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Abstract 
In this paper, we research the regression problem of time series data from 
heterogeneous populations on the basis of the finite mixture regression 
model. We propose two finite mixed time-varying regression models to 
solve this. A regularization method for variable selection of the models is 
proposed, which is a mixture of the appropriate penalty functions and 2l  
penalty. A Block-wise minimization maximization (MM) algorithm is used 
for maximum penalized log quasi-likelihood estimation of these models. The 
procedure is illustrated by analyzing simulations and with an application to 
analyze the behavior of urban vehicular traffic of the city of São Paulo in the 
period from 14 to 18 December 2009, which shows that the proposed models 
outperform the FMR models. 
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1. Introduction 

The problem of variable selection in FMR models has been widely discussed [1] 
[2] [3]. When a response variable y  with a finite mixture distribution depends 
on covariates x , we obtain a finite mixture of regression (FMR) model. The 
FMR model with K components can be given as follows [3]: 

( ) ( )( )
1

; , ; ,
K

k k k
k

f y f yπ η φ
=

= ∑x xθ                  (1) 

where y  is an independent and identically distributed (IID) response and x  
is a 1p ×  vector of covariates. ( )T

1, , kπ π= π  denotes the mixing propor-
tions satisfying 0 1kπ< < , 1 1K

kk π
=

=∑ . ( )( ); ,k kf y η φx  is the kth mixture 
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component density. ( ) ( )T
k k khη α= +x x β  for 1, ,k K=  , for a given link 

function ( )h ⋅ , and a dispersion parameter kφ . 
However, in some situations, observations were not independent. As pointed 

out in [2], in the analysis of the PD data, observations from each patient over 
time were assumed to be independent to facilitate the analysis and comparison 
with results from the literature. However, the validity of such assumption may 
be questionable. Whereupon, we consider a situation that observations were 
time series. 

The generalised autoregressive conditional heteroskedasticity (GARCH) 
model is widely used in time series analysis. A mixture generalized autoregres-
sive conditional heteroscedastic (MGARCH) model was pointed out in [4]. [5] 
generalized the MixN-GARCH model by relaxing the assumption of constant 
mixing weights. Whereupon, we combine the GARCH model and the FMR 
model to discuss the above problem. 

There has been extensive studies about variable selection methods. A recent 
review of the literature regarding the variable selection problem in FMR models 
can be found in [6]. There are a general family of penalty functions, including 
the least absolute shrinkage and selection operator (LASSO), the minimax con-
cave penalty (MCP) and the smoothly clipped absolute deviation (SCAD) in [2] 
and [7]. 

The method of the maximum penalized log-likelihood (MPL) estimation is 
usually the EM algorithm. [8] proposed a new algorithm (block-wise MM) for 
the MPL estimation of the L-MLR model. It was proved to have some desirable 
features such as coordinate-wise updates of parameters, monotonicity of the pe-
nalized likelihood sequence, and global convergence of the estimates to a statio-
nary point of the penalized loglikelihood function, which are missing in the 
commonly used approximate-EM algorithm presented in [3]. 

The rest of the paper is organized as follows: in Section 2, the definition of fi-
nite mixture of time-varying regression Models and in Section 3, feature selec-
tion methods are discussed. In Section 4, the block-wise MM algorithm for its 
estimation and the BIC for choosing tuning parameters and components are 
presented, and the example of the Gaussian distribution is derived. Simulation 
studies on the performance of the new variable selection methods are then pro-
vided in Section 5. In Section 6, analysis of a real data set illustrates the use of the 
procedure. Finally, conclusions are given in Section 7. 

