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Abstract 
The cell differentiation in multicellular eukaryotes is one of the most curious 
phenomena. The recent gene and genome sequencing reveals that most of 
differentiated cells in a multicellular eukaryote carry a common genome and 
that such a genome contains the expanded repertoire of genes of proteins as-
sociated with the cell-cell adhesion, intercellular and intracellular signal 
transduction and transcriptional regulation. The cell differentiation occurs in 
the assembly consisting of a large number of cells after the cell proliferation, 
and this process is regarded as a stochastic process. Its formulation starts with 
the master equation in the present paper. The cell differentiation is repro-
duced in the equation of the most probable path derived from the master eq-
uation, when the short-range and long-range interactions between the cells as 
well as the transition probability between the proliferation and differentiation 
modes are considered. Moreover, the equation of the most probable path ex-
plains the experimental results such as the “memory”, tissue culture and the 
preparation of induced pluripotent stem (iPS) cells in embryology, if the 
long-range interaction is considered to be the regulation of gene transcription 
under the influence of intracellular signal transduction from the receptor ac-
cepting the ligand secreted by other types of cells and the short-range interac-
tion is considered to stabilize the intracellular signal transduction by the con-
tact between the same type of cells. The “organizer” found in the initial de-
velopment of embryo is also explained as the cells that preferentially express 
the specific gene of a ligand to rouse the long-range interaction. In conclu-
sion, the present study proposes that the complicated intercellular and intra-
cellular signal transduction causing the cell differentiation is ascribed to the 
long-range interaction between distinctive types of cells and the short-range 
interaction between the same type of cells. 
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1. Introduction 

The descriptive embryology sketches a broad outline of the early stages of de-
velopment, recognizing two basic phenomena; the arising of differences between 
the various parts of the living matter and the moulding of a mass of tissues into a 
coherent structure. Cell differentiation underlies the former phenomenon and 
the latter phenomenon is called “morphogenesis”. Experimental embryology 
inquired into the causality in such development by cutting and transplanting 
some parts of embryo to other regions. In this attempt, it is found in newt that 
the dorsal vegetative quadrant of gastrula is the organization centre or organizer 
for forming the embryonic axis [1] [2], although any half before gastrulation 
becomes a complete embryo. The primary organizer not only induces the ecto-
derm above it to brain and spinal cord but also the organizer itself becomes no-
tochord and metamere. Such induced organs are considered to act as secondary, 
tertiary, quaternary organizers and so on, acting one after another. However, the 
time course of such development is only interpreted in terms of ooplasmic se-
gregation, evocation and field action [3]. The phenomenon “morphogenesis” 
inspires a mathematician to propose a theory of catastrophe on the basis of uni-
versal unfolding of the germ of a mathematical function [4], although the ma-
thematical function and variable(s) used in this theory are still not physically 
founded in the development. On the other hand, the cell differentiation is not 
inquired but traditionally classified into two extremes; the whole future pattern 
of a body is delineated by localized determinants in the egg or the body pattern 
is generated by subsequent cell-cell interaction [5]. The asymmetry of Xenopus 
egg endows the early blastomeres with different characters according to whether 
they are dorsal or ventral [6] [7]. However, it is also indicated that the blasto-
meres must be interacted with one another to generate the full range of cell type, 
by focusing on some special receptors [8] [9], other proteins [10] [11] [12], 
RHAs [13] and genes [14] [15]. The patterning of Drosophila embryo begins 
with the influence of the cells surrounding the egg [16] [17] and is investigated 
from the aspect of protein changes [18]. In contrast to the frog and fly eggs, the 
mammalian egg is essentially symmetrical, and all cells of the early mammalian 
embryo have the same developmental potential [19] [20]. Thus, the experiments 
of mammals first focus on 4- and 8-cell stage [21], clonal analysis [22], culture 
[23] and chimeras [24], then focus on the stem cells [25] [26] to find how envi-
ronmental cues control the pace as well as the pathway of development, and 
gradually shift to gene targeting [27]. 

