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Abstract 
There are some concepts that are accepted in our daily life but are not trivial 
in physics. One of them is the cluster property that means there exist no rela-
tions between two events which are sufficiently separated. In the works re-
cently published by the author, the extensive and quantitative examination 
has been made about the violation of cluster property in the correlation func-
tion of the spin operator for the quantum spin system. These works have 
shown that, when we include the symmetry breaking interaction, the effect by 
the violation is proportional to the inverse of the system size. Therefore this 
effect is tinny since the system size is quite large. In order to find the effect 
due to the violation even when the size is large, we propose a new system 
where additional spins couple with the spin system on the square lattice, 
where the coupling constant between these systems being assumed to be 
small. Applying the perturbation theory, we obtain the effective Hamiltonian 
for the additional system. This Hamiltonian includes Curie-Weiss model that 
is induced by the violation of the cluster property. Then we find that this ef-
fective Hamiltonian has the factor which is the inverse of the system size. 
Since Curie-Weiss model, which is known to be exactly soluble, has to con-
tain this factor so that the thermodynamical properties are well-defined, the 
essential factor for the Hamiltonian is determined by the coupling and the 
strength of the symmetry breaking interaction. Our conclusion is, therefore, 
that it is possible to observe the effect by the violation of the cluster property 
at the inverse temperature whose order is given by these parameters.  
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1. Introduction 

The concept of entanglement strongly contradicts with the classical one about 
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locality, which has been extensively studied by many researchers [1] [2] [3] [4] 
[5]. One reason for this active study is the possibility of applying entanglement 
to quantum computer [6] [7] and quantum information [8] [9] [10]. 

Entanglement found in many-body systems is reviewed in [11]. Its observa-
tion was discussed in [12]. Entanglement was discussed in terms of the sponta-
neous symmetry breaking [13] [14] [15] because the correlation must be found 
even at the long distance where the whole system changes entirely from the clas-
sically ordered state to the disordered one. The work [16] discussed quantum 
communication when the symmetry breaks spontaneously. 

When the system is at the critical point, we could suppose that correlation 
must be found even in the far distance. By this quite long-range correlation we 
have to consider that the concept of the cluster property [17] or the cluster de-
composition [18] is not trivial. The works [19] [20] discussed the relation be-
tween the violation of this property and confinement in QCD. Also we find ac-
tive studies in quantum field theory [21] [22]. While in the macroscopic system, 
authors in works [23] [24] studied the cluster property in the term of the stabili-
ty. Recently another type of the cluster property is discussed in [25]. 

In the previous paper [26] we have investigated the cluster property of spin 
1/2 XXZ antiferromagnet on the square lattice. For this antiferromagnet, the 
ground state realizes semi-classical Neel order [27], in other words, spontaneous 
symmetry breaking (SSB) [17] [28] of U(1) symmetry. This semi-classical order 
has been confirmed by spin wave theory [29] and the quantum Monte Carlo 
method [30] [31]. The review article [32] is quite useful in this order in the spin 
system. Also see [33] for the experimental review. 

The essential point in these studies is that SSB requires the quasi-degenerate 
states between which the expectation value of the local operator is not zero. The 
energy difference between these quasi-degenerate states decreases as the lattice 
size increases. Therefore, in order to determine the ground state definitely, we 
introduced an additional interaction that explicitly breaks the symmetry. Then 
we showed that the violation of the cluster property occurs in this model. The 
magnitude of the violation is order of ( )1 g N , where g is the strength of the 
explicit symmetry breaking interaction and N is the size of the system. We con-
cluded that it is possible to observe this effect, though it is tinny except for the 
extremely small g. As for the Heisenberg model which has SU(2) symmetry, see 
[34]. 

In this paper, we propose another approach which enables us to observe the 
violation even when g is not so small. We consider a new spin system added to 
the one on the square lattice we studied in [26]. The whole Hamiltonian is  

ˆ ˆ ˆ
sq g exH V V+ + . Here ˆ

sqH  denotes the Hamiltonian which operates the states 
on the square lattice and ĝV  is the interaction which breaks U(1) symmetry ex-
plicitly. The newly added interaction, êxV , consists of spin operators both on the 
additional system and on the square lattice. It contains a parameter u to 
represent the strength of the interaction. 

Applying the perturbation theory with small u, we obtain the effective Hamil-
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tonian ,
ˆ

eff exH  for the spins in the additional system. We see that it includes Cu-
rie-Weiss model. In this model, it is known that the mean field approximation 
for the thermodynamic properties gives the exact results. We then find that this 
effective Hamiltonian ,

ˆ
eff exH  has the overall factor ( )2u gN . Since Curie-Weiss 

model has to contain the factor 1/N in order that the thermodynamical proper-
ties are well-defined, the essential factor for the system is 2u g . We conclude, 
therefore, that one would be able to observe the violation when the inverse tem-
perature β  is of order of ( ) 12u g

−
. 

Contents of this paper are as follows. In Section 2, we describe our model in 
some detail. The first subsection is devoted to a brief explanation of the spin 1/2 
XXZ antiferromagnet on the square lattice. Also we collect the results related to 
the Hamiltonian ,

ˆ
sq gH  [26]. In the second subsection, we define êxV  which 

describes an extended part of the model. In Section 3, using the perturbation 
theory, we derive the effective Hamiltonian ,

ˆ
eff exH  from êxV . A general discus-

sion to derive the effective Hamiltonian is given in appendix A and the concrete 
form of ,

ˆ
eff exH  is calculated in appendix B. We show that the effective Hamil-

tonian contains Curie-Weiss model, whose Hamiltonian is the square of the sum 
of all spin operators on the extended sites. We also show that this Hamiltonian 

,
ˆ

eff exH  contains the ferromagnet with the finite-range interaction induced by 
Nambu-Goldstone mode. 

In Section 4, we calculate the energy and the specific heat of Curie-Weiss 
model. For this purpose, we use the mean field approximation, which is dis-
cussed in appendix C in detail. It should be noted that this method is absolutely 
reliable for the model when the system is infinitely large. In order to assure that 
our results are sufficiently accurate, we numerically calculate the specific heat on 
finite lattices. 

In Section 5, we investigate the thermodynamic properties of the effective 
Hamiltonian ,

ˆ
eff exH . The first subsection is to calculate the energy and the spe-

cific heat when the temperature is high. Here we employ the high temperature 
expansion described in appendix D. We find the effect by Nambu-Goldstone 
mode only in this region. In the second subsection, we calculate these thermo-
dynamic properties at a low temperature. Here we employ the mean field ap-
proximation which is exact for the ferromagnet due to the degenerate states and 
reasonable for the one due to Nambu-Goldstone mode. The final section is de-
voted to summary and discussion. 

Since many symbols are used in our paper, we list them in Table 1 for con-
venience. 

2. Our Model 
2.1. Spin System on the Square Lattice 

We will consider the quantum spin system on the square lattice. On each site i 
( 1, , sqi N=  ) we have the spin operator ˆ

iSα  ( , ,x y zα = ). Then we define the 
Hamiltonian ˆ

sqH  by 
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Table 1. Symbols used in our paper. The third column denotes the equation number, if 
any, where the symbol is defined. 