2. Finite Mixture of Time-Varying Regression Models 
2.1. Finite Mixture of Autoregression Models 

Let { }; 1, ,ty t n=   be a response variable which is a time series. { }; 1, ,t t n=x   
is a p-dimensional vector of covariates, and each of them is a time series. For an 
FM-AR(d) model with K components, the conditional density function for ob-
servation t is given as follows: 

( ) ( )( )
1

; , ; , ,
K

t t k t k t k
k

f y f yπ η φ
=

= ∑x xθ                (2) 
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where 

( ) ( )T T T
1 1 2 ,k t k t k t k t d kdhη α − −= + + + +x x x xβ β β              (3) 

for 1, ,k K=  , for a given link function ( )h ⋅ , and a dispersion parameter 

ktφ . 
The master vector of all parameters is given by ( )TT T T T, , ,=θ π α φ β , with 

11 1

1

,
d

K Kd

 
 =  
 
 



  



β β
β

β β
                      (4) 

where ( )T
1, , p

ki ki kipβ β= ∈ β , 1, ,i d=  . Let ( )T T T
1, , ,t t t t d− −=x x x x
 , and 

( )T
1, ,k kd= β β β , (3) can be rewrote as ( ) ( )k t k thη α= +x x  β . 

2.2. Finite Mixture of GARCH Models 

Let { }; 1, ,ty t n=   be a response variable which is a time series. Let  
{ }; 1, ,t t n=x   is a p-dimensional vector of covariates, and each of them is a 
time series. For some distributions with unequal dispersion parameter kφ , we 
propose the FM-GARCH models. For an FM-GARCH (d,M,S) model with K 
components, the conditional density function for observation t is given as fol-
lows: 

( ) ( )( )
1

; , ; , ,
K

t t k t k t kt
k

f y f yπ η φ
=

= ∑x xθ                  (5) 

where ( ) ( )k t k thη α= +x x  β  for 1, ,k K=  , for a given link function ( )h ⋅ , 
and a conditional heteroscedastic (a dispersion parameter) 

0 , ,
1 1

,
M S

kt k km k t m ks k t s
m s

φ γ γ δ φ− −
= =

= + +∑ ∑                   (6) 

where 0 0kγ > , 0kmγ ≥ , 0ksδ ≥ , and kt kt kteφ= , kte  is an independent and 
identically distributed series with mean zero and variance unity. 

The master vector of all parameters is given by ( )TT T T T T T
0, , , , ,=θ π α γ β γ δ , 

with ( )T
0 01 0, , K= γ γ γ , ( )T

1, , K= γ γ γ , ( )T
1 2, , ,k k k kMγ γ γ= γ , and  

( )T
1, , K= δ δ δ , ( )T

1 2, , ,k k k kSδ δ δ= δ . 

3. Feature Selection Method 

Let ( ){ }, ; 1, ,t ty t n=x   be a sample of observations from the FM-AR or 
FM-GARCH model. The quasi-likelihood function of the parameter θ  is given 
by [9] 

( ) ( ) ( )( )
1 1 1

L ; , ; , .
n n K

n t t k t k t kt
t t k

f y f yπ η φ
= = =

 = =  
 

∏ ∏ ∑x xθ θ           (7) 

The log quasi-likelihood function of the parameter θ  is given by 

( ) ( )( )
1 1
log ; , .

n K

n k t k t kt
t k

f yπ η φ
= =

= ∑ ∑ x θ                 (8) 

When the effect of a component of x  is not significant, the corresponding 
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ordinary maximum quasi-likelihood estimate is often close to 0, but not equal to 
0. Thus this covariate is not excluded from the model. Inspired by an idea of [2], 
we estimate θ  by maximizing the penalized log quasi-likelihood function 
(MPLQ) for the model 

( ) ( ) ( ),n n n= −  θ θ θ                     (9) 

with the mixture penalty (or regularization) function: 

( ) ( ) 2

1 1 1 1 1 1

1; ,
2

p pK d K d

nk k n kij nk k nk kij
k i j k i j

pπ β λ π υ β
= = = = = =

= +∑ ∑∑ ∑ ∑∑ θ           (10) 

for some ridge tuning parameter 0nkυ ≥ , and ( );n kij nkp β λ  is a nonnegative 
penalty function. In the penalty function ( )n θ , the amount of 2l  penalty 
imposed on the componentwise regression coefficients kijβ ’s are chosen pro-
portional to kπ . The functions ( );n kij nkp β λ  are designed to identify the no 
significant coefficients kijβ ’s in the mixture components ( )( ); ,t i t ktf y η φx . 
General regularity conditions about the ( );n kij nkp β λ  is given in [2] [3]. 

