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Abstract 
In recent years, a vast amount of work has been done on initial value prob-
lems for important nonlinear evolution equations like the nonlinear 
Schrödinger equation (NLS) and the Korteweg-de Vries equation (KdV). No 
comparable attention has been given to mixed initial-boundary value prob-
lems for these equations, i.e. forced nonlinear systems. But in many cases of 
physical interest, the mathematical model leads precisely to the forced prob-
lems. For example, the launching of solitary waves in a shallow water channel, 
the excitation of ion-acoustic solitons in a double plasma machine, etc. In this 
article, we present the PDE (Partial Differential Equation) method to study 

the following [ ], , 3, 0, ,0p
t xxiu u g u u g R p x L t= − ∈ > ∈Ω = ≤ < ∞  with 

initial condition ( ) ( ) ( )2
0,0u x u x H= ∈ Ω  and Robin inhomogeneous 

boundary condition ( ) ( ) ( )10, 0, , 0xu t u t R t tα+ = ≥  and  

( ) ( ) ( )2, , , 0xu L t u L t R t tα+ = ≥  (here α  is a real number). The equation is 
posed in a semi-infinite strip on a finite domain Ω . Such problems are 
called forced problems and have many applications in other fields like physics 
and chemistry. The main tool of PDE method is semi-group theory. We are 
able to prove local existence and uniqueness theorem for the nonlinear 
Schrödinger equation under initial condition and Robin inhomogeneous 
boundary condition. 
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1. Introduction 
This paper is the continuation of an earlier one [1] where local existence and 
uniqueness theorem was presented for a one-dimensional nonlinear Schrödinger 
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equation with initial condition and Dirichlet type inhomogeneous boundary 
condition on a finite domain [ ]0, LΩ = . As we know, many physically impor-
tant nonlinear evolution equations in one spatial and one temporal dimensions 
have been found to possess exact solution by the method of inverse scattering 
transform (IST). For example, the IST technique has been applied to Cauchy 
problems in the infinite interval x−∞ < < ∞  for decaying [2], periodic [3] and 
self-similar potentials [4]. When a boundary condition is imposed, sometimes it 
is called forced problem [5] [6] [7] [8]. The physical importance of forced prob-
lems for the nonlinear integrable systems was discussed by Kaup [9]. Existence 
and uniqueness of the solution to the Korteweg-de Vries equation for 
0 ,x t≤ < ∞  where ( ),0u x  and ( )0,u t  are given have been proven by Bona 
and Winther [10] [11]. 

The following nonlinear Schrödinger equation (NLS) posed in the quarter 
plane with Dirichlet inhomogeneous condition (k is a real constant) has been 
studied by the author: 

2
t xxiu u k u u= +                       (1.1) 

( ) ( ) ( ) ( )0,0 , 0, .u x u x u t Q t= =  

The initial condition ( )0 ,u x x−∞ < < ∞  and inhomogeneous boundary condi-
tion ( ) , 0Q t t ≥  are imposed. Existence and uniqueness of a global classical so-
lution were proved via PDE method provided that the initial-boundary data are 
“nice” (cf. [12]). Further, (1.1) is shown to be well-posed [13]. 

For the NLS posed in the quarter plane with Robin inhomogeneous condition 
( Rk ∈ ): 

2
t xxiu u k u u= +                       (1.2) 

( ) ( ) ( ) ( ) ( )0,0 , 0, 0,xu x u x u t u t R tα= + =  

similar results were available [14] [15]. 
Solving such problems has important physical and mathematical implications. 

For example, (1.2) arises in the propagation of the optical solitons [16]. Also, the 
NLS with an additional term xu  on the right-hand side and α →∞  models 
water waves [17]. 

This paper will investigate a more general version of nonlinear Schrödinger 
equation p

t xxiu u g u u= −  on a semi-infinite strip [ ]0, ,0x L t∈Ω = ≤ < ∞ . 
Robin type inhomogeneous boundary conditions are imposed on both endpoints. 
Using PDE method, we will prove the existence of a unique local classical solu-
tion. 