The recent genome sequencing reveals a notable feature that the cell of a mul-
ticellular eukaryote carries the enlarged repertoire of genes of proteins such as 
receptors, protein kinases and those for cell adhesion and most of differentiated 
cells still carry the same genome [28] [29] [30] [31], except for some special cells 

https://doi.org/10.4236/am.2020.113014


J. Otsuka 
 

 

DOI: 10.4236/am.2020.113014 159 Applied Mathematics 
 

such as erythrocytes and immunocytes. Thus, the expression of specific genes 
must be regulated and controlled differently in differentiated cells. Moreover, 
many kinds of proteins including transcriptional regulators carry long stretches 
of special amino acid residue repeats in a eukaryote, in contrast to the proka-
ryote. Among such repeats, serine and threonine residues are known to be the 
sites for phosphorylation [32] and glycosylation [33] to change the activity of the 
protein. The transduction pathways of phosphorylation signal are partly fol-
lowed experimentally from ligand-receptors to transcriptional regulators in 
some examples of differentiated cells [32] as well as to the cell-cycle control sys-
tem in yeast [34] [35]. However, the transduction pathways are not simply linear 
relay chains but instead branch to activate many interacting components that 
operate in parallel, forming interconnected signal network. This complexity 
prevents the genetic and biochemical studies from outlining the essential future 
of cell differentiation, requiring a theoretical approach to the cell differentiation. 

From the aspect of physics, it is also a curious problem how the cells having 
the same genome content differentiate into distinctive groups. The cell differen-
tiation occurs in the assembly of a large number of cells after the cell prolifera-
tion, and this process is regarded as the stochastic process represented by the 
master equation in the present paper. The equation of the most probable path of 
cell assembly is mathematically derived from the master equation in which the 
transition of cells between proliferation and differentiation modes, the long-range 
interaction between the cells in different regions and the short-range interaction 
between the cells in the same region are considered. The equation of the most 
probable path obtained thus not only reproduces the cell differentiation but also 
explains most of experimental results concerning the cell differentiation, indi-
cating the important role of the short-range interaction as well as the long-range 
interaction caused by ligand-receptor relationship in the cell differentiation. 

2. A Mathematical Model of Cell Differentiation 

A fertilized egg first proliferates using the material and energy source, with 
which the female parent has endowed. As the number of cells increases, the cell 
differentiation occurs. For simplicity, the total number of cells in an embryo is 
assumed to be constant during the process of differentiation in the present for-
mulation. Then, the formulation of cell differentiation starts from the following 
master equation of the probability P(NI+, NI−, NII+, NII−, N0; t), which we find NI+ 
cells of + type and NI− cells of − type in region I, NII+ cells of + type and NII− cells 
of − type in region II, and N0 undifferentiated cells at time t;  
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Here, ( )0 0, , 1, , 1I I I IW N N N N N N+ − + −→ + −  is the transition probability for 
an undifferentiated cell to change into +type in region I and the other transition 
probabilities W’s are also used by denoting the changes in parentheses. These 
transition probabilities on the right-hand side of Equation (1) are explicitly ex-
pressed by the first four, ninth and tenth, thirteenth to sixteenth, and twen-
ty-first and twenty-second transition probabilities in the following way. 
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By exchanging the subscripts from I to II and from II to I, the fifth to eighth 
transition probabilities ( )0 0, , +1, , 1II II II IIW N N N N N N+ − + −→ −  ~ 

( )0 0, , , 1, 1II II II IIW N N N N N N+ − + −→ − +  are expressed from Equations (2-1) 
-(2-4), the eleventh and twelfth transition probabilities  

( )0 0, , 1, 1,II II II IIW N N N N N N+ − + −→ + −  &  
( )0 0, , 1, 1,II II II IIW N N N N N N+ − + −→ − +  are expressed from Equations (2-5) 

and (2-6), respectively, the seventeenth to twentieth transition probabilities 
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-(2-10), and the twenty-third and the last transition probabilities  
( )0 01, 1, , ,II II II IIW N N N N N N+ − + −+ − →  & 
( )0 01, 1, , ,II II II IIW N N N N N N+ − + −− + →  are expressed from Equations (2-11) 

and (2-12), respectively. 
In the above expression, the transition probability from an undifferentiated 

cell to the differentiated state, + type or − type, in the region I and that to diffe-
rentiated state in the region II are denoted by exp(μI/kT) and exp(μII/kT), re-
spectively, using Boltzmann’s constant k and temperature T. The reverse transi-
tion probabilities from these differentiated cells to the undifferentiated cell are 
denoted by exp(−μI/kT) and exp(−μII/kT), respectively. The terms with the coef-
ficient zIJI and those with the coefficient zIIJII in the exponents indicate the 
short-range interaction between the cells in the region I and that in the region II, 
respectively. The terms with the coefficient f in the exponents indicate the 
long-range interaction between the cells in region I and those in region II. Using 
the Ising model [36] that the cell of + type takes the value of +1 and the cell of − 
type takes the value of −1, the cells in the same region tend to take the same type 
by the short-range interaction while the cells in region I tend to take the type 
different from the type in region II by the long-range interaction.  

