − ∆ + − ∆       (7) 

where ( ) ( ) ( )1n n ny t y t y t+∆ = −  and ( ) ( )( )d
d

n

n

x h

V x t
V h

t
∆ =

∆
′ = . 

Let ( ) ( )expny t ikn zt∆ = + , Equation (7) can be rewritten as follows: 

( ) ( )2e e e 1 e 1 .z z ik zVτ τ ττ λ′= + − − −                   (8) 

where ( )V V h′ ′= . Since 0z →  as ik →∞ , z can be expressed by a long wave 
as ( ) ( )2

1 2z z ik z ik= + + . 
Substituting it into (8) and neglecting the higher order items, we obtain the 

coefficients of the first-and second-order term of ik , as follows: 

( ) ( )
( )

( ) ( )
( )

2

1 2 3

3
, .

1 2 1 2 1
V h V h V h

z z
τ λ

λ λ λ

′ ′ ′ +
= = −

+ + +
              (9) 
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Clearly, if 2z  is negative, the initial steady uniform flow will become unstable; 
if 2z  is positive, the original steady flow state remains unchanged. Thus, the 
neutral stability condition of an extended optimal velocity model considering the 
speed limit is obtained as follows: 

( )
( )( )

21
.

3V h
λ

τ
λ

+
=

′ +
                        (10) 

We are concerned with τ  relating to λ , the reactive coefficient relating to 

limV . Thus, the uniform traffic flow remains stable if the following condition 
holds: 

( )
( )( )

21
.

3V h
λ

τ
λ

+
<

′ +
                        (11) 

As 0λ > , we have 
( )

( )
( )( )

211
3 3V h V h

λ
λ

+
<

′ ′ +
. This shows that the stable region 

of (11) is larger than that of (12) the OVM (where 0λ = ) given as follows: 

( )
1 .

3V h
τ <

′
                         (12) 

From (11), we can see that the parameter λ  has an important effect on the 

stabilization of traffic flow. Notice that ( ) ( )( )
( )

2

2

1 1 5
0

3 3
λ λ λ
λ λ

 + + +
= > 

+ +  
, 0λ > , 

at this time, ( )21
3

λ
λ

+
+

 is increases monotonically with respect to λ , so it holds 

that 
( )

( )
( )( )

211
3 3V h V h

λ
λ

+
<

′ ′ +
, 0λ > . As a result, the stability condition (11) is 

weaker than (12), and the stable region is larger than OVM. 
Figure 1 shows the phase diagram in the ( ),h a -phase where h (meter) is the 

headway and a (1/second) is sensitivity which corresponds to the inverse of the 
delay time. It shows the stable neutral lines of (10) with different values of λ , 
where max 2 m sv =  is taken as the maximal velocity and 4 mch =  is the safe 
distance. In Figure 1, above the neutral stability curve is a stable region, which 
represents a free phase without traffic congestion, and below the neutral stability 
curve is an unstable region, which represents the traffic jam phase that evolves 
backward as the density waves stop-and-go. The peak of each curve represents 
the critical point ( ),c ch a . Figure 1 also shows that as the sensitivity coefficient 
λ  to the speed limit increases, the stable region also gradually expands. This 
shows that if the driver can obtain the speed limit information through the intel-
ligent vehicle navigation system in advance, he can adjust the vehicle speed ear-
lier, effectively enhance the stability of the traffic flow, and avoid traffic congestion. 

4. TDGL Equation 
Now we use the long-wavelength modes to derive the TDGL equation for de-
scribing the pedestrian flow on a coarse-grained scale [26]. The long-wavelength  
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Figure 1. Phase diagram in headway-sensitivity space ( ),h a . 

 
expansion is the simplest way to describe the behavior of the long-wavelength 
models. 

First, we analyze the slow-varying behavior of long waves near critical point 
( ),c ch a . Introduce the slow scales ε  of space variable n and time variable t [27], 
and define the slow variables X and T as follows: 

( ) 3, , 0 1,X n bt T tε ε ε= + = <                   (13) 

where b is a constant. The headway ( )nx t∆  is defined by 

( ) ( ), .n cx t h R X Tε∆ = +                       (14) 

Next, by expanding Equation (4) to the fifth-order of ε  with the use of (13) 
and (14). We obtain the expression: 

2 3 2 4 3 3
1 2 3 4

5 4 2 3
5 6 7 0.

X X T X X

XT X X

h R h R R h R h R

h R h R h R

ε ε ε

ε

 ∂ + ∂ + ∂ + ∂ + ∂ 
 + ∂ + ∂ + ∂ = 

            (15) 

Here, the coefficients ih  are given in Table 1. Where  

( ) ( )( )
( )

d
d

n c

n
c

n x h

V x t
V V h

x t
∆ =

∆
′ ′= =

∆
, and ( ) ( )( )3

3

d
d

n c

n
c

n x h

V x t
V V h

x
∆ =

∆
′′′ ′′′= =

∆
. 