Symbol Meaning Def. Equation 

ˆ
sqH  Hamiltonian on the square lattice (1) 

,
ˆ

sq gH  Hamiltonian on the square lattice with ĝV  (5) 

, ,
ˆ

sq g DSH  Hamiltonian for the degenerate states (7) 

, ,
ˆ

sq g NGH  Hamiltonian for Nambu-Goldstone mode (9) 

, ,
ˆ

sq g exH  Whole Hamiltonian of the extended system with ĝV  (11) 

,
ˆ

eff exH  Effective Hamiltonian on the extended system (12) 

ˆ
CWH  Hamiltonian of Curie-Weiss model (19) 

ˆ
smallH  Hamiltonian on the16+8 lattice  

, ,
ˆ

eff a smallH  Effective Hamiltonian on the16+8 lattice (31) 

ĝV  Interaction of the explicit symmetry breaking (4) 

êxV  Additional interaction for the extended system (10) 

( )0 sqE N  Ground state energy of ˆ
sqH  for the degenerate states (7) 

GlE  l-th energy of , ,
ˆ

sq g DSH  (50) 

NGE  Ground state energy of , ,
ˆ

sq g NGH  (9) 

( )CW CWE J  Energy of Curie-Weiss model (20) 

exE  Energy by the high temperature expansion (27) 

( ), , ,eff a small zE J J  Energy of , ,
ˆ

eff a smallH  (32) 

( ),cal zE u J  Energy calculated on the small lattice  

sqN  Size of the square lattice  

exN  Size of the extended system  

CWN  Size of Curie-Weiss model  

g Strength of ĝV   

u Strength of êxV   

ˆ
iSα  Spin operator on the square lattice  

( )
ˆ

a iSα  Spin operator in the extended system  

ˆ
aSα  Spin operator in Curie-Weiss model  

( ),c iα  Coefficient in the first order of u in ,
ˆ

eff exH  (12) 

( ), , ,c i jα β  Coefficient in the second order of u in ,
ˆ

eff exH  (12) 

( ), , ,DSc i jα β  Second order coefficient due to the degenerate states (13) 

( ), , ,NGc i jα β  Second order coefficient due to Nambu-Goldstone mode (13) 
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Continued 

CWm  Solution of mean field appx. in Curie-Weiss model  

m Solution of mean field appx. in ,
ˆ

eff exH   

,v CWC  Specific heat in Curie-Weiss model  

,v exC  Specific heat in ,
ˆ

eff exH   

,v exC∆  Gap of specific heat ,v exC  at cβ   

cβ  Critical inverse temperature in ,
ˆ

eff exH   

 

( ),

ˆ ˆ ˆ ˆ ˆ ˆˆ .x x y y z z
sq i j i j i j

i j
H S S S S S Sλ ≡ + + ∑                     (1) 

Here ( ),i j  denotes the nearest neighbor pair on the square lattice and λ  is 
the parameter between 0 and 1. The eigen state is given by the linear combina-
tion of states { } 1 2, , ,

sqi Ns s s s=  , where ˆ z
i i i iS s s s=  ( 1 2is = ± ). The vec-

tor space of the states { }is  is denoted by sqV . 
For this antiferromagnet, we divide the whole lattice into two kinds of 

sub-lattices called A sub-lattice and B sub-lattice. In order to define these 
sub-lattices we introduce a symbol iP  using integers xi  and yi  for the site 

x y sqi i i N= + .  

( ) 0 for A sub-lattice
mod ,2

1 for B sub-latticei x y

i
P i i

i
∈

≡ + =  ∈
             (2) 

Then we introduce the spin operator on each sub-lattice,  

( )U

U sub-lattice

1 1ˆ ˆ ˆ ,
2

iP

U i i
i i

S S Sα α α

∈

+ −
≡ =∑ ∑


 

( )
( )U

1 U A
.

1 U B
+ =

= − =
                       (3) 

In order to obtain the ground state, we introduce the symmetry breaking in-
teraction ĝV ,  

( ) ( )ˆ ˆ ˆˆ 1 0 1 .iP y y y
g i A B

i
V g S g S S g ≡ − − = − − < ∑             (4) 

Then we have the Hamiltonian ,
ˆ

sq gH ,  

,
ˆ ˆ ˆ .sq g sq gH H V≡ +                         (5) 

It is well known that in this system there exists Nambu-Goldstone mode, 
which can be described successfully by spin wave theory. On the other hand, 
adding the explicit symmetry breaking interaction into the Hamiltonian, we 
have obtained the lowest energy eigen state and the excited states which are li-
near combinations of the degenerate states [26] [34]. This leads us to consider 
two kinds of excited states, which are states due to degenerate states and those 
from Nambu-Goldstone mode. In order to describe these excited states we will 
employ two kinds of Hamiltonian , ,

ˆ
sq g DSH  and , ,

ˆ
sq g NGH . 
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Following the previous work [26], we present the Hamiltonian , ,
ˆ

sq g DSH  which 
describes the excited states by the degenerate states nD . They are defined by  

ˆ ˆ ˆ, .z
n n i

i
Q D D n Q S= ≡ ∑                    (6) 

Here Q̂  is the generator of U(1) symmetry and n is an integer. Then we de-
fine , ,

ˆ
sq g DSH  as  

( )
2

, , 0

ˆˆ ˆ .sq g DS sq sq g
sq

QH E N a V
N

≡ + +                     (7) 

Here ( )0 sqE N  denotes the lowest energy with 0n =  and sqa  is the con-
stant which is fixed by ˆ

sqH . The eigen state lG  of , ,
ˆ

sq g DSH  is given by a li-
near combination of nD ,  

( ).l n l
n

G D c n= ∑                        (8) 

Detailed expression of lG  is found in Appendix B.1. 
Next we define , ,

ˆ
sq g NGH , which describes the excited states of Nambu-Goldstone 

mode, based on the spin wave theory.  

†
, ,

ˆ ˆ ˆ .sq g NG NGH E ω α α≡ +∑ k k k
k

                   (9) 

Here α̂k  is the annihilation operator of Nambu-Goldstone mode with the 
wave vector k , and NGE  denotes the ground state energy. The effect due to 
the symmetry breaking interaction ĝV  is included in ωk , which is the energy 
of Nambu-Goldstone mode. Detailed expression of ωk  is given in Appendix B.2. 

2.2. Extended Spin System 

Let us consider a new system which consists of the spin system on the square lat-
tice and the one on exN  additional sites. The state for the additional sites is 
represented by { }as  ( 1, , exa N=  ) where 1 2as = ± . The vector space exV  
is spanned by these states. We will consider the spin system on the square lattice 
and the additional spin system. Whole vector space is sq exV V⊗ . The extended 
interaction êxV  is given by  

( ) ( )
, A sub-lattice

ˆ ˆˆ 0 .ex i a i
x y i

V u S S uα α

α = ∈

≡ − >∑ ∑               (10) 

Here ( )a i  is the additional site fixed by the site i as is shown in Figure 1. 
Note that the summation for i runs over A sub-lattice only. The whole Hamilto-
nian , ,

ˆ
sq g exH  of the system is then defined by  

, , ,
ˆ ˆ ˆ .sq g ex sq g exH H V≡ +                      (11) 

3. Effective Hamiltonian of the Extended Spin System 

In Appendix A we have derived the effective Hamiltonian using the perturbation 
theory. We apply it to our model, where 0Ĥ  is ,

ˆ
sq gH  (5) and the perturbed 

interaction is êxV  (10). 
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Figure 1. The extended system to the spin system on the square lattice. The ordinal spin 
is located at the cross point of the horizontal lines and the vertical lines. The line between 
two nearest points denotes the interaction. The full circle shows the additional spin and 
the line between the full circle and the cross point shows the additional interaction. 
 

We have two kinds of the excited states. One is the excited state lG  ( 1l ≥ ) 
that consists of the degenerate state and the other is the one-magnon state k  
with the wave vector k , which is Nambu-Goldstone mode. Following the dis-
cussions in the previous works [26] [34], we suppose that these excited states are 
independent. 

