
Journal of Applied Mathematics and Physics, 2020, 8, 481-491 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 
DOI: 10.4236/jamp.2020.83038  Mar. 13, 2020 481 Journal of Applied Mathematics and Physics 
 

 
 
 

Stability and Approximate Analytical Periodic 
Solution of a Structurally Orthotropic Stringer 
Shell 

Xia Liu, Ruifang Wang, Fabao Gao 

School of Mathematical Science, Yangzhou University, Yangzhou, China 

 
 
 

Abstract 
Combined with real engineering, we mainly study the stability of the equili-
brium state at the coordinate center of an orthotropic stringer shell system, 
and the approximate analytic periodic motion is presented around the stu-
died equilibrium state. In addition the rationality of the obtained results is 
verified by numerical simulation. Furthermore we found that there are ac-
tually only four kinds of phase portrait of this type of shell. 
 

Keywords 
Stability, Periodic Solution, Stringer Shell, Successor Function 

 

1. Introduction 
It is generally known that stringer shell plays an indispensable role in the struc-
tural design of aircraft, spacecraft, and ships. The studies on nonlinear dynamics 
of stringer shell have attracted the attention of a large number of researchers (see 
[1]-[15] and the references therein). 

For the case of a cutout in the shell, Palazotto [1] performed a bifurcation and 
collapse analysis of the stiffened cylindrical shell. In recent years, when the 
stringer buckles, Gavrilenko and Matsner [2] used the linear and nonlinear 
theory of the ribbed shell to examine how the stringer shells lose their stability 
characteristics. Schilling and Mittelstedt [3] derived a clear analytical formula for 
critical buckling loads by using the Ritz-like principle of minimum potential 
energy. To illustrate the potential of lightweight optimal designs in terms of 
structural stability, Khodaygan and Bohlooly [4] conducted a detailed study of 
cylindrical shell: maximizing buckling loads while minimizing its weight. In the 
thermal environment, Golchi et al. [5] studied the thermal buckling and free vi-
bration of functionally graded truncated conical shell stiffened by rings and 

How to cite this paper: Liu, X., Wang, R.F. 
and Gao, F.B. (2020) Stability and Ap-
proximate Analytical Periodic Solution of a 
Structurally Orthotropic Stringer Shell. 
Journal of Applied Mathematics and Phys-
ics, 8, 481-491.  
https://doi.org/10.4236/jamp.2020.83038  
 
Received: February 20, 2020 
Accepted: March 10, 2020 
Published: March 13, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.83038
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.83038
http://creativecommons.org/licenses/by/4.0/


X. Liu et al. 
 

 
DOI: 10.4236/jamp.2020.83038 482 Journal of Applied Mathematics and Physics 
 

stringers. Recently, despite not considering stringer, Allahkarami et al. [6] stu-
died the dynamic buckling of a sophisticated bi-directional FG porous cylindric-
al shell under different boundary conditions and proposed the dynamic instabil-
ity region of the structure. For the deep doubly curved shell, Naghsh et al. [7] 
carried out a free vibration analysis of a typical shell of revolution. When the 
material of the shell is steel, Do et al. [8] performed the impact response of 
large-diameter thin-walled steel truss stiffened cylinders under the low-speed 
mass impact. Besides, they also considered the damage to the stringer-stiffened 
cylinders under external hydrostatic pressure [9]. For the general stringer shell, 
Bayat et al. provided an approximate analytical expression of the nonlinear free 
vibration of the truss shell through the extended version of the Hamiltonian 
method [10] and the homotopy perturbation method [11], respectively. Accord-
ing to different parameters, Lai et al. [12] constructed a low-order analytical ap-
proximate solution that is in good agreement with the exact solution based on 
the harmonic balance method. 

Note that few researchers have studied the stability of the stringer shell’s vi-
bration near its equilibrium state and its mathematical expressions, especially 
when the nonlinear governing equation is linearized and its eigenvalues have a 
zero real part, which makes the stability of the equilibrium state may be incon-
sistent between the nonlinear governing system and its linearized system. In this 
paper, for a structurally orthotropic stringer shell, we mainly analyze the stability 
of the equilibrium state at the coordinate center of the system and its approx-
imate analytical periodic solution, which is verified by numerical simulation. 

The organization of this paper is as follows: 
In Section 2, we give the governing dynamic equations of the stringer shell. In 

Section 3, we analyze the equilibrium states of the system and present an ap-
proximate periodic solution around one of the specific types of equilibrium 
states. In Section 4, we verify the findings in Section 3 through numerical simu-
lations and summarize the obtained results in Section 5. 

2. Mathematical Equations of Stringer Shell 
We take into account a closed circular cylindrical shell supported by 
one-dimensional elastic support ribs in two main directions, assuming that the 
height of the support ribs is petite compared with the radius of curvature and 
that these non-interacting support ribs are evenly placed at a constant distance 
(see Figure 1). In this way, the displacement and vibration frequency can be de-
fined accurately. 