Now, we study the traffic flow near critical point ( )21 cτ ε τ= + . By taking 

( )
1

cV h
b

λ
′

=
+

, we eliminate the second- and third-order terms of ε  from Equa-

tion (15). The simplified equation of Equation (15) is as follows: 
4 4 3 4 3 3 2 5 4 5 2 3

1 2 3 4 5 .T X X X X XR m R m R m R m R m Rε ε ε ε ε ε∂ = ∂ + ∂ − ∂ − ∂ − ∂     (16) 

Here, the coefficients im  are given in Table 2. 
By transforming variables X and T into variables 1x Xε −=  and 3t Tε −= , 

and taking ( ) ( ), ,S x t R X Tε= , Equation (16) can be rewritten as follows: 
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Table 1. The coefficients ih  of (15). 

1h  2h  3h   

1
Vb
λ
′

−
+

 ( )
( )

23
2 1

b Vλ τ
λ

′+ −
+

 ( )
( )

3 37
6 1

b Vλ τ
λ

′+ −
+

  

4h  5h  6h  7h  

( )6 1
V

λ
′′′

−
+

 ( )1 3
1

bλ τ
λ

+
+

 
( )

( )

3 415
24 1

b Vλ τ
λ

′+ −
+

 
( )12 1
V

λ
′′′

−
+

 

 
Table 2. The coefficients im  of (16). 

1m  2m  3m  

( ) ( )2

7
6 16 3

VVλ
λλ
′+ ′ −
++

 
( )6 1
V

λ
′′′

−
+

 
( )

( ) ( )

2

3

3

2 1
2 1

V
V

λ τ

λ
λ

′+
′

+ −
+

 

4m  5m   

( ) ( )
( ) ( )

( )
( ) ( )3 2

15 1 7
24 1 6 124 3 6 3

V VV Vλ λ λ
λ λλ λ

′ ′+ + +′ ′
− − +

+ ++ +
 

( )12 1
V

λ
′′′
+

  

 

( )
( ) ( )

3 3 2 4 2 3
1 2 4 53

3 1 .
2 12 1

t x x x x

V
S m xS m S V S m S m S

λ τ
λλ

 ′+
′ ∂ = ∂ + ∂ − ∂ − ∂ − ∂

 ++ 
  (17) 

By adding term ( )
( )3

3 1
11

x

V
V S

λ τ
λλ

 ′+
′ − ∂ 

++  
 to both of the left-and  

right-hand sides of (17) and transforming 1t t=  and  

( ) ( )
( )1 3

3 11
11

V
x x V t

λ τ
λ

λλ

 ′+
′= − + − 

++  
 in (17), we obtain 

( ) ( )

( )
( ) ( )

1 1 1 1

2 2
2

3
3

1 7 1
2 6 16 3

3 1 .
1 6 11

t x x xS V S

VV
V S S

λ
λλ

λ τ
λ λλ

 +  ′∂ = ∂ − ∂ − ∂   +  +  
  ′′′′+ ′+ − −  

+ ++    

          (18) 

We define the thermodynamic potentials: 

( ) ( )
( ) ( )

2 4
3

31 1 .
2 1 24 11

V V
S V S S

λ τ
φ

λ λλ

 ′ ′′′+
′≡ − − + 

+ ++  
         (19) 

By taking (19) into Equation (18), the TDGL equation becomes 

( )
1 1 1

21
2t x x

S
S

S
δ
δ
Φ ∂ = − ∂ − ∂ 

 
                   (20) 

with 

( )
( ) ( ) ( ) ( )

1

2

1 2
1 7 1d ,
2 6 16 3

xS x V S Sλ φ
λλ

  + ′ Φ ≡ − ∂ + 
 ++   

∫          (21) 
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where ( )Sφ  is given by Equation (19), and ( ) ( )S Sδ δΦ  is the derivative of 
function. The TDGL Equation (20) has two steady-state solutions except for a 
trivial solution 0S = . One is the uniform solution 

( )
( ) ( )( )

( )

1
2 2

1 1 2

6 3 1
, ,

1

V V
S x t

V

λ τ λ

λ

 ′ ′+ − +
 = ±
 ′′′+
 

               (22) 

and the other is the kink solution 

( )
( ) ( )( )

( )

( )
( )

( )

1
2 2

1 1 2

1
2

1 02

6 3 1
,

1

3
tanh 3 1 ,

1

V V
S x t

V

V
x x

λ τ λ

λ

λ τ

λ

 ′ ′+ − +
 = ±
 ′′′+
 

 
  ′+ 
 × × − + × −   +    
 

          (23) 

where 0x  is a constant. Equation (23) represents the coexisting phase. 
By the condition 

2 20, 0.S Sφ φ∂ ∂ = ∂ ∂ >                        (24) 

Hence, substituting Equation (19) into Equation (24), we can obtain the coex-
isting curve related to the original parameters 

( )
( ) ( )( )

( )

1
2 2

2

6 3 1
.

1
cco

V V
x h

V

λ τ λ

λ

 ′ ′+ − +
 ∆ = ±
 ′′′+
 

              (25) 

The spinodal line is given by the following condition 
2 2 0.Sφ∂ ∂ =                              (26) 

From Equation (18), we obtain the spinodal line described by the following 
equation 

( )
( ) ( )( )

( )

1
2 2

2

2 3 1
.