We obtain the effective Hamiltonian ,
ˆ

eff exH  that operates states in exV ,  

( ) ( )

( ) ( ) ( )

,
, A sub-lattice

2

, = , , A sub-lattice

ˆˆ ,

ˆ ˆ, , , .

eff ex a i
x y i

a i a j
x y i j

H u c i S

u c i j S S

α

α

α β

α β

α

α β
= ∈

∈

= −

+

∑ ∑

∑ ∑
          (12) 

Here ( ), , ,c i jα β  are sum of the coefficients ( ), , ,DSc i jα β  due to the de-
generate states and ( ), , ,NGc i jα β  due to Nambu-Goldstone mode.  

( ) ( ) ( ), , , , , , , , , .DS NGc i j c i j c i jα β α β α β= +              (13) 

From Appendix A we obtain  

( ) 0 0
ˆ, ,ic i G S Gαα =  

( ) 0 0
1 0

1ˆ ˆ, , , ,DS i l l j
l G Gl

c i j G S G G S G
E E

α βα β
≥

=
−∑  

( ) 0 0
0

1ˆ ˆ, , , .NG i j
G

c i j G S S G
E E

α βα β =
−∑

k k

k k          (14) 

We have calculated these coefficients in Appendix B. We obtain  

( ) ( ), 0, , 2 .c x i c y i v= =                     (15) 

Here v denotes the expectation value of the spin operator in the ground state. 
When we consider the terms of ( )2x∆  only and neglect those of ( )4x∆  for 

( ), , ,DSc i jα β , we obtain  

( ) ( )22

0 1

1, , , 2 ,DS
G G sq

vc x x i j v x
E E gN

η= ∆ = −
−

 

https://doi.org/10.4236/wjcmp.2020.102003


T. Munehisa 
 

 

DOI: 10.4236/wjcmp.2020.102003 34 World Journal of Condensed Matter Physics 
 

( ) ( ), , , 0, , , , 0.DS DSc x y i j c y y i j= =                (16) 

As for contributions by Nambu-Goldstone mode, we obtain  

( ) ( ) ( )0
1, , , ~ , ~ 2 ,

4NG i jc x x i j K g vτ τ− −
π

r r  

( ) ( ), , , 0, , , , 0.NG NGc x y i j c y y i j= =                (17) 

Here ( )0K z  is the modified Bessel function. When sqN  is as large as 1020 
and 1 sqg N , the simple expression by the modified Bessel function is reli-
able for ( ), , ,NGc x x i j  [26]. From (15), (16) and (17) the effective Hamiltonian 
for our model on the vector space exV  is given by  

( ) ( ) ( ) ( )
2

, ,
, A sub-lattice

ˆ ˆ ˆˆ 2 ,y x x
eff ex i ja i a i a j

i i j
H uv S u c S S

∈

= − − − ⋅∑ ∑  

( ) ( ) ( ), 0
1, , , , , , .

4i j DS NG i j
sq

vc c x x i j c x x i j K
gN

τ
  ≡ + = − + − π  

r r     (18) 

The first term of ,i jc  has the factor ( )1 1 2sq exN N=  and is independent of 
the site. We then come to an important conclusion that this effective Hamilto-
nian contains modified Curie-Weiss model induced by the degenerate state. In 
the next section, we will discuss this model in some detail. 

4. Curie-Weiss Model 

Curie-Weiss model [35] [36] [37] is defined by, with the site number CWN , 

1 1

1 ˆ ˆˆ .
CW CWN N

CW a a
a aCW

H S S
N ′

′= =

= − ⋅∑ ∑
 

                  (19) 

In this model, we can exactly calculate the specific heat for the infinitely large 
lattice at any temperature by the mean field approximation. Since this fact is 
quite important we will make a numerical examination in this section. We com-
pare the specific heat calculated by the eigen values on the large lattices with the 
result obtained from the mean field approximation. 

In Curie-Weiss model, the partition function ( )CWZ β  with the inverse tem-
perature β  is given by  

( ) ( ) ( )
2

0
e ,

CW
CW CW

CW

N
E J

CW CW
J

Z mul J ββ −

=

= ∑  

( ) ( ) ( ) ( ) ( )2
1

, 2 1 ,CW CW
CW CW CW CW CW

CW

J J
E J mul J J mul J

N
+

= − = +  

( ) ( ) ( )2 , 2 , 2 1 ,CW CW CW CW CW CW CWmul J C N N J C N N J= + − + +  

( ) ( )
!, .

! !
nC n k

k n k
≡

−
                    (20) 

Here CWN , which we suppose to be even, is the lattice size and ( )CW CWE J  
denotes the energy eigen value with the magnitude CWJ  of the total spin. 

The multiplicity ( )CWmul J  is given in the following way. First, we consider the 
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state of k up-spins and ( )CWN k−  down-spins. For this state CWM , the z-com- 
ponent of the total spin, is given by ( )2 2 2CW CW CWM k N k k N= − − = − . For 
the fixed CWM  we have the multiplicity ( ) ( )1 ,CW CWmul M C N k=  because we 
pick up k spins among CWN  spins. Using CWM  instead of k we have  

( ) ( )1 , 2CW CW CW CWmul M C N M N= + . Since the multiplicity ( )1 CWmul J  is a 
number of possible CW CWJ M≥  for each 0CWM ≥  the difference  

( ) ( )1 1 1CW CWmul J mul J− +  is the number ( )2 CWmul J , which is the multiplicity 
for the fixed CWJ  . We take account of the multiplicity of CWM  for the fixed 

CWJ , since the energy ( )CW CWE J  does not depend on CWM . Thus we obtain 
the multiplicity of states ( )CWmul J  for the fixed ( )CW CWE J . 

In Figure 2, we plot the specific heat calculated from the partition function 
( )CWZ β  in (20) for 400,1000,4000CWN =  and 20,000. For comparison we 

also plot the mean field results we obtain from discussion in Appendix C, noting 
that 0CWh =  and 1CWζ =  for Curie-Weiss model (19). When the positive so-
lution CWm  of the equation ( )tanh 2CW CWm mβ=  exists, the specific heat is 
given by  

( )
( )( )

2
2

, 2

1 4 .
1 2 1 4

CW
v CW CW

CW

mC m
m

β
β

−
=

− −
             (21) 

Since no positive solution exists for 2cβ β< = , we have , 0v CWC =  in this 
region. Note that this is the characteristic property of Curie-Weiss model. Fig-
ure 2 indicates that the result for 400CWN =  lattice differs from the mean field 
result, specially around the critical temperature. When the lattice size becomes 
large, however, the difference clearly decreases. For 20000CWN = , we find the 
excellent agreement between the results by both methods except for the narrow 
region around cβ . We conclude, therefore, the mean field approximation for 
Curie-Weiss model on large lattices is satisfyingly reliable at any temperature. 
 