2. Existence and Uniqueness of the Local Solution 
In this paper, we study the following NLS with initial condition and Robin in-
homogeneous boundary condition ( Rg ∈ , 3p > )): 

[ ], 0, ,0p
t xxiu u g u u x L t= − ∈Ω = ≤ < ∞              (2.1) 

( ) ( ) ( )2
0,0u x u x H= ∈ Ω  

( ) ( ) ( )10, 0,xu t u t R tα+ =  
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( ) ( ) ( )2, ,xu L t u L t R tα+ =  

here α  is a real number and 0t > . Using semigroup technique we prove that 
there exists a unique classical local solution. 

We shall utilize the following notations and assume that α  is an arbitrary 
real number throughout. 

( ) ( ) ( ) ( )1 10, , 0,xQ t u t P t u t= =  

( ) ( ) ( )1 1 1R t P t Q tα= +  

( ) ( ) ( ) ( )2 2, , ,xQ t u L t P t u L t= =  

( ) ( ) ( )2 2 2R t P t Q tα= +  

( ) ( )( )1
2

0
0
supi

i
t T

i iR R t R t=

≤ ≤
=

′= +∑  

We assume that ( ) ( ) ( ) ( ) ( ) ( )2 1 1
0 1 2, ,u x H R t C R t C∈ Ω ∈ Ω ∈ Ω  have appro-

priate smoothness. In addition, they satisfy the necessary compatibility condi-
tions to ensure the existence of solution at ∂Ω  and 0t = , i.e.  

( ) ( ) ( )0 10,0 0 0xu u Rα+ =  and ( ) ( ) ( )0 2,0 0xu L u L Rα+ = . 
Lemma 2.1. Let 2

xA iD ia= − + ,  
( ) ( ) ( ) ( ) ( ){ }2 2: , , 0 0 0xxD A v v L v L v v v L v Lα α′ ′= ∈ ∈ + = + = . Then the opera-

tor A is the infinitesimal generator of a continuous semigroup of contractors 
( ) expN t At=  for 0t ≥ . Here a is an appropriate positive constant depending 

on α . 
Proof. Let ( ) ( ){ }2 2: , xxX v v L v L= ∈ Ω ∈ Ω . Then X is a Banach space with a 

norm equivalent to ( )2H Ω -norm. Let ( )2H L= Ω ,  
( ) ( ) ( ) ( ) ( ){ }1 : 0 0 0V v H v v v L v Lα α′ ′= ∈ Ω + = = +  then ( )D A  and V are 

dense in H. From Gagliardo-Nirenberg estimates (cf. [18] for details), we have 

0, 2,2 0, 2,2,u c u u c u
∞ ∞

′ ′≤ ≤ . Let ( ) , ,n n nv D A Av y v z∈ → →  in H. Then 
clearly { }nv  is a Cauchy sequence in X. Completeness of X implies that { }nv  
converges in X and Az y= . Also, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0

0X X

z z v v z v z v

c z v c z v

α α α

α

′ ′ ′ ′+ ≤ + + − + −

′≤ − + − →
 

Similarly 

( ) ( )0 0 0X Xz z c z v c z vα α′ ′+ ≤ − + − →  

This shows that ( )z D A∈ . Thus A is closed. To show that the resolvent set of 
A contains R+ , let v V∈ . Consider 

( )( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

2

0 0
2 2
2 0 2
2 2
2 2

2 22 2
2 2

, d

d d

0 0

0

L
xx

L L
xx

L

A v v v iav iv v x

ia v x i v v x

ia v iv v i v

ia v i v iv L v L iv v

ia v i v i v i v L

λ λ

λ

λ

λ

λ α α

− = − +

= − +

′ ′= − + −

′ ′ ′= − − + −

′= − − + −

∫

∫ ∫
     (2.2) 
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Take the imaginary part of (2.2), 

