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Abstract 
We have used model scaling so that the propagation of light through space 
could be studied using the well-known nonlinear Schrödinger equation. We 
have developed a set of numerical procedures to obtain a stable propagating 
wave so that it could be used to find out how wavelength could increase with 
distance travelled. We have found that broadening of wavelength, expressed 
as redshift, is proportional to distance, a fact that is in agreement with many 
physical observations by astronomers. There are other reasons for redshifts 
that could be additional to the transmission redshift, resulting in the devia-
tion from the linear relationship as often observed. Our model shows that 
redshift needs not be the result of an expanding space that is a long standing 
view held by many astrophysicists. Any theory about the universe, if bases on 
an expanding space as physical fact, is open to question. 
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1. Introduction 

Shift of spectral lines in the light spectrum from distance stars has been exten-
sively observed and measured by researchers over many centuries. The current 
most acceptable model is based on Hubble’s law which was started from obser-
vations of the linear relationship between the velocity and distance of stars. If 
Doppler Effect due to velocity is taken into consideration, it could be shown that 
redshift is directly and approximately related linearly to the distance from the 
stars to the observers. 

One of the problems with Hubble model is the large redshifts observed in qu-
asars. Quasar ULAS J1342+0928 is known to have a redshift of 7.54, which cor-
responds, according to Hubble model, to a distance of approximately 29.36 bil-
lion light-years from Earth (these distances are much larger than the distance 
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light could travel in the universe’s 13.8 billion year history). Also, based on this 
theory, recessional velocity of an object is proportional to the distance from ob-
servers; it means that for a distant object, its velocity could not just greater than 
but also hundreds or more times the speed of light. Mathematically, there is no 
problem to used recessional velocity, based on the assumption of an expanding 
space between an object and its observers; this conception is, however, difficult 
to be accepted physically. Many would find it difficult to understand the differ-
ence between peculiar velocity, the velocity at which an object moves through 
space, and recessional velocity. 

There is a different theory that is much less known and much less accepted by 
researchers. This is known as “Tired Light” theory [1]. The idea behind this 
theory is that, when light is travelling through the cosmic space, it must lose 
energy through interaction with particles, mostly hydrogen atoms, or other 
minute particles. Although the space is very thinly populated by those particles, 
the cumulating effect through an exceedingly long cosmic distance must result 
in a detectable loss of energy that is manifested itself as redshifts. The proposed 
theory is that the loss varies exponentially from distance travelled. Although 
there are qualitative arguments presented on how the loss could have taken 
place, there is no concrete evidence from laws of physics that such an exponen-
tial relationship should exist. Therefore, this theory is closer to just being an em-
pirical correlation between the observed redshifts and distance. 

In this paper, we accept the fact that the space is not a complete vacuum. Light 
as a form of electromagnetic waves in their propagation through space must in-
teract with whatsoever material present, no matter how thinly it is distributed. 
The transmission is therefore governed by the well-known nonlinear Schrödin-
ger equation (NLSE). We accept the fact that we are dealing with distances not 
just measured in light year but it could be in billions of light years. If SI units are 
used, we would be solving NLSE with system parameters as small as 10−10 or less. 
However, these should not be any problems as we could use well-established 
modelling technique of scaling so that we are solving the scaled-down NSLE 
with much more convenient numbers. Numerical experiments could then be 
carried to determine the intrinsic physical properties of the system, in this case 
the cosmic space. In this paper, we are interested to study the fact that electro-
magnetic waves are known to increase in their pulse widths when propagating 
through a medium with anomalous dispersion (that is with a positive dispersion 
coefficient) [2]. We believe that this is the physical explanation of the universal 
observation of redshifts (or blue-shift if the coefficient is negative). 

Since 1931, the linear relationship between redshift with velocity had received 
popular support due to Hubble’s astronomical observations on nearby stars. 
However, the present-day theory under the same name is involving so-called re-
cessional velocity that is associated with a yet unproven expanding space. Al-
though there are extensive references, discussions and reviews on this theory, we 
do not include any reference about them in this paper because we are presenting 
a completely new transmission model that is based on established physical laws 
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and has not been studied by any researcher on this topic. 
There is no dispute that NLSE is the field equation that governs how light 

waves are propagating through space. In recent years, NLSE is widely used in the 
development of optical fiber technology. But NLSE is a robust equation that al-
lows the transmission of all sorts of waves under many different conditions. 
Under this scenario we consider that research works done on the solutions of 
NLSE are not appropriate for our purpose. We need to know precisely how wave-
length changes due to the distance travelled. We do not refer to other research-
ers’ work because our method is unique and aimed at the needs of our model. 