By using the semi-inextensional theory, the governing equations of an ortho-
tropic stringer shell in terms of large displacement (up to its thickness order) can 
be written as (see [10] [13] [14] [15]) 
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Figure 1. Schematic of a circular cylindrical shell. 
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the parameter w represents the normal displacement, R denotes the radius of 
shell, φ  is Airy function, 0ρ  and 1ρ  are the densities of shell and rib respec-
tively, h is the thickness of shell, N is the number of stringers, F is the transverse 
section area, 1E  and E are young modulus’s of rib and shell respectively, ν  is 
Poisson ratio, ( )1,2,3iD i =  are the expressions related to the material of strin-
ger shell, mainly including the elasticity modulus, Poisson ratio, size and num-
ber of stringer, inertia moment (rotation, torsion) and static moment of strin-
ger’s cross-section, etc., for more details see Chapter 3 of [16]. 

For simply supported shell that depends on amplitude-frequency, we have 
2

2 0, 0, ,ww x L
x

∂
= = =
∂

                   (3) 

the normal displacement w can be approximated as follows 

( ) ( ) ( ) ( ) ( ) ( )2
1 2, , sin cos sin ,w x y t f t mx ny f t mx= +        (4) 

where 1m m L= π , 1m  and n are the wave numbers in the axial and circumfe-
rential directions, respectively (see [17]). The relationship between the 
time-dependent functions 1f  and 2f  can be obtained by the displacement in 
the circumferential direction, i.e. ( )2 2

2 1 4f n f R= , and then the Air function 
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where ( )1EF B LRδ =  and 1f Rξ = . 
By using Galerkin procedure, we obtain the dynamical equation of stringer 

shell as follows 
22 2

3 5
1 2 32 2

d d d 0,
d d d

A A A
t t t
ξ ξ ξµξ ξ ξ ξ ξ

  + + + + + =  
   

           (6) 

where ( )2 4
13 32R n Bµ ρ= , ( )22 2 4 4 2 2 4

1 1 1 3 1 22 1A n m n m n nε ε ε ε ε δ= + + + − , 

( )4 2 2
2 11 16 2 3 1 4A n nε δ= + − − , 4

3 4A n= , ( )2
1 1 2D B Rε = , 2 1 2D Dε = , 

3 3 1D Dε = , for more details see [16]. Moreover, in terms of the periodic solu-
tions will be investigated in this paper, so the initial conditions ( )0 cξ = , 

( )0 0ξ =  can be applied. 

Note that system (6) can be simply integrated into eT V E+ = , where 
( )2 2 21T µξ ξ= +  , 2 4 6

1 1 32 4 6V A A Aξ ξ ξ= + + , and eE  are the kinetic 
energy, potential energy, as well as the total energy of the system, respectively. 
The kinetic energy contains more than just the square of velocity, so this system 
is a non-natural system with fifth-order nonlinear terms [12]. The equilibrium 
states of the system under various parameters have been discussed preliminary 
in [12] from a mathematical perspective, but considering the physical properties 
of the material of the stringer shell in real engineering, parameters µ , 1A , 3A  
can only be greater than zero, and the sign of 2A  is arbitrary in this paper. For 
the convenience of constructing periodic solutions in the next section, we shall 
take 1 1A =  in system (6). In fact, the coefficient 1A  of the linear term ξ  can 
also be converted into one by multiplying both sides of the equation by 11 A , 
and the resulting constant term before the acceleration term can be normalized 
by time scale transformation. 

3. Stability and Approximate Analytical Periodic Solution 

Considering system (6) is equivalent to the following form 
2 2 3 5

1 2 3 0.A A Aξ µξξ µξ ξ ξ ξ ξ+ + + + + =                   (7) 

Let ξ η= , then we obtain 
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When 0η = , we have ( )2 4
1 2 3 0A A Aξ ξ ξ+ + = , i.e.  

( ) ( )2 2
2 2 1 3 34 2A A A A Aξ = − ± −  or 0ξ = . Therefore, system (8) has a unique 

equilibrium state ( )0,0  when 2 0A ≥ , and for the case of 2 0A < , system (8) 
has at most five equilibrium states as follows 
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More precisely, there are five when 2
2 1 34 0A A A− > , three when  

2
2 1 34 0A A A− = , and only one when 2

2 1 34 0A A A− < . Here we temporarily retain 
the coefficient 1A  of the linear term ξ  instead of replacing it with the Arabic 
numeral 1. In this way, without losing generality, we can find in which equili-
brium state 1A  will play a role. 