These transition probabilities (2-1)-(2-12) and those with replaced subscripts I 
by II and II by I assure the following stationary distribution Pst (NI+,NI−, NII+, NII−, 
N0) when both μI and μII are equal to μ. 
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The probability that the transitions (2-1)-(2-12) and those with the replaced 
subscripts take place in an infinitely short time interval is assumed to be propor-
tional to the total number N of cells. Then, the probability density function p(XI, 
xI, XII, xII; t) is defined by  
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Here, the quantities μI/kT, μII/kT, zIJI/kT, zIIJII/kT and f/kT are simply denoted as 
αI, αII, βI, βII and γ, respectively. 

As shown already by the expansion method for proving the central limit 
theorem [37] and more generally by the cumulant expansion method for the 
characteristic function of the probability density function [38], the probability 
density function can be expressed as the following Gaussian form  
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using the elements of inverse matrix σ−1 of standard deviation matrix σ, when the 
value of ε is very small or the number of N is very large and the right-hand side 
of Equation (6) can be approximately terminated at the second moments, i.e., 
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     (8) 

The time changes in the most probable values YI, YII, yI and yII in the Gaussian 
distribution (7) are determined by the first moments of the transition probabili-
ties m1XI, mIXII, mIxI and m1xII in Equation (8), respectively, as follows.  
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 (9-3) 

( )

( ) ( )
( ) ( )

( ) ( )

1
d , ; , ;
d

e sinh 2 2 e cosh 2 2

2 1 e sinh 2 2

4 sinh 4 cosh

II xII II I II I II

II II
II II II I II II II I

II
I II II II I

II II II I II II II I

y m y y Y Y
t

Y y y y y y

Y Y y y

Y y y y y y

α α

α

α

β γ β γ

β γ

β γ β γ

− −

=

= − − −

+ − − −

+ − − −

(9-4) 

Equations (9-1)-(9-4) well reproduce the cell differentiation, although this set 
of equations is derived under the constant number of total cells and is not suffi-
cient for representing the developmental process where cell proliferation and 
differentiation progress in parallel. When αI and αII take sufficiently large posi-
tive values, the smaller second term on the right-hand side of Equation (9-1) is 
neglected, and d d 0IY t =  approximately holds for the following relation be-
tween YIst and YIIst.  

( ) 22 1 e I
Ist Ist IIstY Y Y α≈ − −                    (10-1) 

By the similar way on Equation (9-2), d d 0IIY t =  approximately holds for the 
following relation between YIIst and YIst. 

( ) 22 1 e II
IIst Ist IIstY Y Y α≈ − −                    (10-2) 

From these relations, YIst and YIIst in the stationary state are expressed as 
2

2 2
2e

1 2e 2e

I

Ist I IIY
α

α α=
+ +

                    (11-1) 

2

2 2
2e

1 2e 2e

II

IIst I IIY
α

α α=
+ +

                    (11-2) 

Here, the quantity 1 Ist IIstY Y− −  corresponds to the ratio of undifferentiated 
cells or stem cells. In this stationary state, the first, second and third terms on the 
right-hand side of Equation (9-3) are neglected because ( )2 1 e I

Ist IIstY Y α− −  in 
the third term is equal to e I

IstY α− , and d d 0Iy t =  holds when the fourth and 
fifth terms are equal to zero, i.e., 

( ) ( )sinh cosh 0Ist I I II I I I IIY y y y y yβ γ β γ− − − ≈        (12-1) 

The solution of yI satisfying Equation (12-1) is obtained by the following graph-
ical procedure. When a new quantity uI is introduced by 

I I I IIu y yβ γ≡ −                       (12-2) 

Equation (12-1) is rewritten into 

tanhI Ist Iy Y u=                      (12-3)  