We estimate the new method using the following well-known penalty (or re-
gularization) functions: 
 LASSO penalty: ( );n nk nkp β λ λ β= . 

 MCP penalty: ( ) ( );n nk nk nkp nbβ λ λ β
+

′ = − . 

 SCAD penalty:  

( ) ( ) ( ) ( );
1

nk nk
n nk nk nk nk

nk

a n
p I n I n

a
λ β

β λ λ β λ β λ+
−

′ = < + >
−

. 

Here, I is the indicative function. The constant 2nka ≥  and 0nkb ≥  pointed 
in [2], and LASSO tuning parameter 0nkλ ≥ , which controls the amount of pe-
nalty. The asymptotic properties about these penalty functions can be analo-
gously derived in [3] and [2]. We call the penalty function ( )nk θ  in (10) con-
structed from LASSO, MCP, SCAD jointly with the mixed 2L -norm as 
MIXLASSO-ML2, MIXMCP-ML2, MIXSCAD-ML2 penalties. 

4. Numerical Solutions 

A new method for maximizing the penalized log-likelihood function is the 
block-wise Minorization Maximization (MM) algorithm inspired by [8], which 
is also known as block successive lower-bound maximization (BSLM) algorithm 
in the language of [10]. At each iteration of the method, the function is max-
imized with respect to a single block of variables while the rest of the blocks are 
held fixed. We shall now proceed to describe the general framework of the algo-
rithm. 

4.1. Maximization of the Penalized Log-Likelihood Function 

We follow the approach of [8] and minorize the ε -approximate of - ( )n θ  by 

( )( ) ( )
( )( )

2
2

1 1
1 1 1 1 1 1

1 1G ; ; ,
2 2

p pK d K d
r rijk

i n ni i ni ijkr
k j k k j kijk

p C
w
β

π λ π υ β
= = = = = =

 
= − − + 

 
 

∑ ∑∑ ∑ ∑∑θ θ θ   (11) 
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where ( ) ( )2 2r r
ijk ijkw β ε= + , for some 0ε > , and 

( )( ) ( )( ) ( )( )
2

1
1

1 1 1 1 1 1

1; ; .
2 2

p pK d K d
r r r

i n ijk ni i n ijk ni
k j k k j k

C p w p wε π λ π λ−

= = = = = =

= − −∑ ∑∑ ∑ ∑∑θ     (12) 

Moreover, minorize the log quasi-likelihood function ( )n θ  by 

( )( ) ( ) ( ) ( )( )

( )

2
1 1 1 1

( )

1 1

G ; log log ; ,

log ,

K n K n
r r r

kt i kt t i t kt
k t k t

K n
r r

kt kt
k t

f y xτ π τ η φ

τ τ

= = = =

= =

= +

−

∑∑ ∑∑

∑∑

θ θ
       (13) 

where ( ) ( ) ( ) ( ) ( )( ) ( )( ); , ; ,r r r r r
kt i t i t kt t tf y f yτ π η φ= x x θ . 

Note that ( )r
ktτ  and ( )( )2G ; rθ θ  are analogous to the posterior probability 

and the expected complete-data log-likelihood function of the expecta-
tion-maximization algorithm respectively. 

The block-wise MM algorithm maximizes ( )n θ  iteratively in the following 
two steps: 
 Block-wise Minorization-step. Conditioned on the rth iterate ( )rθ , the 

FM-GARCH model can be block-wise minorized in the coordinates of the 
parameter components π , α , 0γ , γ , δ , and β , via the minorizers 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 0G ; G , , , , , ; , ,r r r r r r r
n= −π π θ π α γ β γ δ θ π β        (14) 

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )0, 0 2 0G , ; G , , , , , ; ,r r r r r r r
n= −α γ α γ θ π α γ β γ δ θ θ      (15) 