 
Figure 2. The specific heat of Curie-Weiss model (19) for finite size CWN . They are cal-

culated by the exact partition function ( )CWZ β  in (20) for the fixed CWN . The red 

curve is calculated from the mean field approximation, which is given by (21). 
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5. Thermodynamical Properties of the Effective Hamiltonian 
5.1. High Temperature Region 

Let us study the thermodynamical properties at very small β . It is known that 
the high temperature expansion described in Appendix D is a powerful tool in 
this region. We apply the results by this method to our effective Hamiltonian 

,
ˆ

eff exH  given in (18), for which  

2 ,exh uv=  

( ) ( ){ } ( )
2 2

2
, , 0

1 , , , , , , ~ .
2 4i j ex DS NG i j

sq

u v uJ u c x x i j c x x i j K
gN

τ= + + −
π

r r  (22) 

Then we have  

( ) ( )

( ) ( )

( )
( )

( )

2
2 2

2
0, , 0

2 22 2 2 2

0 0

2
2 2 2 4 2

0 02

1
4 4

2
4 4

2 .
4 4

i ex i
i i sq

i i
i sq sq

ex i i
i isq sq

u v uJ K
gN

u v u v u uK K
gN gN

u v u v u uN K K
gN gN

τ

τ τ

τ τ

  = + π  
     = + +     π π    

 
 = + +     π π 

∑ ∑

∑

∑ ∑

r

r r

r r

   (23) 

Here 2ex sqN N= . We obtain, with ,x yx i y i= ∆ = ∆ ,  

( ) ( ) ( )
( ) ( )

2 2 2 2
0 0 02

,

2

0 02 2 2 20 0

1 d d

1 1 2 42 d 2 d .

x y

i x y
i i i

K K i i x y K x y

vt tK t s s K s
g

τ τ τ

τ
τ τ

∞ ∞

= + → + ∆
∆

∆ π π
= π ∆ = π = =
∆ ∆

∑ ∑ ∫ ∫

∫ ∫

r

   (24) 

Similarly, 

( ) ( )

( )

2 2
0 00

2
0 2 22 0

2 d

2 4d , ~ 0.5.

i
i

c c

K r r K r

vs s K s K K
g

τ τ

τ

∞

∞

  → π    

π π
= =  

∑ ∫

∫

r
          (25) 

Therefore, we obtain 

( )
24

2 2
0, ,

1 5 .
4 4

c
i ex

i ex

u v K vJ
N g g

     → +    π     
∑              (26) 

Note that the first term of (26) is quite small compared to the second term 
when exN  is quite large. The energy exE  and the specific heat per site ,v exC  
are then given by  

( ) ( )
4 4

2 22
2 , 2~ , ~ .

32 32
ex

c v ex c
ex

E u v u vuv K C uv K
N g g

β β
   

− + +   π π   
     (27) 

In (27), we see the effect due to the first term of the effective Hamiltonian and 
that due to Nambu-Goldstone mode only. 

5.2. Low Temperature Region 

In order to calculate the thermodynamical properties at a low temperature, we 
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employ the mean field approximation described in Appendix C to the effective 
Hamiltonian ,

ˆ
eff exH . Taking the translational invariance into account and using 

(24), we obtain  

( )

( )

2

0
,

2

0

2
2 2

2

1
4

1
4

1 3 .
2 2 2

ex i j
i jex sq

ex i
iex sq

ex

sq

u v K
N gN

u vN K
N gN

vN v v u vu u
gN g g g

ζ τ

τ

τ

 
= + − 

π  
 

= + 
π  

   
→ + = + =       

∑

∑

r r

r              (28) 

Let us study how the specific heat ,v exC  depends on the parameters u and g. 
Based on results in Appendix C we see that  

( ) ( ) ( )( )
( ) ( )

2 2 2

, 2 2

1 4 1 2 1 4 for 2
.

2 1 4 otherwise

ex ex ex ex

v ex

ex

m m m h m
C

h m

βζ βζ ζ

β

  − − − ≤  = 
−

 (29) 

In the case of 2ex exh mζ ≤ , we find the effect due to the degenerate states. 
Since 1 2m ≤  we need the condition 1ex exh ζ ≤ , which is equivalent to 

( )4 3 1g u ≤ , to observe this effect. 
In Figure 3, we plot ,v exC  for various values of ( )4 3g u . We find that there 

exists the gap ,v exC∆  at the critical temperature cβ . We plot cβ  as a function 
of ( )4 3g u  in Figure 4, which shows that cβ  is finite when ( )4 3 0g u =  while 
it becomes infinitely large as ( )4 3g u  goes to 1. Also in Figure 5, where we 
show the gap ,v exC∆ , we see that ,v exC∆  gradually decreases as ( )4 3g u  in-
creases and it vanishes when ( )4 3g u  is 1. 

For the analytic discussion, we expand cβ  and ,v exC∆  by the polynomial of 

ex exh ζ . At the second order, we obtain  
 

 
Figure 3. The specific heat of the effective Hamiltonian ,

ˆ
eff exH  (18) given by (29) in 

mean field approximation. The horizontal axis is exβζ . When 4 3 1g u ≥  we do not 
find any gap of the specific heat. If 4 3 1g u =  the gap is ~3/2 as is shown in (30). 
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Figure 4. The critical temperature cβ  of the effective Hamiltonian ,

ˆ
eff exH  in mean 

field approximation as a function of ( )4 3g u . The vertical axis measures c exβ ζ . The 
red curve is for the case 1g u ≤ , which is given in (30). 
 

 
Figure 5. The gap of the specific heat ,v exC∆  at the critical temperature cβ  in (86) 

( exζ ζ=  and exh h= ) as a function of ( )4 3ex exh g uζ = . The red curve is for the case 

1g u ≤  given in (30). 

 
2 21 1 4~ 2 1 2 1 ,

3 3 3
ex

c ex
ex

h g
u

β ζ
ζ

        + = +      
       

 

2 2

,
3 6 3 6 4~ 1 1 .
2 5 2 5 3

ex
v ex

ex

h gC
uζ

        ∆ − = −      
       

           (30) 

These results are also plotted in Figure 4 and Figure 5 for comparison. We 
see that the polynomial expansion of ex exh ζ  is reliable for 0.6ex exh ζ < . This 
suggests that the perturbation theory on exh  gives us the good approximation, 
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which will be important in future study on the effective Hamiltonian. 
Note that if the degenerate states are absent we should use 2

ex u v gζ =  in-
stead of ( )23 2u v g  because the system is the ferromagnet induced by Nam-
bu-Goldstone mode only. Measuring the specific heat, therefore, we would be 
able to judge if the degenerate states exist or not. 

To summarize this section we present in Figure 6, a region formed by g and u, 
where one can observe the effect by Curie-Weiss model due to the degenerate 
states. The red curve in the figure gives the boundary for the validity of the per-
turbation theory. The black curve shows the boundary where we can observe the 
specific heat by this model. Therefore one can confirm the effect by the violation 
of the cluster property in the region between the red and the black curves.  

6. Summary and Discussions 

The cluster property is deeply connected with the classical concept about locality, 
but it is not trivial in quantum physics. In the previous papers [26] [34], we 
showed the violation of the cluster property (VCP) in spin 1/2 XXZ antiferro-
magnet and Heisenberg antiferromagnet on the square lattice. Our results indi-
cate that the magnitude of VCP is order of ( )1 g N , where g is the strength of 
the explicit symmetry breaking interaction and N is the size of the system, which 
we suppose 20~ 10N . The observation of VCP in experiments is not easy, 
therefore, because of its smallness. 

In this paper, we proposed an extended spin system so that we find a better 
chance to observe the effect by VCP. We added a new spin system to the original 
spin system on the square lattice. The Hamiltonian is ,

ˆ ˆ ˆ
sq g exH H V= + . Here 

,
ˆ

sq gH  contains spin operators of the original system only, while êxV  contains  
 

 
Figure 6. Region of the parameters g and u, where we can observe the effect by Cu-
rie-Weiss model. For the validity of the perturbation theory we must impose condition 

2 210u g −≤ , which is above the red curve. We also need the condition that the critical 
inverse temperature is finite. The yellow (blue, green) curve shows the values of g and u 
where the critical inverse temperature 610cβ =  (104, 102). 
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spin operators on both systems. Applying the perturbation theory to Ĥ  for a 
small coupling constant in êxV , we obtained the effective Hamiltonian ,

ˆ
eff exH  

which operates only on the vector space of the additional system. Then we found 
that ,

ˆ
eff exH  contains Curie-Weiss model induced by the degenerate states. In 

order to calculate thermodynamic property of the effective Hamiltonian at a low 
temperature, we employed the mean field approximation, where the difference 
between the effect due to the degenerate states and that due to Nambu-Goldstone 
mode is found in the magnitude of the specific heat. Our conclusion is that it is 
possible to find the effect of the violation of cluster property in our extended 
model. 