As shown in Figure 1(a), the value of yIst is obtained as the ordinate of the 
crossing point of the curve (12-3) with the straight line (12-2) concerning yI values  
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Figure 1. The graphical procedure to obtain the ratios yIst and yIIst of differentiated cells. 
(α) The values of yI are plotted against uI values according to Equations (12-2) and (12-3). 
The value of yIst satisfying Equation (12-1) is obtained as the ordinate of the crossing 
point of the curve (12-3) with the straight line (12-2). If yII is chosen to be a negative val-
ue, this value of yIst becomes positive as shown in the figure. Moreover, this result also in-
dicates that the value of yIst becomes larger, nearer to YI, as the short-range and 
long-range interaction parameters, βI and γ, take larger values, respectively. (b) The val-
ues of yII are plotted against uII values according to Equations (13-2) and (13-3). The val-
ue of yIIst satisfying Equation (13-1) is obtained as the ordinate of the crossing point of the 
curve (13-3) and the straight line (13-2). When yI is chosen to be a positive value, this 
value of yIIst becomes negative, consistent with the result of (α). The value of such yIIst be-
comes nearer to that of −YII as the short-range and long-range interaction parameters, βII 
and γ, take the larger values, respectively. Thus, the differentiation into + type of cells in 
region I and − types of cells in region II occurs under both the long-range and 
short-range interactions. 
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plotted against uI values. This value of yIst becomes positive if yII is chosen to be a 
negative value. In Equation (9-4), d d 0IIy t =  approximately holds when the 
fourth and fifth terms on the right-hand side are equal to zero, i.e., 

( ) ( )sinh cosh 0IIst II II I II II II IY y y y y yβ γ β γ− − − ≈        (13-1) 

The solution of yII satisfying Equation (13-1) is also obtained by the following 
graphical method. By setting 

II II II Iu y yβ γ≡ −                      (13-2) 

Equation (13-1) is rewritten into 

tanhII IIst IIy Y u=                      (13-3) 

As seen in Figure 1(b), the ordinate yIIst as the crossing point of the curve yII vs 
uII (13-3) with the straight line (13-2) becomes a negative value when yI takes a 
positive value. This is consistent with the result of Equations (12-2) and (12-3). 
Thus, it is shown theoretically that at least two types of interaction between cells, 
the short-range interaction (βI, βII > 0) and the long-range interaction (γ > 0), 
reproduce the cell differentiation.  

The elements of the standard deviation in the Gaussian distribution (7) are 
also derived from the present scheme. For example, the element σxIxI of standard 
deviation changes with time by the following equation. 

( ) ( )

( )

1 1 1

1
2

d 2
d

xI xI xI
xIxI xIxI xIxII xIIxI xIXI XIxI

I II I

xI
xIXII XIIxI xIxI

II

m m m
t y y Y

m m
Y

σ σ σ σ σ σ

σ σ

∂ ∂ ∂
= + + + +

∂ ∂ ∂
∂

+ + +
∂

   (14) 

This element becomes larger in the middle stage of cell differentiation but it 
slows down to a smaller value when the differentiation is accomplished. The 
other elements of standard deviation also show the similar behaviour. However, 
the more detailed discussion on the standard deviation will be reserved until the 
experimental data of standard deviation upon cell differentiation are accumu-
lated. 

Although the present model is restricted to the differentiation into two types 
of cells for simplicity, it can be extended to the higher hierarchy of cell differen-
tiation, e. g. the + type of cells further differentiate into ++ and +− types of cells 
and the − type of cells further differentiate into −+ type and −− type of cells. 

3. Discussion 

In the present paper, it is shown theoretically that both long-range interaction 
and short-range interaction are necessary for cell differentiation. The long-range 
interaction is probably caused by the special ligand-receptor relationship. For 
example, the + type of cell secretes the ligand a, which is accepted by the recep-
tor A on the surface of the − type of cell, while the − type of cell secretes the li-
gand b to be accepted by the receptor B on the surface of the + type of cell. The 
receptor A having accepted the ligand a induces the expression of the genes to 
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characterize the − type of cell through the intracellular signal transduction to the 
transcriptional regulators. On the other hand, the receptor B having accepted the 
ligand b induces the intracellular signal transduction to the transcriptional regu-
lators which express the genes characteristic to the + type of cell. Although the 
molecular events underlying the short-range interaction is not clarified yet by 
biochemical studies, the contact between the same type of cells, probably 
through the cytoskeletons in the respective cells, may stabilize the intracellular 
signal transduction induced by the ligand-receptor relationship. Some types of 
differentiated cells such as erythrocyte and immunocyte are not in contact, but 
their generation is carried out in the state of contact. With the above molecular 
events in mind, the present model explains the following experimental results (1) 
- (4) on the cell differentiation. 