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ), 2 0G , ; G , , , , , ; ,r r r r r r r
n= −γ δ γ δ θ π α γ β γ δ θ θ       (16) 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 0G ; G , ; G , , , , , ; ,r r r r r r r r r= +β β θ π β θ π α γ β γ δ θ    (17) 

respectively. Similar block-wise minorized can be made for FM-AR model. 
 Block-wise Maximization-step. Upon finding the appropriate set of block-wise 

minorizers of ( )n θ , we can maximize (14) to compute the ( )1r + th iterate 
block-wise update of π . Solving for the appropriate root of the FOC 
(first-order condition) for the Lagrangian, we can compute the ( )1r + th ite-
rate block-wise update 

( )
( )

1 1
* ,
n r

ktr t
k

kz
τ

π
ζ

+ ==
+

∑                        (18) 

for each k, where ( ) 2
1 1 1 1

1;
2

d p d p
k n kij ni ni kiji j i jz p β λ υ β

= = = =
= +∑ ∑ ∑ ∑ , and *ζ  is 

the unique root of 

( )
1

*
1

1 0,
n rK

ktt

k kz
τ

ζ
=

=

− =
+

∑∑                        (19) 

in the interval ( )*,z ∞ , and { }*
1, ,mink K kz z== −


. 

The block-wise updates for α , 0γ , γ , δ , and β  can be obtained by 
solving (15)-(17) via the first-order condition equal to 0. 
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We now present a example of the Gaussian FM-GARCH model to specify the 
procedure described above, and give the following Lemma 1 about a useful mi-
norizer for the MPL estimation of the Gaussian FM-GARCH model, which can 
be found in [11]. 

Lemma 1 if ( )0,Θ = ∞ , then the function 11 q
i ii cθ

=∑  satisfy that 

( )
2

2
11 1

1 .
q

i i
q qii ii i i ii

c
c c

ϕ
θ ϕ θ== =

≤ ∑
∑ ∑

                     (20) 

Example 1 We consider the Gaussian FM-GARCH Model, 

( ) ( )( )2

1
; , ; , ,

K

t t k t k t kt
k

f y N yπ η σ
=

= ∑x xθ                 (21) 

where ( ) ( )k t k thη α= +x x  β , and 2 2 2
0 , ,1 1

M S
kt k km k t m ks k t sm sσ γ γ ε δ σ− −= =
= + +∑ ∑ . 

Here, kt kt kteε σ= , and kte  is an independent and identically distributed series 
with mean zero and variance unity. 

According to [8], and using Lemma 1, we can obtain the further minorizer of 
Gaussian FM-GARCH by 

( )( ) ( ) ( )

( )
( )( ) ( )( )

( )( )

2
2

1 1 1 1

2
T

2
1 1 1

2

1G ; log log
2

1
2

,

K n K n
r r r

kt k kt kt
k t k t

rpdK n
r rt

t k tj kj kj t k
k j t kt

r

y pdx
pd

C

τ π τ σ

τ α β β
σ

= = = =

= = =

= −

− − − − −

+

∑∑ ∑∑

∑∑∑ x







θ θ

β

θ

  (22) 

where ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2T T
1; , ; ,Kr r r r r r r r

kt k t k t k kt k t k t k ktkN y N yτ π α σ π α σ
=

= + +∑x x 

 β β ,  

and 

( )( ) ( ) ( ) ( )
2

1 1
log 2 log .

2

K n
r r r

kt kt
k t

nC τ τ
= =

= − π −∑∑θ  

The block-wise updates of π  from Gaussian FM-GARCH Model come from 
(18), and the block-wise updates for α , γ , and δ , can be obtained from 
(15)-(16) via the first-order condition equal to 0. By doing so, we obtain the 
coordinate-wise updates for α , 0γ  block 

( )
( ) ( )( ) ( )

( ) ( )

2T
11

2
1

,
n r r r

kt t t k kttr
k n r r

kt ktt

yτ σ
α

τ σ
=+

=

−
=
∑

∑
x 

 β
                  (23) 

( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

2 22 1 2T
011

0 2
01

,
n r r r r r

kt k t k t k kttr
k n r r r

kt k ktt

yτ γ α σ
γ

τ γ σ

+
=+

=

− −
=
∑

∑
x 

 β
          (24) 

for each k. Moreover, the coordinate-wise updates for the γ  and δ  block 

( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

2 22 1 22 T
,11

22
,1

,
n r r r r r

kt km k t m t k t k kttr
km n r r r

kt km k t m ktt

yτ γ ε α σ
γ

τ γ ε σ

+
−=+

−=

− −
=
∑

∑
x 

 β
        (25) 

( )
( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

2 22 2 1 2T
,11

2 2
,1

,
n r r r r r r

kt ks k t s t k t k kttr
ks n r r r r

kt ks k t s ktt

yτ δ σ α σ
δ

τ δ σ σ

+
−=+

−=

− −
=
∑

∑
x 

 β
        (26) 
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for each k, m, and s. Finally, making the substitute (22) into (17), the coordi-
nate-wise updates for the β  block 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

2 22 T
1 11

22
1 1

,
G , ;

n nr r r r r r r
kj kt tj kt kt tj t k t k ktt tr

kj nr r r r
kj kt tj ktt

pd x x y

pd x

β τ σ τ α σ
β

β τ σ
= =+

=

+ − −
=

′ +

∑ ∑
∑

x 

 β

π β θ
  (27) 

for each k and 1, ,j pd=  , where ( ) ( )( )1G , ;r r′ π β θ  is the first derivative of (11) 
with respect to β . 

Note that (15)-(17) from Gaussian FM-GARCH Model are concave in the al-
ternative parameterization π , α , 0γ , γ , δ , and β , thus (23)-(27) globally 
maximize (15)-(17) over the parameter space. 

4.2. Selection of Thresholding Parameters and Components 

To implement the methods described in Sections 3 and 4.1, we need to select the 
size of the tuning parameters nkλ  and nkυ , the constant nka  and nkb , for 

1, ,k K=  , and components K. The current theory provides some guidance on 
the order of λ  in [3] and [8] by using generalized cross validation (GCV) and 
Bayesian Information Criterion (BIC), to ensure the sparsity property. Following 
the example of [8], we develop a suitable BIC criterion for the FM-AR and 
FM-GARCH models. Let ( ), , , ,K= a bλ υΨ , and they are chosen one at a time 
by minimizing 

( ) ( )2 1 log ,nBIC p q nΨ = − + + −  θ                (28) 

where p  is the dimensionality of β  (i.e. the total number of non-zero regres-
sion coefficients in these model), and q  equal to 3K (FM-AR models) or 5K 
(for FM-GARCH models). 

The Block-wise MM algorithm is iterated until some convergence criterion is 
met. In this article, we choose to use the absolute convergence criterion, where 
TOL > 0 is a small tolerance constant from [8]. Based on the discussion above, 
we summarise our algorithm in 1. 

5. Simulated Data Analysis 

In this section, we evaluate the performance of the proposed method and algo-
rithm via simulations. We consider the Gaussian FM-AR models and Gaussian 
FM-GARCH models. Following [2] and [8], we used the correctly estimated zero 
coefficients (S1), correctly estimated non-zero coefficients (S2) and the mean es-
timate over all falsely identified non-zero predictors ( NZM ). The selection of 
thresholding parameters and components are solving by using Simulated An-
nealing (SA) algorithm. All simulations were evaluated with varying values of 
dimension p with 100 repetitions done for each. 

5.1. Simulated Data Analysis of Gaussian FM-AR 

The first simulations are based on the Gaussian FM-AR (2) model. Assuming 
that K is known, the model for the simulation was a 2K =  and 2d =  model 
of 

https://doi.org/10.4236/apm.2020.103007


J. Liu, W. Z. Ye 
 

 

DOI: 10.4236/apm.2020.103007 108 Advances in Pure Mathematics 
 

( ) ( ) ( )T T 2 T T 2
1 11 1 12 1 2 21 1 22 2, 1 , ,t t t tN Nπ α σ π α σ− −+ + + − + +x x x xβ β β β    (29) 

 