Our study in this paper is based on the effective Hamiltonian, which is derived 
by the perturbation theory. In order to examine the validity of the theory, we 
consider the Hamiltonian ˆ ˆ ˆ

small sq exH H V≡ +  on a small lattice, where the energy 
gap is so large that we do not need the symmetry breaking interaction ĝV . Here 
let us give a brief description of the model and show the results obtained by the 
diagonalization on the 16sqN =  and 8exN =  lattice (16 + 8 lattice). From (49) 
in Appendix A the effective Hamiltonian , ,

ˆ
eff a smallH  reads, i and j being the site 

on the A sub-lattice,  

( ) ( ) ( ) ( ){ }
2 2

, ,
,

ˆ ˆ ˆ ˆˆ .x x y ysmall
eff a small a i a j a i a j

i j

u vH S S S S
E

= − +
∆ ∑             (31) 

Here we consider only the first excited states so that 1 0E E E∆ ≡ − , and 
ˆ0 1small iv Sα≡  ( ,x yα = ). Then the energy eigen values for , ,

ˆ
eff a smallH  should 

be given by 

( ) ( ){ }
2 2

2
, , 0, 1 ,small

eff a small z z z
u vE J J E J J J J J

E
= − + − ≤

∆
       (32) 

For comparison, we directly diagonalize ˆ
smallH  on the 16 + 8 lattice to obtain 

the energy eigen values, which we denote ( ),cal zE u J , for fixed values of  
0.03,0.04u =  and 0,1,2,3,4zJ = . By making the least square fitting for  

( ),cal zE u J  by ( ) ( )2 2
0 1 2, z zE u J e u e J e= + + , we can estimate the value  

( )0.43 0.04u =  and ( )0.44 0.03u =  of 1e , which should be compared with the 
value of 2 0.46smallv E∆ =  for 0.5λ = . The agreement between both values is 
satisfactory to assure the validity of the perturbation theory. 

Several comments are in order for our calculations and results. 
 First let us discuss on effects of higher-order terms in the perturbation theory. 

On large lattices the energy gap is of order of g  and  
2ˆexcited state ground stateexV  is of order of ( )1 g N . Then the next or-

der term is of order of ( )2u gN , but the factor N should be included into the 
Hamiltonian for the consistency. Therefore we conclude 2u g  should be 
small in order to neglect higher-order terms. 

 Let us consider to estimate the parameters u and g in experiments. One can 
estimate u by measuring the specific heat at high temperature because, as we 
have seen in (27), the first term ( )2uv  dominates compared to the second 
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term with the factor 4u v g . In order to estimate g, on the other hand, one 
should measure the correlation function of the spin operator which is given 
in (96) in Appendix D. 

 Next we discuss the qualitative difference between the effect due to the dege-
nerate states and that due to Nambu-Goldstone mode. Since we do not see 
any effect due to the degenerate states at a high temperature, we need to ex-
amine the thermodynamic quantities at a low temperature. In this region, 
where the mean field approximation is valid, it is difficult to distinguish the 
effect due to the degenerate states from that due to Nambu-Goldstone mode. 
Therefore we have to investigate the property connected with the excited 
states which cannot be calculated in the mean field approximation. This sub-
ject will be studied in a future work where we investigate the effective Ha-
miltonian in the extended system with SU(2) symmetry. 

 The last comment is about experimental realization of the proposed spin sys-
tem. One idea to realize our model is following. In experiments for the spin 
system on the square lattice, the material contains multi layers. It will be 
possible to consider the material that has the sandwich structure where the 
magnetic layer and the quasi non-magnetic layer appear alternately. The 
magnetic layer realizes the spin system on the square lattice, while in the qu-
asi non-magnetic layer we can partially add the magnetic elements such as 
Cu. In this additional system, the magnetic elements are sparse so that the 
coupling between spins on the additional system is weak. Therefore we can 
suppose that such material realizes êxV  in our model. 
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Appendix A 

In this appendix we show how to derive the effective Hamiltonian by means of 
the perturbation theory. Here we suppose that the whole vector space V is the 
direct product of the vector space sqV  and the vector space exV , namely 

sq exV V V= ⊗ . We also suppose that the unperturbed Hamiltonian 0Ĥ  oper-
ates only states on sqV  and there is no degenerate state for 0Ĥ  on the vector 
space sqV . They are expressed by  

0 sq
ˆ , V .lH l l E l= ∈                       (33) 

Here 0l ≥ , 1l lE E+ >  and 0  is the lowest energy state. The basis state in 

sqV  is given by l , while the basis state in exV  is denoted by { }as . Then the 
basis state in V is given by  

{ } { }, .a al s l s=                        (34) 

For the unperturbed Hamiltonian 0Ĥ ,  

{ } { }0
ˆ , , .a a lH l s l s E=                     (35) 

We suppose that the perturbed Hamiltonian contains the products of the op-
erator ,ŝq oV ′  on the vector space sqV  and the operator ,êx oV ′  on the vector 
space exV .  

0 , ,
ˆ ˆ ˆ ˆ .sq o ex o

o
H H u V V′ ′

′
= + ∑                     (36) 

The eigen state of Ĥ  is given by  

{ }
{ } { }

{ }
{ } { }0, ,

1
0 .

a a
a a

a as l s
s l s

s c u l s c
≥

Φ = +∑ ∑∑             (37) 

The coefficient { }, al sc  is a polynomial function of u and contains the term of 
0u . In order to formalize the perturbation theory we employ the variational 

method, where we introduce a function defined by  

{ }( ),
ˆ .

al sF c H ρ= Φ Φ − Φ Φ                 (38) 

By the variation on the coefficients we obtain the eigen equation,  

{ }, 0.
al sF c∂ ∂ =                         (39) 

In order to calculate { }( ), al sF c  we divide the Hamiltonian Ĥ  to 0Ĥ  and 
the perturbed interactions. For the expectation value of 0Ĥ  we obtain, from 
(37),  

{ } { }
2 2

2
0 00, ,

1

ˆ .
a als l s

l
H c E E c u

≥

Φ Φ = +∑             (40) 

As for the expectation value of , ,
ˆ ˆ
sq o ex ouV V′ ′ ,  

{ }{ }
{ } { } { } { }

{ }{ }
{ } { } { } { }

{ }{ }
{ } { } { } { }

, ,

*
, , 0, 0,

2 *
, , , 0,

1

3 *
, , , ,

, 1

ˆ ˆ

ˆ ˆ0 0

ˆ ˆ0 . .