1) Organizer 
The organizer found in embryo may be the initial process of cell differentia-

tion to form the long-range interaction. The cells in region I, for example, first 
begin to express the gene(s) of ligand as well as of receptor B. Although the re-
ceptor A is spontaneously expressed in the cells of region II at this stage and its 
lifetime is relatively short, the receptor A having accepted ligand a becomes sta-
ble enough to form the intracellular signal transduction to express the genes 
characteristic to the − type cell. These expressed genes include the gene of ligand 
b which is to be accepted by the receptor B on the surface of cells in region I to 
exhibit the character of + type. In this case, the cells in region I correspond to 
the (primary) organizer and the cells in region II correspond to the cells forming 
the induced organ. In the case when the cells constituting the induced organ 
further express the genes of ligand c as well as of ligand b, the induced organ 
becomes the secondary organizer. Although the cells in region I and those in re-
gions II are assumed to be symmetric in the present model for generality, the 
preferential expression of specific gene(s) of ligand to rouse the long-range inte-
raction may occur depending on the position of cells. In the embryo of animal, 
the ooplasmic segregation and/or moulding of proliferated cells may cause the 
difference in initial expression of genes between the cells in distinctive regions. 
In the germination of seed, the environmental difference of ground and light 
and/or the positional relation with albumen may cause the difference in gene 
expression depending on cell positions.  

2) Memory  
At the early stage of embryo, the removal of some cells hardly influences the 

growth of remaining cell assembly to the adult form. If the removed cells are 
transplanted to a new position in the embryo, they finally become the tissue de-
pending on the new position. If the removal and transplantation are carried out 
at the later stage of embryo, on the contrary, the transplanted cells become the 
same tissue as the one generated in the original position. This phenomenon in-
terpreted in terms of “field” and “determination” [3] can be explained by the 
present formulation; differentiated cells are memorized by the signal transduc-
tion through the long-range and short-range interactions. 
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3) Tissue Culture 
When the cells taken out from an animal tissue are separated from each other 

and cultured in the medium sufficient for nutrients, they gradually weaken the 
property characteristic to the original tissue and begin proliferation. This sug-
gests a role of short-range interaction in stabilizing the cell differentiation. As 
the density of cultured cells is increased, however, the cultured cells considerably 
restore the property in the original tissue. This strongly suggests that the intra-
cellular signal transduction formed in the original tissue hardly disappears even 
through the proliferation of cells.  

4) ES cells and iPS cells 
In the medical studies, it has been a long dream to obtain undifferentiated 

cells and to replace a diseased tissue by the new one induced from the undiffe-
rentiated cells. The first candidate for such undifferentiated cells is the embryo-
nic stem (ES) cells. However, it is contrary to humanity to extract ES cells from 
human embryo and moreover their transplantation is confronted with the rejec-
tion of the recipient. Recently, a technological method to convert differentiated 
cells into undifferentiated ones is devised; the four kinds of genes, Oct3/4, Sox 2, 
Klf 4 and c-Myc, which are specifically expressed in the ES cell, are injected into 
the fibroblast cells taken from the mouse, using the retrovirus vector, and such 
cells are cultured in the medium. After a few weeks, this method yields induced 
pluripotent stem (iPS) cells, which can be converted to various kinds of tissues 
or organs [39]. Subsequently, this method also succeeds in human cells [40]. 
This fact strongly suggests that the products expressed by the injected genes play 
the role not only in erasing the signals characteristic to the tissue cells but also in 
raising up the transition probability from differentiated mode to undifferen-
tiated mode. This process is also contained in the result of the present model. 

For this illustration, we consider the case when the cells are taken out from 
the region I and the four kinds of genes are injected into these cells. For such 
cells, Equations (9-1) and (9-3) are evaluated in the following way; αI takes a 
negative value and both βI and γ become zero. Then, ( )sinh 0I I IIy yβ γ− = , 

( )cosh 1I I IIy yβ γ− =  and the term containing eαI is neglected. Thus, Equations 
(9-1) and (9-3) are reduced to 

d e
d

I
I IY Y

t
α−= −                       (15-1) 

and 

d e 4
d

I
I I Iy y y

t
α−= − −                    (15-2) 

respectively. These equations show that both YI and yI become zero with time, 
indicating that the cells taken from the region I become undifferentiated. This is 
also the case for the cells in region II. 

4. Conclusion 

In this way, the present mathematical model not only reproduces the cell diffe-

https://doi.org/10.4236/am.2020.113014


J. Otsuka 
 

 

DOI: 10.4236/am.2020.113014 169 Applied Mathematics 
 

rentiation but also explains the experimental results concerning the cell differen-
tiation, especially in animals. In particular, the present study proposes that fu-
ture biochemical and genetic studies are directed to summarize the intercellular 
and intracellular signal transduction causing the cell differentiation into the 
long-rang interaction between distinctive types of cells and the short-range inte-
raction between the same type of cells. 
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