 
 
where 300n = , 10,20,100p = , 0.3π = , 1 1α = , 2 5α = , 1 1σ = , and 2 1σ = . 
Columns of x  are drawn from a multivariate normal, with mean 0, variance 1, 
and two correlation structures: ( ), 0.5 i j

ij i jcor x xρ −= = . The regression coeffi-
cients are 

( ) ( )T T
11 121,0,0,3,0, ,0 , 3,0, 1,0,2, ,0 ;= = − − β β  

( ) ( )T T
21 221,2,0,0,3, ,0 , 0,0,3,0, 2, ,0 .= − = − β β  

Table 1 reports the results. We can see that when the dimension p = 100, the 
S2 in com1 of 1tX −  from MIXSCAD-ML2 is 100, however, the S2 in com1 of 

1tX −  from MIXLASSO-ML2 (S2 = 70.7) and MIXMCP-ML2 (S2 = 51.3) model 
are small, which indicates that MIXSCAD-ML2 ensures that non-zero coeffi-
cients can be correctly identified and some non-zero coefficients in the 
MIXLASSO-ML2 and MIXMCP-ML2 model are not estimated. The mean esti-
mate over all falsely identified non-zero predictors ( NZM ) of β  from 
MIXSCAD-ML2 are between 0.001 and 0.01. 

5.2. Simulated Data Analysis of Gaussian FM-GARCH 

The second simulations are based on the Gaussian FM-GARCH(2,1,1) model. 
Also assuming that K is known, the model for the simulation was a 2K = , 

2d = , 1M =  and 1S =  model of 

( ) ( ) ( )T T 2 T T 2
1 11 1 12 1, 2 21 1 22 2,, 1 , ,t t t t t tN Nπ α σ π α σ− −+ + + − + +x x x xβ β β β    (30) 

2 2 2
0 1 , 1 1 , 1,kt k k k t k k tσ γ γ δ σ− −= + +                    (31) 

for 1,2k = , where 300n = , 10,20p = , 0.3π = , 1 2α =  and 2 5α = ,  

01 1γ =  and 02 1γ = , 11 0.5γ =  and 21 0.2γ = , 11 0.4δ =  and 21 0.6δ = . 

kt kt kteσ= , kte  is an independent and identically distributed series with mean 
zero and variance unity. Columns of x  are drawn from a multivariate normal, 
with mean 0, variance 1, and two correlation structures:  

( ), 0.5 i j
ij i jcor x xρ −= = . The regression coefficients are 
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Table 1. Summary of MIXLASSO-ML2, MIXMCP-ML2 and MIXSCAD-ML2-penalized FM-AR (2) model with BIC method form 
the simulated scenario. Average correctly estimated zero coefficients (specificity; S1), average correctly estimated non-zero coeffi-
cients (sensitivity; S1), and the mean β  estimate over all incorrectly estimated non-zero coefficients (MNZ) are also reported. 

Method 
K d p∗ ∗  Com tX  1tX −  

  ( )1 %S  ( )2 %S  NZM  ( )1 %S  ( )2 %S  NZM  

MIXSCAD-ML2 2*2*10 com1 86.0 99.5 0.097 90.0 99.7 −0.012 

 2*2*20  91.2 99.5 0.067 91.6 99.7 −0.003 

 2*2*100  81.7 100.0 0.016 82.6 100.0 0.009 

  com2 94.3 99.3 0.020 95.5 100.0 −0.093 

   94.2 99.3 0.013 96.1 100.0 −0.018 

   90.7 100.0 -0.015 90.5 100.0 0.008 

MIXMCP-ML2 2*2*10 com1 80.1 100.0 0.040 87.6 100.0 0.005 

 2*2*20  91.9 100.0 0.100 92.8 100.0 0.027 

 2*2*100  98.1 81.0 0.304 98.1 51.3 0.205 

  com2 93.0 100.0 0.041 96.5 100.0 −0.015 

   96.8 100.0 0.055 98.4 100.0 0.084 

   97.4 100.0 0.076 97.2 100.0 0.037 

MIXLASSO-ML2 2*2*10 com1 76.1 100.0 0.089 76.3 99.7 −0.019 

 2*2*20  81.6 100.0 0.066 81.4 100.0 −0.011 

 2*2*100  80.5 76.0 0.053 81.1 70.7 0.041 

  com2 85.1 100.0 0.015 88.3 100.0 −0.001 

   91.2 87.3 0.001 90.8 100.0 −0.015 

   79.1 99.3 0.048 87.1 100.0 −0.039 

 