2. The Nonlinear Schrödinger Equation (NLSE) 

The propagation of light in a medium is governed by the NLSE: 

( ) 2 0
2x tt
iu D x u i u uγ− − =                        (1) 

where u is the slow varying envelope of the axial electric field, ( )D x  and γ  
represents the dispersion coefficient and self-phase modulation parameters, re-
spectively, x and t is the propagation distance and time, respectively. 

Introducing scaling factors, xo and to, so that 

* *,
o o

x tx t
x t

= =                              (2) 

Equation (1) becomes 

( ) 2 0
2x tt
iu D x u i u u− − =                         (3) 

where the superscript * has been omitted for simplicity and  

( )0.
2
0

5* *,o
o

Dx
D u x

t
uγ= =                       (4) 

3. The Numerical Solution Method 

We have used the Lanczos-Chebyshev pseudospectral reduction method [3] [4] 
to convert Equation (3) into a set of ordinary differential equations (ODE). Be-
cause the emission is a soliton pulse, we need to subdivide the computational 
t-domain into N divisions. Additionally, a high (M – 1)th-order power series for 
each sub-domain must be used in order to be able to capture the characteristics 
of the pulse. The resultant ODE is in the form, 

( ) ( ) ( ),xU x i x i x− =A LU Q U                      (5) 

where U is a (M x N) vector consisting of the coefficients of the power series 
used. For numerical integration in the x-direction, we have used the uncondi-
tionally stable and implicit Crank-Nicholson step-wise formulation. For Equa-
tion (5) with step size ∆x,  

( ) ( ) ( ) ( )1 1 1, ,
2 2

m m m m m mi x i xU U U U x U x U+ + +∆ ∆   + − + = +   A L Q Q    (6) 
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Because the term ( )1, mx U +Q  in the LHS, Equation (6) is nonlinear, it has to be 
solved by an iterative procedure as described in Reference [4]. 

4. Stable Propagating Wave (SPW) 

When applying to a given system, Equation (4) could support the stable wave 
propagation. Such a wave must have definite pulse energy and the correct pulse 
shape. The characteristics of SPW are an unchanging pulse shape and slow va-
rying maximum amplitude when travelling along the propagation distance. Any 
noncompliant components present in the input wave would be dissipated and 
disappear progressively. However, if the input wave is too far different from a 
SPW, instability may occur. 

Since light emitted from a cosmic object must have travelled through such a 
long distance, we belive that all the spectral components we received on earth 
are SPWs. This is feasible as we could find in multi-mode optical fibre technol-
ogy that the same fiber can support multiple numbers of modes. From multiplex 
technology, we know that a multiple number of signals can be launched into the 
same fiber. Therefore, it is logical that we could choose one of the SPWs, for 
example, that of the hydrogen spectral line Hα, and its associated changes in 
wave length to find out the extent of redshift. 

For the generation of SPWs, we have used numerical procedures that we had 
developed and used previously. We could find stationary solutions of NLSE for 
dispersion management in optical fibers [2]. The idea is that we could use a fiber 
consisting of numbers of segments, each of them has the same dispersion map, 
for example, half has a positive dispersion coefficient and the other half a nega-
tive one. If we take the average of the input and output waves in a segment, after 
adjustment for any phase change, and use it as the input to the next segment, af-
ter a small number of segments, we could obtain a stationary solution quite 
quickly, providing the initial input pulse is well chosen. 

For our numerical model, we have chosen a dispersion map with the first half 
a dispersion coefficient D and the other half – D, giving 0 as the average coeffi-
cient. The reason for this choice is that the physical dispersion coefficient for the 
cosmic space is very close to zero. For such a dispersion map, there is a zero nett 
dispersion effect on the travelling wave. However, because of the presence of the 
nonlinear term in the NLSE, we would not get a stationary solution but a SPW. 

It should be noted that in this arrangement the input to each segment is not a 
solution of NLSE because the input is the phase-adjusted average of the input 
and output of the previous segment. Therefore, it will take a short distance be-
fore the pulse evolves into a SPW. 

An example of how a SPW is propagating through a segment is shown in Fig-
ure 1. 