ˆ ˆ . . .

a a
a a

a a
a a

a a
a a

sq o ex o

sq o a ex o a s s
s s

sq o a ex o a l s s
l s s

sq o a ex o a l s l s
l l s s

uV V

u V s V s c c

u l V s V s c c c c

u l V l s V s c c c c

′ ′

′ ′ ′
′

′ ′ ′
′≥

′ ′ ′ ′
′ ′≥

Φ Φ

′=

  ′+ + 
  
  ′ ′+ + 
  

∑

∑ ∑

∑ ∑

     (41) 
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In the second order perturbation theory, we neglect the terms of 3u  in F. 
Then the variation on { }0, asc  becomes  

{ } { }
{ }

{ } { } { }

{ }
{ } { } { } { }

* *
0 , ,0, 0, 0,

2 * *
, , , 0,

1

ˆ ˆ0 0

ˆ ˆ0 .

a a a
a

a a
a

sq o a ex o as s s
o s

sq o a ex o a l s s
o l s

F c E c u V s V s c

u l V s V s c cρ

′ ′
′ ′

′ ′ ′
′ ′≥

′∂ ∂ = +

′+ −

∑∑

∑∑∑
   (42) 

The variation on { }, al sc  is, on the other hand,  

{ } { }
{ }

{ } { } { } { }
2 * 2 * * 2

, ,, , 0, ,
ˆ ˆ0 .

a a a a
a

l sq o a ex o al s l s s l s
o s

F c u E c u V l s V s c c uρ′ ′ ′
′ ′

′∂ ∂ = + −∑∑  (43) 

Requesting { }, 0
al sF c∂ ∂ =  we obtain the expression for { }

*
, al sc ,  

{ }
{ }

{ } { } { }
* *

, ,, 0,
1 ˆ ˆ0 .

a a
a

sq o a ex o al s s
o sl

c V l s V s c
Eρ ′ ′ ′

′ ′

′=
− ∑∑           (44) 

We then replace { }
*
, al sc  in (42) by the above expression (44). The result is  

{ } { }
{ }

{ } { } { }

{ }
{ } { }

{ }
{ } { } { } { }

{ }
{ }

{ } { }

* *
0 , ,0, 0, 0,

2
, ,

1

* *
, , 0, 0,

*
0 , ,0,

ˆ ˆ0 0

ˆ ˆ0

1 ˆ ˆ0

ˆ ˆ0 0

a a a
a

a

a a
a

a
a

sq o a ex o as s s
o s

sq o a ex o a
l s o

sq o a ex o a s s
o sl

sq o a ex o as
o s

F c E c u V s V s c

u l V s V s

V l s V s c c
E

E c u V s V s

ρ
ρ

′ ′ ′
′ ′

′ ′
′ ′≥

′′ ′′ ′′
′′ ′′

′ ′
′ ′

′∂ ∂ = +

 ′+  
 

  ′′ ′× − 
−   

′= +

∑∑

∑∑ ∑

∑∑

∑∑ { }

{ }
{ } { } { }

{ }

*
0,

2 *
, , , , 0,

1 ,

*
0,

1ˆ ˆ ˆ ˆ0 0

.

a

a
a

a

s

sq o sq o a ex o ex o a s
l o o s l

s

c

u l V V l s V V s c
E

c

ρ

ρ

′

′ ′′ ′′ ′ ′′
′ ′′ ′′≥

′′+
−

−

∑∑∑

 

(45) 

Here we exchange the order of the summation on { }as′  and that of { }as′′  
and use  

{ }
{ } { } { } { } { } { }, , , ,

ˆ ˆ ˆ ˆ .
a

a ex o a a ex o a a ex o ex o a
s

s V s s V s s V V s′ ′′ ′′ ′
′

′ ′′ ′ ′′=∑       (46) 

From { }0, 0
asF c∂ ∂ =  we obtain the equation for ρ . Since we can replace 

( )1 lEρ −  by ( )01 lE E−  in the second order of u we obtain the eigen equa-
tion on ρ ,  

( ) { }
{ }

{ } { } { }( )* *
0 0, 0, : ,

a a
a

a as s
s

E c c Mt s sρ ′
′

′− = ∑  

{ } { }( ) { } { }

{ } { }

, ,

2
, , , ,

, 1 0

ˆ ˆ: 0 0

1 ˆ ˆ ˆ ˆ0 0 .

a a sq o a ex o a
o

sq o sq o a ex o ex o a
o o l l

Mt s s u V s V s

u V l l V s V V s
E E

′ ′
′

′′ ′ ′′ ′
′ ′′ ≥

′ ′≡

′+
−

∑

∑∑
     (47) 

Using this { } { }( ):a aM s s′  we introduce the effective Hamiltonian ˆ
effH  on 

exV  which should satisfy  

{ } { } { } { }( )ˆ : .a eff a a as H s Mt s s′ ′=                 (48) 
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Since the matrix elements of ˆ
effH  on exV  apply to any state, we can express 

them by the operators on exV . Finally we obtain the effective Hamiltonian  

2
, , , , , ,

, 1 0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 0 0 .eff sq o ex o sq o sq o ex o ex o
o o o l l

H u V V u V l l V V V
E E′ ′ ′′ ′ ′′ ′

′ ′ ′′ ≥

= +
−∑ ∑∑  (49) 

Appendix B 

Here we calculate the inner product ,
ˆ0 sq oV l′  in (49), where  

( ),
ˆ ˆˆ 1 iP

sq o i iV S Sα α
′ = − =  ( ,x yα = ) for the site i on the A sub-lattice. 

Part 1 
In this subsection we calculate the contributions due to the degenerate states. 

In [26] we obtained the eigen state lG  of , ,
ˆ

sq g DSH  and the eigen energy GlE  
( 0,1,2,l =  ), which are given by (with 0f =  in (28) and (29) of [26]) 

, ,
ˆ ,sq g DS l l GlH G G E=  

( ) ( )0 2 2 1 ,Gl sq sq sqE E N gvN a gv l= − + +  

( ) ( ) ,l n l n l
n n

G D c n D x n x x= = Ψ = ∆ ∆∑ ∑  

( ) ( )
( )

2 2
2

1e , .sqx
l l l

sq

a
x N H x

gv N x
ηη η−Ψ = ≡

∆
          (50) 

Here ( )lH u  denotes the Hermite polynomial and lN  is the normalization 
factor. Note that we do not need any explicit expression for x∆ , since any 
physical quantity contains the form of ( )2xη ∆ . 

For ( ) ˆ1 iP y
iS−  we have [26]  

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( )
2

2
2

ˆ1 = 1 1

2 1 1 2

d2 ~ 2 .
d

iP y
i l n l l

n

n l l l l
n

l
n l n l

n n

S G v D c n c n

v D c n c n c n c n

v D x x x v D x x
x

− + + −  

= + + + − −  

 Ψ
→ Ψ + ∆ ∆ ⋅ Ψ ∆ 

 

∑

∑

∑ ∑

    (51) 

Then we obtain  

( ) ( ) ( )0 0 ,0
ˆ1 2 d 2 .iP y

i l l lG S G v x x x vδ
∞

−∞
− → Ψ Ψ =∫          (52) 

Similarly we have  

( ) ( ) ( )ˆ1 1 1

d2 .
d

iP x
i l n l l

n

l
n

n

S G iv D c n c n

iv D x x
x

− = − + − −  

Ψ → − ∆ ∆  

∑

∑
          (53) 

Then the inner product is given by  

( ) ( ) ( )0 0 ,1
dˆ1 2 d 2 .
d

iP x l
i l lG S G iv x x x i x v

x
η δ

∞

−∞

Ψ
− → − ⋅ ∆ Ψ = − ∆∫    (54) 

Finally we obtain  

https://doi.org/10.4236/wjcmp.2020.102003


T. Munehisa 
 

 

DOI: 10.4236/wjcmp.2020.102003 47 World Journal of Condensed Matter Physics 
 

( )

( )

0 1 1 0
0 1

22

1ˆ ˆ, , ,

1= 2 = ,
2

x x
DS i j

G G

sq

c x x i j G S G G S G
E E

vv x
gNa vg

η

=
−

 − ∆ −
 
 

 

( ) ( ), , , 0, , , , 0.DS DSc x y i j c y y i j= =                (55) 

Here we use ( ) ( )2
sqx a gvNη ∆ =  and 0 2Gl G sqE E a vgl= + . 