( )( ) ( ) ( )2 22 2
2 2, 0A v v a v v v L vλ α α ′− ≥ − + +         (2.3) 

By [18], there exists 0c >  such that 

( ) ( )
1 1
2 2
2 20 2 2 .v v L v c v v

∞
′+ ≤ ≤  

Then (2.3) becomes 

( )( )

( )

2 22
2 2 2 2

2 2 2 22 4
2 2 2 2

2 22 4
2 2

, 2

12
2

12
2

A v v a v c v v v

a v c v v v

a c v v

λ α

α

α

′ ′− ≥ − +

′ ′≥ − − +

′= − +

 

If one sets 2 42a cα>  then 

( )( ) ( )2 2 2
0 02 2, VA v v c v v c vλ ′− ≥ + =  

By Theorem 2.3.3 of [19], for 0λ >  the operator Aλ −  maps ( )D A  1-1 
onto H. Now let ( )v D A∈ . For 0λ > , by taking the real part of (2.2), one has  

the following inequality ( )2 2
v A vλ λ≤ −  thus ( ) 1 1Aλ

λ
−− ≤ . By 

Hille-Yosida Theorem (cf. [20]), the unbounded and linear operator A is the in-
finitesimal generator of a continuous semigroup of a contractions  

( ) expN t At=  for 0t ≥ . 

Theorem 2.2 Local Existence-Uniqueness. For ( ) ( )2 , 1, 2iR t C i∈ Ω = ,  
( ) ( )2

0u x H∈ Ω , there exists a unique classical solution u for Equation (2.1) such 
that [ ) ( )( ) [ ) ( )( )1 20, , 0, ,M Mu C T D A L T D A∈   with either ( )lim D Au = ∞  as 

Mt T→  or MT = ∞ . 
To prove this theorem, we first apply the following transformation: 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2 2

1 2

, , ,

,
2 2

u x t v x t S x t

L x xv x t R t R t
L L L Lα α

= +

−
= + +

− +

      (2.4) 

Substituting (2.4) into (2.1) yields 

( ), ,t xxv iv iav G v x t= − + +                 (2.5) 

where 

( )p
t xxG iav ig v S v S S iS= − + + + − −  

( ) ( ) ( ) ( ) ( )20, 0, , , 0,x xv t v t v L t v L t v Hα α+ = + = ∈ Ω  

One can converts (2.5) to an integral equation: 

( ) ( ) ( )0 0
d

t
v N t v N t s G s s= + −∫  

By similar analysis as in [12], G is locally Lipschitz in v under the norm of 
( )D A  uniformly on [ ]0,T  and for each ( )v D A∈ , G is continuous from 

[ ]0,T  into ( )D A  (note [ ]1 0,S C T∈  for any T). Thus one can use Theorem 
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6.1.7 in [20] to obtain the local existence-uniqueness theorem for (2.5) with 
[ )1 0, Mv C T∈  with either ( )lim D Au = ∞  as Mt T→  or MT = ∞ . Since 

u v S= +  and ( )2S H∈ Ω  uniformly on [ ]0,T  for any 0T > , we conclude 
immediately that u satisfies (2.1) and our existence and uniqueness are proved. 

3. Conclusion 

Famous nonlinear partial differential equations like nonlinear Schrödinger equ-
ation have important applications when the boundary value is not zero. For such 
equation posed in a semi-infinite strip, we used PDE method to prove that there 
exists a unique classical local solution, via semigroup theory. The PDE method 
presented in this paper to study the NLS is an approach different from the IST 
method in [7]. Along with [12], we try to provide some answers to the questions 
raised in [9]. There are some further research that could be done in this area. For 
example, we believe that well-posedness of (2.1) is a subject of research. Also, the 
existence of a global solution is an open problem. We will continue our work 
and report any further advances. 
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