Note that system (8) is equivalent to 

( ) ( ) 2
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Although it is easy to determine the equilibrium state ( )0,0  as a center of the 
hyperbolic equilibrium states of the linearized equations of system (9) according 
to the qualitative theory of ordinary differential equation, so the equilibrium 
state ( )0,0  may be the center, focus or center-focus of system (9). For this rea-
son, we will study the type and stability of the equilibrium state ( )0,0 . If it is 
also the center of the stringer shell system (9), we will give the approximate ana-
lytical expression of the periodic vibration of stringer shell around equilibrium 
state ( )0,0  by using the methods of successor function (see [18] [19] for more 
details). For some other remaining common equilibrium states, we can move 
them to the origin of the system by coordinate translation and then study them 
in the same way. 

To this end, let polar coordinate transformation cosaξ θ= , sinaη θ= , 
then system (9) becomes 
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Divide the first equation in system (10) by the second one, yields 
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where 
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where 

( )( )
( )( )
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In view of the continuous dependence of the solution on the initial value, for 
the initial condition c, the solution ( ),a cθ  of system (12) satisfying the initial 
condition is assumed to admit the following form of convergent power series 
(see [18]) 

( ) ( )
1

, .k
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k
a c a cθ θ

+∞
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Therefore, we have 
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Substituting systems (13) and (14) into system (12), we obtain that 
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Based on the initial condition ( )0,a c c= , we have ( )1 0 1a = , ( )0 0la = , 
2,3,l = 

. Comparing the coefficients c on both sides of system (15), we have 
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d 3 .
d
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= ∆ + + ∆                        (20) 

From Equation (17) and ( )2 0 0a = , we have ( )2 0a θ = , then it can be fol-
lowed from Equation (18) and ( )3 0 0a =  that 
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It is easy to find that ( )3a θ  is a periodic function. 
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Similarly, we also have ( )4 0a θ =  in terms of Equation (19), ( )2 0a θ =  and 
( )4 0 0a = . Then according to Equation (20) and ( )5 0 0a = , we obtain 

( ) ( ) ( )

( )
5 5 2 3 30

2 2
22 8 62 3

2 3

2 2
4 22 2 2

0 3 d

25 1 3 6 4cos cos
32 6 32 24

2 6 3 3cos cos .
16 8

a a a

A A AA A

A A A

θ
θ θ

µ µ µθ θ

µ µ µθ θ

= + ∆ + ∆

− − −
= + + +

+ −
+ −

∫

   (22) 

Clearly, ( )5a θ  is also a periodic function. Continuing with this method, we 
find that for any 1,2,3,k = 

, 2 0ka = , and 2 1ka +  is a periodic function. That 
is to say, the trajectories of system (8) near ( )0,0  are all periodic orbits, thus 
( )0,0  is also the center of system (8) and it is a stable equilibrium state. There-
fore, the approximate periodic solutions of system (6) around the origin can be 
determined by ( )cosaξ θ θ=  and its initial values. 

4. Numerical Verification 

In the previous section, we have proposed an approximate expression of periodic 
solution of system (8) near the center ( )0,0 , and some other equilibrium states 
can be investigated by using the same method. In this section, we use numerical 
simulation to verify whether there is a periodic solution near the equilibrium 
state ( )0,0  under different parameters (see Figures 2-5). 

It can be followed from Figure 2 that system (8) always has a periodic orbit 
around ( )0,0  when 2A  is non-negative. In addition, as shown in Figures 3-5, 
we find that when 2

2 1 34 0A A A− > , 2
2 1 34 0A A A− = , and 2

2 1 34 0A A A− < , the 
system (8) does have five, three, and unique equilibrium states, respectively, and 
there are periodic orbits near ( )0,0  in all these cases. 

5. Conclusion 

In this paper, we consider the equilibrium states of a class of structurally ortho-
tropic stringer shell, and refer to the parameter range in its real engineering, its 
dynamic behavior near the origin is discussed in detail, which is periodic  
 

 
Figure 2. Phase portraits of system (8) when 2 0A ≥ . 
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Figure 3. Phase portraits of system (8) when 

2 0A <  and in 2
2 1 34 0A A A− > . 

 

 
Figure 4. Phase portraits of system (8) when 

2 0A <  and in 2
2 1 34 0A A A− = . 

 

 
Figure 5. Phase portraits of system (8) when 

2 0A <  and in 2
2 1 34 0A A A− < . 

 
motion. For several other equilibrium states, we can move them to the origin of 
the system by coordinate translation respectively, and then study them in the 
same way. In addition, the conclusion that ( )0,0  is the center of the nonlinear 
system can also be obtained according to the principle of symmetry [20]. How-
ever, according to the successor function method, we not only give the approx-
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imate expression of this periodic motion but also verify the rationality of the re-
sults by numerically simulating its four kinds of phase portraits. It is hoped that 
the obtained results will be helpful to study the dynamic behavior of other shell 
structures. 
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