Part 2 
Next we discuss the matrix elements due to Nambu-Goldstone mode. We em-

ploy the results calculated in the previous work [26] based on spin wave theory. 
Here the ground state NGG  is 0G  and the excited state is the one magnon  
state with the wave vector k , which we denote by | 〉k . 

In spin wave theory, it is known that  

( ) ( )ˆ ˆ1 , 1 0.i iP Py y
NG i NG i NGG S G S S G− = − =k           (56) 

As for the operator ( ) ˆ1 iP x
iS−  we obtain [26]  

( ) ( )2 1 1 1 1ˆ1 1 1 1 e .
2 22

i iP ix
i NG

SS G
i N ω ω

−
     − = − + + − +    

     
∑ kx

k k k

k   (57) 

Here we use the symbols defined by  

,
14 1
2

k

S g

ω
ω

λ γ
≡

− + + + 
 



k

k

 

( ) ( )( )2 24 1 1 1 ,S g gω λ γ λγ≡ + + + − + −k k k  

( ) ( )4 , cos cos 2,x yg g S k kγ≡ ≡ +k  

( ) ( ) ( ), 2 ,2 , : integer .x y x y x yk k n N n N n n= ≡ π πk        (58) 

The inner products are then given by  

( ) ˆ1 0,iP x
NG i NGG S G− =  

( ) ( )2 1 1 1 1ˆ1 1 1 1 e .
2 22

i iP ix
i NG

SS G
i N ω ω

−
     − = − + + − +    

     

kx

k k

k   (59) 

Therefore we obtain  

( ) ( )
2

1 1 1 1 1, , , 1 1 e ,
2 2 2

j ii
NG

Sc x x i j
N ω ω ω

− −
     = + + − +    

     
∑ k x x

k k k k

 

( ) ( ), , , 0, , , , 0.NG NGc y y i j c x y i j= =                (60) 

For large i jr = −x x  the contribution from small k  dominates in the sum 
of ( ), , ,NGc x x i j . For small k  and small g we see that  

2 2 2 21 1~ 4 , ~ ,
4 1

S λω τ ω τ
λ

+
+ +

+k kk k  
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( )
( )

2 4 1
~ .

1 1
g g

g S
g

λ
τ

λ λ
+ +

≡
+ + −

                  (61) 

Using these approximations and replacing the sum by the integration, we ob-
tain  

( )
( )

( )

( )
( )

( ) ( )

2

2 2 2

0 02 20

1, , , ~ d d e
2

1 1d d e
2 2
1 1d .

4 4

j i

j i

i
NG x y

i
x y

Sc x x i j k k

k k

kk J kr K r
k

ω ω

τ

τ
τ

− −

− −

∞

π

=
+π

= =
π + π

∫

∫

∫

k x x

k k

k x x

k
         (62) 

Here we use Bessel functions ( )0J z  and ( )0K z . 

Appendix C 

The mean field approximation is based on Gibbs-Bogoliubov-Feynman inequa-
lity [38] [39], which is given by  

e e .WW ≥                         (63) 

Here ⋅  denotes the statistical average. 
Let us apply this inequality to the classical Hamiltonian ( )0 0H H H H= + − . 

The statistical average here is defined by  

( )0 0
0 e e .H HW Wβ β− −= ∑ ∑                  (64) 

By this definition we have  
( ) ( ) 00 00 0 0 0

0
e e e e e e e .H HH H H HH H HH ββ ββ β ββ − −− − − −− − −− = = ≥∑ ∑ ∑ ∑  (65) 

For e HZ β−≡ ∑  and 0
0 e HZ β−≡ ∑  we then obtain  

0 0 0log log .Z Z H Hβ≥ − −                  (66) 

This inequality is valid for the quantum mechanics, too [38] [39].  

0 0 0
ˆ ˆlog log ,Z Z H Hβ≥ − −  

( ) ( ) { } ( )0 0 0ˆ ˆ ˆˆ
0 0

ˆ ˆe , e , e e .H H HHZ tr Z tr A tr A trβ β ββ − − −−≡ ≡ ≡     (67) 

Let us start our discussion with  

( ), , ,
1 1 1

1ˆ ˆ ˆˆ , 0, 0, 0 ,
2

N N N
y x x

i i j i j i j i i
i i j

H h S J S S h J J
= = =

≡ − − ≥ ≥ =∑ ∑∑  

( )0
1

ˆˆ 0 .
N

i
i

H Sκ κ
=

≡ − >∑                     (68) 

Here we introduce operators,  
ˆ ˆ ˆ ˆ ˆ ˆcos sin , sin cos .y x y x

i i i i i iS S S S S Sθ θ θ θ′≡ ⋅ + ⋅ ≡ − ⋅ + ⋅        (69) 

The parameters κ  and θ  are determined later so that they maximize 

0 0 0
ˆ ˆlog Z H Hβ− − . It is easy to see that, with ,, 2i ji jN Jζ ≡ ∑ ,  

{ } ( )ˆ
0log log e log 2cosh 2 ,ii SZ tr Nβκ βκ∑ = =      
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( )
0 0

1ˆ ˆtanh 2 , 0,
2i iS Sβκ ′= =  

( )
0 0

1ˆ ˆ ˆcos sin cos tanh 2 ,
2

y
i i iS S Sθ θ θ βκ′= ⋅ − ⋅ =  

( )
0 0

1ˆ ˆ ˆsin cos sin tanh 2 ,
2

x
i i iS S Sθ θ θ βκ′= ⋅ + ⋅ =  

( )0 0

1ˆ tanh 2 ,
2

H Nκ βκ= −  

( ) ( )
2

0

1 1ˆ cos tanh 2 sin tanh 2 .
2 2

H hN Nθ βκ ζ θ βκ = − −   
     (70) 

Thus, using cosY θ≡  and ( )tanh 2X βκ≡  for 0 0
ˆ ˆH H− , we obtain  

( )

( ) ( )
0 0 0 0

2 2

ˆ ˆ, log

1 1 1log 2cosh 2 1 .
2 4 2

F Y Z H H

N hYX Y X X

κ β

βκ β ζ β βκ

≡ − −

 = + + − −    

  (71) 

In order to find values *κ  and *Y  which maximize ( )0 ,F Yκ , we examine 
following equations.  

( ) ( ){ }

( ){ }

2
0

1 1, 1
2
1 0.
2

XF Y hY Y X
N

XY h XY X

κ β ζ κ
κ κ

β ζ ζ κ
κ

∂ ∂  = + − − ∂ ∂ 
∂

= − + − =
∂

       (72) 

( ) ( )0
1 1, 0.

2
F Y X h XY

Y N
κ β ζ∂   = − = ∂  

             (73) 

Since 1 1Y− ≤ ≤  we see from (73) that, with ( )* *tanh 2X βκ≡ ,  

*
*min ,1 .hY

Xζ
 

=  
 

                       (74) 

Let us first consider the case (CASE 1) where *X hζ >  holds and there exists 
a positive solution for the equation  

*
* * tanh .