( ) ( )T T
11 121.5,0,2.5,0,0, ,0 , 3.5,0, 1,0,2, ,0 ;= = − − β β  

( ) ( )T T
21 221,2,0,0,3, ,0 , 0,0,3,0, 2, ,0 .= − = − β β  

From Table 2, we can see that in all simulations, the value of S1 in com1 and 
com2 of tX  and 1tX −  from MIXSCAD-ML2 are the biggest, which indicates 
that MIXSCAD-ML2 perform better than MIXLASSO-ML2 and MIXMCP-ML2 
in correctly estimated zero coefficients. The mean estimate over all falsely identi-
fied non-zero predictors ( NZM ) of β  from MIXSCAD-ML2 is smaller than 
which from MIXLASSO-ML2 and MIXMCP-ML2. 

6. Real Data Analysis 

In this section, we evaluate the performance of the proposed method and algo-
rithm via the analysis of the behavior of urban vehicular traffic of the city of São 
Paulo. This data set were collected notable occurrences of traffic in the metro-
politan region of São Paulo in the period from 14 to 18 December 2009. This was 
acquired from the website http://archive.ics.uci.edu/ml/datasets.php. Registered 
from 7:00 to 20:00 every 30 minutes. It contains 135 observations and 18 
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Table 2. Summary of MIXLASSO-ML2, MIXMCP-ML2 and MIXSCAD-ML2-penalized FM-GARCH(1, 1) model with BIC method 
form the simulated scenario. Average correctly estimated zero coefficients (specificity; S1), average correctly estimated non-zero 
coefficients (sensitivity; S1), and the mean β  estimate over all incorrectly estimated non-zero coefficients (MNZ) are also re-
ported. 

Method 
K d p∗ ∗  Com tX  1tX −  

  ( )1 %S  ( )2 %S  NZM  ( )1 %S  ( )2 %S  NZM  

MIXSCAD-ML2 2*2*10 com1 88.8 89.5 0.408 92.4 84.0 −0.048 

 2*2*20  89.9 84.5 0.432 91.5 79.0 0.168 

  com2 94.9 96.3 0.051 97.0 98.0 −0.139 

   96.3 92.0 0.076 95.7 95.0 0.008 

MIXMCP-ML2 2*2*10 com1 80.8 94.0 0.417 87.4 81.3 0.115 

 2*2*20  85.8 78.5 0.540 87.3 68.0 0.031 

  com2 89.4 95.7 0.158 94.0 99.0 0.138 

   93.4 91.0 0.269 95.6 95.5 0.118 

MIXLASSO-ML2 2*2*10 com1 73.9 84.5 0.426 79.9 76.0 −0.015 

 2*2*20  81.3 66.5 0.579 83.5 56.7 −0.117 

  com2 76.7 96.0 0.080 83.6 99.5 0.018 

   88.2 75.0 0.111 93.4 90.5 −0.126 

 
variables as well as one response variable. Covariate acronyms are hour (HO), 
immobilized bus (IB), broken truck (BT), vehicle excess (VE), accident victim 
(AV), running over (RO), fire vehicles (FV), occurrence involving freight (OIF), 
incident involving dangerous freight (IIDF), lack of electricity (LOE), fire (FI), 
point of flooding (POF), manifestations (MA), defect in the network of trolley-
buses (DNT), tree on the road (TRR), semaphore off (SO), intermittent Sema-
phore (IS) and the response is slowness in traffic percent. Consider the effect of 
date on the behavior of traffic, we add a new variable that is day (DA). Figure 1 
shows the heterogeneity of the data set, and the FM-AR or FM-GARCH model is 
applicable. 