5. Numerical Investigation 

For numerical solutions of Equation (3), we consider a pulse at the centre of a  
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Figure 1. An example of a SPW travelling through a test segment. 

 
local time, t, window between –L to L and travelling in the x direction. We di-
vide this time space into N subdivisions. In each subdivision, u is represented by 
a (M – 1)th order power series that has M coefficients. The numerical simulation 
of the propagation of u along x is carried out using step size, ∆x. For every 2x 
distance travel, the dispersion coefficient D is positive for the first x distance and 
–D for the next x distance. We adjust u at the end of each 2x, according to the 
procedures described previously. A Gaussian pulse is used as initial input with 
total pulse energy  

( ) 2
d

L

L
E u t t

−
= ∫                            (7) 

As an example, we use L = 30, N = 4, M = 20, ∆x = 0.001, x = 1, D = 1 and E 
=0.25. Changes to the wavelength are found from W, the pulse width at half of 
the maximum intensity (FWHM). Results for W found numerically are plotted 
in Figure 2. 

Our numerical investigations reveal that the pulse requires a high order poly-
nomial representation. There could be a loss of accuracy if the order is too high. 
Dividing a given t-domain into numbers of subdivisions could be a workable 
approach. The choice of the size of a numerical window is also important as the 
pulse is a narrow spike with long tails. But the pulse width is expanding along 
the propagation distance. There is a numerical limit on the distance as the win-
dow used could become too small for the broadened pulse involved. 

For the numerical example described above, a distance of x = 40 has been 
found a limit. For any longer distance, the pulse needs to be re-launched into a 
larger window in order to cater for the larger pulse width. However, as to be de-
scribed in the next section, this measure may not be required because re-scaling 
and calibration could be used to change x to represent any larger distance.  
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Figure 2. FWHM histories for 20 test segments at x = 2 each (Other parameters given in 
the text). 

6. Calibration 

As commonly used in model studies, parameters involved could be determined 
by calibration. We have chosen one of the transmission cycles in Figure 3 to 
show how we could use our results to measure redshift in star light as observed 
on earth. Figure 3 shows the particular SPW cycle started at x = 30. If the initial 
few steps are ignored we can see that W has an almost exactly linear relationship 
with x. As Hubble constant, Ho, is determined from physically observed data to 
represent the linear relationship between redshift and distance, we could cali-
brate our results based on Hubble’s theory: 

o

d z
c H
=                            (8) 

where d is the distance in Mpc, c the speed of light in km·s−1, z the redshift (di-
mensionless) and Ho in km·s−1·Mpc−1. The usual definition for z is that 

obs st

st

z λ λ
λ
−

=                              (9) 

where λ is the wavelength and the subscripts refer to “observed” and “starting” 
respectively. Since z is a dimensionless ratio, we could define it, using the as-
sumption that λ is proportional to W: 

2 1

1

W Wz
W
−

=                             (10) 

where the subscript 1 and 2 refer to W measured at x1 and x2 respectively. 
Knowing z, Equation (8) could be used to find the distanced in unit based on 
what units are used in Ho. In our example as shown in Figure 3, W2 and W1 are 
taken at x2 = 31 and x1 = 30.5. Using Equation (10), z = 0.86. Using a value of Ho  
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Figure 3. A single test segment is used for calibration. 

 
= [Ho]WMAP = 70.3 in Equation (8) d is found to be 0.01223c Mpc. Since x2 – x1 = 
0.5, we can find the dimensional conversion factor fd that can be used to convert 
x to the unit of Mpc (assuming x is dimensionless), 

( )2 1 d
dx x f
c

− =                           (11) 

It should be noted that the dimension in fd is dependent on the dimension of x. 
Then, assuming that in this case x is dimensionless, 

2 1

1 0.01223 0.02446
0.

M c
5

pd
df
c x x

= = =
−

               (12) 

For the local time variable, t, we can find a dimensional conversion factor ft to 
convert t into W, the wavelength. If we use Hα spectral line for calibration, the 
wavelength is 656.281 nm. From Figure 3, W1 = 2.8. Therefore, ft = 656.281 ÷ 
2.8 = 234.4 nm (assuming t is dimensionless). 

From the calibrations just described, it could be confirmed that our numerical 
results could be applied for a spectral line of any wavelength. 

We could also scale up z so that the results are applicable to a larger distance. 
Let 

*
zz f z=                             (13) 

Then, from Equation (8), it could be shown that 
*

z
o

d zf
c H
=                           (14) 

and, from a scale up *z , a scaled up distance z
df
c

 could be found. 