2
X βκκ ζ ζ

 
= =  

 
                   (75) 

Note that * hκ >  is necessary for this case. The maximum value of  
( )0 ,F Y Nκ  is then  

( ) ( )
( ) ( )

*
0 0 *

* 2 *2

1 1 ,
tanh 2

1log 2cosh 2 .
4

hF F
N N

h

β κ
ζ βκ

βκ β κ
ζ

 
 ≡
 
 

 = + − 

        (76) 

The average energy E and the specific heat per one spin vC  are then given by  

( )
2 * *

2 *2 201 d 1 d d, .
d 4 d 2 dv

E F Eh C
N N N

β κ κκ β
β ζ β ζ β

− = = + ≡ − =      (77) 

For *d dκ β , we carry out the differential on the condition.  
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( ) ( )
* * *

* *
2 *

d d 1 d0 tanh 2 .
d d 2 2 dcosh 2

κ κ β κκ ζ βκ ζ
β β ββκ

  = − = − +    
  (78) 

Then we obtain  

( ) ( )

* *

2 *

d 1 ,
d 2 cosh 2 2
κ ζκ
β βκ βζ

=
−

 

( ) ( )

2*

2 *

1 .
2 cosh 2 2vC βκ

βκ βζ
 

=  
− 

              (79) 

Next let us consider another case * 1Y =  (CASE 2), which means 0θ = . 
Note that 0h >  is necessary for this case. We have  

( ) ( )0
1 1 1,1 log 2cosh 2 ,

2 2
F hX X

N
κ βκ β βκ= + −    

( ) ( )0
1 1,1 .

2
XF h

N
κ κ β

κ κ
∂ ∂  = − ∂ ∂ 

              (80) 

The solution for 0d d 0F κ =  is trivial, which is * hκ = . Then we obtain  

( )0
1 ,1 log 2cosh ,

2
hF h

N
β  =     

 

( )

2

2
1tanh , .

2 2 2 cosh 2v
E h h hC
N h

β β
β

   − = =   
   

          (81) 

For later use, we employ the quantity m instead of *κ ,  
*1 tanh .

2 2
m βκ 
≡  

 
                      (82) 

From (70), we see that m is 
0

ˆ
iS  at *= κκ . Using this m the energy and 

the specific heat in CASE 1 are given by 

( )
( )( )

2 2
22

2

1 4, .
4 1 2 1 4v

E h mm C m
N m

ζ βζ
ζ βζ

−
− = + =

− −
       (83) 

Here, since * * 2X mκ ζ ζ= = , m should satisfy the equation  

( )1 tanh .
2

m mβζ=                      (84) 

In CASE 2, where ( )tanh 2 2m hβ= , we obtain  

( )
2

2, 1 4 .
2v

E hhm C m
N

β − = = − 
 

              (85) 

Finally let us examine whether the Equation (74) has a solution which is 
greater than h. We see that there must be a critical value of β , cβ , above 
which we can find the solution. One can easily see that 2cβ ζ=  if 0h =  and 

2cβ ζ>  if 0h > . Also we have to pay attention that there is no solution for 
any β  if h ζ> . Therefore we obtain cβ = ∞  when h ζ= . It should be 
noted that the energy in CASE 1 coincides with that in CASE 2 at cβ  while the 
specific heat does not. Namely, using * hκ →  in the limit 0cβ β→ +  and 
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( )tanh 2ch hζ β= ,  

( ) ( ){ }
( )

0 0

2 *2

0 0

1 1 lim lim

1lim lim tanh 0,
4 2 2

c c

c c

E E E
N N

h hh

β β β β

β β β β

β β

βκ
ζ

→ + → −

→ + → −

− ∆ ≡ − −

    = + − =    
   

 

( ) ( ) ( )

( ) ( )

0 0

2

2 2

lim lim

1 1 0.
2 cosh 2 2 cosh 2

c c
v c v v

c

c c c

C C C

h
h h

β β β β
β β β

β
β β ζ β

→ + → −
∆ ≡ −

   = − >   −    

   (86) 

Especially, when h is small, we obtain the results  

( )
2 2

1 3 6~ 2 1 , ~ 1 .
3 2 5c v c

h hCβ ζ β
ζ ζ

         + ∆ −      
         

         (87) 

Appendix D 

The Hamiltonian Ĥ  we consider here is given in (68). The partition function 
( )Z β  is defined by  

( ) ( )ˆexp .Z tr Hβ β = −                      (88) 

In the high temperature expansion ( )Z β  is expanded by small β ,  

( )
2

2ˆ ˆ~ 1 .
2

Z tr H Hββ β
 
− + 

 
                 (89) 

We employ the following equations  

[ ]

{
}

31 2 4
1 2 3 4 1 2 1 2 3 4 3 4 1 3 1 3 2 4 2 4

1 4 1 4 2 3 2 3

, ,

2

, , , , , , , ,

, , , ,

1ˆ ˆ ˆ ˆ ˆ ˆ1 2 , 0, 2 , 0,
4

1ˆ ˆ ˆ ˆ 2
4

.

N N
i i j i j i i i

N
i i i i i i i i i i i i

i i i i

tr tr S tr S S tr S S S

tr S S S S

α α α α α α
α α

αα α α
α α α α α α α α

α α α α

δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ

′ ′ ′′
′ ′ ′′     = = = =     

   = +    
+

   (90) 

In the last equation, we exclude the case where 1 2 3 4α α α α= = =  and  

1 2 3 4i i i i= = = . 
From the Equation (90) we see that the first order term of β  vanishes. 

ˆ 0.tr H  =                           (91) 

In the second order,  

{ }

( )

2 2
, ,

, , , ,
2

2
, , , , , , , , ,

, , , ,
2

2
, , , , , ,

,

1ˆ ˆ ˆ ˆ ˆ ˆˆ
4

1 1 12 2
4 4 4

1 1 12 1 2
4 4 4

12

y y x x x x
i j i j k l i j k l

i j i j k l

N N
i j i j k l i j k l i k j l i l j k

i j i j k l

N N
i i j j i j i j i j j i

i i j

N

tr H h tr S S J J tr S S S S

h J J

h J J J J J J

δ δ δ δ δ δ δ

     = +     

 = + + + 
 

 = + + + 
 

=

∑ ∑

∑ ∑

∑ ∑

( )

( )

2
22

,
,

2
22

0,

1 11 2 2
4 4 4

1 1 12 2 .
4 4 4

N
i j

i i j

N
i

i

h J

N h J

 +  
 

   = +  
   

∑ ∑

∑

 (92) 
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Here we use , ,i j j iJ J=  and , 0i iJ =  as well as the translational invariance. 
Thus we obtain  

( ) ( )
2

22
0,

1 1~ 2 1 .
2 4 32

N
i

i
Z N h Jββ

  + +    
∑             (93) 

Therefore the energy and the specific heat are given by  

( )( ) ( )22
0,

1 1 1log ~ ,
4 32 i

i

E Z h J
N N

β β
β
∂  − = + ∂  

∑  

( )22 2
0,

1 1~ .
4 32v i

i
C h Jβ  +  

∑                  (94) 

Finally we consider a correlation function of the spin operator ˆ x
aS  which will 

be useful to estimate the coupling constants of the model. It is defined by  

( ) { }
{ } ( )

ˆ

ˆ

ˆ ˆe
, .

e

H x x
b b

C b b H

tr S S
F r b b

tr

β

β
β

−
′

′ −
′= − ≡ ≠r r           (95) 

For small β , we obtain  

( )
( ){ }

{ }
{ }

{ }

2

, ,
,

ˆ ˆˆ ˆ ˆ ˆ ˆ1 1, ~ .
1 2 1 4

x x x x x x
b b i j b b

C i j b b
i j

tr H S S tr S S S S
F r J J

tr tr

β
β β β

′ ′
′

−  = =  
 

∑  (96) 
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