1
csp

V V
x h

V

λ τ λ

λ

 ′ ′+ − +
 ∆ = ±  ′′′+  

              (27) 

The critical point is given by the condition 
2 20, 0.S Sφ φ∂ ∂ = ∂ ∂ =                     (28) 

Substituting Equation (19) into Equation (28), we have the critical point re-
lated to the original parameters as follows: 

( ) ( )
( )

21
, .

3c ccx h
V

λ
τ

λ
+

∆ = =
′+

                  (29) 

5. mKdV Equation and Its Connection to TDGL 

In this section, based on the stability condition (11) in Section 3, we use the re-
ductive perturbation method to derive the mKdV equation for the model (4) in 
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the unstable region of traffic flow. Similar to the derivation of the TDGL equa-
tion in Section 4, we study the slowly varying behavior at long wavelengths near 
the critical point. We also give slow scales for space variable n and time variable t.  

By inserting 
( )

( ) ( )

21
3c

cV h
λ

τ
λ
+

=
′+

 and ( )21 cτ ε τ= +  into Equation (15), making 

( ) ( )1cb V h λ′= + , and near the critical point, we obtain: 

4 3 3 5 2 4 2 3
1 2 3 4 5 0,T X X X X XR k R k R k R k R k Rε ε   ∂ − ∂ + ∂ + ∂ + ∂ + ∂ =         (30) 

Here, the coefficients ik  are given in Table 3. 
In Table 3, ( )d d

n c
n n x h

V V x x
∆ =

′ = ∆ ∆ , ( )3 3d d
n c

n n x h
V V x x

∆ =
′′′ = ∆ ∆ . We make 

the following transformation to Equation (30): 

1

1 2

1 , ,kT T R R
k k

′ ′= =                        (31) 

so the standard mKdV equation as follows: 

3 3 2 4 2 33 4 5

1 1 2

.T X X X X X
k k kR R R R R R
k k k

ε′
 

′ ′ ′ ′ ′∂ = ∂ − ∂ − ∂ + ∂ + ∂ 
 

            (32) 

If we ignore the term of ( )O ε , Equation (32) is the modified KdV equation. 
Its kink solution is given as 

( ) ( )0 , tanh .
2
cR X T c X cT′ ′ ′= −                  (33) 

Now, assuming that ( ) ( ) ( )0 1, , ,R X T R X T R X Tε′ ′ ′ ′ ′ ′= + , we take into account 
the ( )O ε  correction. For the purpose of determining the selected value of the 
velocity c for the kink solution, it is necessary to satisfy the solvability condition  

as [ ]( ) [ ]0 0 0 0, dR M R X R M R
+∞

−∞
′ ′ ′ ′ ′≡ ∫ , where [ ] 2 4 2 33 4 5

0
1 1 2

X X X
k k kM R R R R
k K k

′ ′ ′ ′= ∂ + ∂ + ∂ . 

We get the general velocity c [28], 

2 3

2 4 1 5

5 .
2 3

k kc
k k k k

=
−

                      (34) 

Therefore, the general kink-antikink soliton solution is obtained as follows: 

( ) 1
1

2

1 tanh 1 1 1 .
2n c

c c c

k c cx t h n ck t
k

τ τ τ
τ τ τ

       
∆ = ± − × − × + − −                

 (35) 

 
Table 3. The coefficients ik  of (30). 

1k  2k  3k  

( )
( )
( )

( )
2

3

4

71
6 1 6 1

cV V
λ τ

λ λ
+

′ ′−
+ +

 
( )6 1
V

λ
′′′

−
+

 
( )

1
2 1

V
λ

′
+

 

4k  5k   

( )
( )

( ) ( )

3
4

5

15 1
24 124 1

c V V
λ τ

λλ
+

′ ′−
++

 ( )
( )3

2 3 1
12 11

cV V
λ τ

λλ
+′′′

′ −
++

  

https://doi.org/10.4236/jamp.2020.83040


G. Z. He, C. C. Hua 
 

 
DOI: 10.4236/jamp.2020.83040 516 Journal of Applied Mathematics and Physics 
 

Since the kink soliton solution represents the coexisting phase in the space 
( ),h a , and the kink solution (35) is agreed with the solution (23) obtained from 
the TDGL Equation (20). We see that the jamming transition can be described 
by both the TDGL equation with a nontravelling solution and the mKdV equa-
tion with a propagating solution [29]. 

6. Conclusion 

We propose an extended optimal velocity model (2) by considering the speed 
limit with intelligent prompts. Using the linear stability theory, the neutral sta-
bility line and the critical point of the new model are derived. The stable condi-
tion (11) shows that the effect of intelligent prompt limiting speed has a positive 
effect on expanding the stable area of traffic flow and easing traffic congestion. 
In addition, the TDGL equation is derived to describe the traffic behavior near 
the model critical point by using the reduced perturbation method, and the cor-
responding two steady-state solutions are obtained. From the TDGL, the spinor 
line and the critical point equation are calculated. At the same time, we derive 
the mKdV equation in the unstable region and obtain the relation between 
TDGL and mKdV equation. 
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