7. Further Applications of SPW and Discussions  

Readings from Figure 2, we can see how W1 and W2 change through each com-
putational segment as shown in Figure 4. It could be seen that both W1 and  
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Figure 4. The dependency of output pulse width W2 with input pulse width W1. 
 
W2 are increasing from one segment to the next. Plotting out the corresponding 
redshift, z, at three selected points is shown in Figure 5 in that it could be seen 
that z is slightly increasing with W1. The implication is for the same system a 
broader the input wave will lead to a slight increase in z. We have also shown in 
Figure 5 that, from the same observed spectrum of a galaxy in the Hubble Deep 
Field, three observed redshifts for three different wavelengths, Hα, OIII and OII. 
There is a remarkable agreement between these two sets of data, although they 
are based on different units. We could see from the previous explanation that 
scaling in this way is quite acceptable, providing that all the data in a set come 
from the same system. 

So far we have assumed that light waves have come from stationary sources. If 
they have peculiar velocities, shifts of the spectral lines due to Doppler Effect 
could be considered as an extra contribution to redshift. Assume all stars at a 
given distance from earth have randomly distributed radial velocities within a 
certain range. We have produced a simulated sky map, shown as Figure 6, ac-
cording to the data given in Table 1. 

This map could be used to explain partly why the Hubble parameter, h, is of-
ten given with a specified range. 

There are many other events [5], for example, gravitation and an exploding 
nova that could produce spectral shifts. All could be considered as additional to 
what we have found.  

Although we have found blue-shift in the negative diffusion coefficient seg-
ment when we generate our SPW, we do not consider this is the explanation that 
stars with blue-shift have been observed. 

There is no reason to consider this as an exception to the astronomical prin-
ciple that the universe is uniform and isotropic in every direction. In optical fi-
bers, propagation of light-waves is affected by defects and gaps; light transmis-
sion could be abruptly disrupted by environmental conditions. Further research 
is needed to identify the cause of blue-shift in stars. 
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Table 1. Data for Sky map simulation. 

Distance from earth, Mpc 5 10 15 20 

Number of stars 2 4 8 16 

Speed range, km·s−1 ±20 ±40 ±70 ±100 

 

 
Figure 5. The confirmation of redshift changes with initial pulse width. 
 

 
Figure 6. A computer generated sky map. 

 
An important area not covered by this paper is transmission loss. A loss term 

could be added to NLSE without introducing extra complication to the numeri-
cal procedures. On the other hand, our model could be considered to have cov-
ered small losses because our system parameters are determined by calibration 
with observations. For very long distance in many Giga pc, it is worthwhile to 
consider whether losses should be included as part of the model. The effect of 
pulse energy is also an area that needs further investigation. 

The finding of our numerical investigations based on NLSE is that redshift is 
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linearly proportional to distance measured from the source to earth. There is no 
limit to this distance. This relationship is completely independent of recessional 
velocity, if any exists. While our model is not limited by z, the Hubble z – d rela-
tionship, as derived originally from Hubble law is applicable only for 1z  . 
The fact that this relationship is used for large z is due to its empirical nature. 
That is Ho is determined from observed data for far distant stars and galaxies. 

We acknowledge that as a mathematical tool, in order to account for redshift, 
it is convenient to assume that the space in which light is travelling is expanding. 
From observed data, it is possible to work out the relation between the reces-
sional velocities with distance. But we are constantly been reminded that the ac-
tual physical distance does not chang. However, there are important cases that 
have taken the expansion to be real and physical. For example, the Big Bang 
theory has taken the expansion to be real so that the universe must start from a 
singular point. Many discussions about the size of our universe have also consi-
dered this expansion to be real. 

8. Conclusions 

We have shown that by using model scaling light propagating through space 
could be studied by using the well-known NLSE. We have devised numerical 
procedure to generate SPWs which could be used to show that redshifts com-
monly observed in light from distant objects could come from the intrinsic 
physical properties of space, namely dispersion coefficient and self-phase mod-
ulation parameter. 

Our numerical results confirm that redshift has a linear relationship with dis-
tance between a source and our earth. This relationship is not limited by the dis-
tance. Our system once calibrated could be applicable to the real physical un-
iverse. 

Our present model only considers redshift due to light travelling through 
space. This is known to be the major contribution to redshifts so extensively ob-
served by astronomers. There are other less important causes that could contri-
bute additionally to redshift. 

The most important finding in our studies is that redshift needs not come 
from the recessional velocity of an expanding space. The implication is that any 
theory about the universe using an expanding space as fact is open to question. 
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