The levels of the covariates attributes from FMR, FM-AR (2) and FM-GARCH 
(2,1,1) with 2K =  models are given in Table 3. From Table 4, we can see that 
the MIXSCAD-ML2 penalized FM-GARCH (2,1,1) with 2K =  model had the 
lowest BIC (622.9) across all analyses, the FM-AR (2) with 2K =  model being 
ranked second ( BIC 677.3= ), which is lower than the BIC (682.3) of FMR 
model. The predicted slowness in traffic percent from the FM-GARCH 2K =  
model had a MSE of 1.93 and a regression 2R  of 0.90. The predicted slowness 
in traffic percent from the FM-AR (2) 2K =  model had a MSE of 2.09 and a 
regression 2R  of 0.89. The predicted slowness in traffic percent from the FMR 

2K =  model had a MSE of 2.41 and a regression 2R  of 0.87. These results 
suggest that the FM-GARCH (2,1,1) model had the smallest MSE and explained 
the largest proportion of variance for the slowness in traffic percent data. The 
results of the predicted response from these models are presented in Figure 2. 
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Figure 1. Density of slowness in traffic percent in the metropolitan region of São Paulo in 
the period from 14 to 18 December 2009. 

 
Table 3. Summary of FMR, FM-AR and FM-GARCH model with BIC method and 
MIXLASSO-ML2 penality. 

Covariates 

FMR FM-AR FM-GARCH 

com1 com2 com1 com2 com1 com2 

  tx  1t−x  tx  1t−x  tx  1t−x  tx  1t−x  

Intercept 7.32 −2.31 7.56 - −1.89 - 1.39 - 6.24 - 

π  0.37 0.63 0.34 - 0.66 - 0.47 - 0.53 - 

DA - 1.47 - - - 1.54 - - 0.99 - 

HO 0.13 0.52 0.11 0.36 - 0.13 0.29 0.39 - −0.03 

IB - - - - - - - - - - 

BT - - - - - - - - - - 

VE - - - - - - - - - - 

AV - - - - - - - - - - 

RO - - - - - - - - - - 

FV - - - - - - - - - - 

OIF - - - - - - - - - - 

IIDF - - - - - - - - - - 

LOE - 1.75 - - - 1.88 - - - 1.80 

FI - - - - - - - - - - 

POF - 0.61 - 1.25 - - - 1.41 - - 

MA - - - - - - - - - - 

DNT - - - −0.91 - - - −0.71 - - 

TRR - - - - - - - - - - 

SO - - - - - - - - - - 

IS - - - - - - - - - - 
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Table 4. Summary of the values of BIC, MSE, and adjusted regression (predicted 
response on observed response) 2R  from FMR, FM-AR (2) and FM-GARCH (2,1,1) 
models. 

model K BIC MSE 2R  

FM-GARCH (2,1,1) 2 622.90 1.93 0.90 

FM-AR (2) 2 677.32 2.09 0.8 

FMR 2 682.36 2.41 0.87 

 

 
Figure 2. Summary of predicted and observed slowness in traffic percent in the metro-
politan region of São Paulo in the period from 14 to 18 December 2009. 

7. Discussion 

In this article, we disccused that the modeling of response variable which is 
time series and with a finite mixture distribution depends on covariates, and 
the variable selection problem of them. We propose the FM-AR models and 
FM-GARCH models for modeling data that arise from a heterogeneous pop-
ulation which is time series, and propose a new regularization method 
(MIXLASSO-ML2, MIXMCP-ML2, MIXSCAD-ML2) for the variable selection in 
these model, which composed of the mixture of the 1l  penalty and 2l  penalty 
proportional to mixing proportions. In addition, we estimate the maximum log 
quasi-likelihood estimate for the new penalized FM-AR and FM-GARCH model, 
and derive a general expression for the block-wise minimized maximization 
(MM) algorithm with better features. The simulation results of Gaussian FM-AR 
and Gaussian FM-GARCH models and an actual data set illustrate the capability 
of the methodology and algorithm, and MIXSCAD-ML2 is always superior to 
other penalty methods. 
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