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Abstract 
The presence of heteroskedasticity in a considered regression model may bias 
the standard deviations of parameters obtained by the Ordinary Least Square 
(OLS) method. In this case, several hypothesis tests on the model under con-
sideration may be biased, for example, CHOW’s coefficient stability test (or 
structural change test), Student’s t-test and Fisher’s F-test. Most of the hete-
roscedasticity tests in the literature are based on the comparison of variances. 
Despite the multiplication of equality tests of coefficients of variation (CVs) 
that have appeared in the literature, to our knowledge, the first and only use 
of the coefficient of variation in the detection of heteroskedasticity was of-
fered by Li and Yao in 2017. Thus, this paper offers an approach to determine 
the existence of heteroskedasticity by a test of equality of coefficients of varia-
tion. We verify by a Monte Carlo robustness and performance test that our 
method seems even better than some tests in the literature. The results of this 
study contribute to the exploitation of the statistical measurement of CV dis-
persion. They help technicians economists to better verify their hypotheses 
before making a scientific decision when making a necessary forecast, in or-
der to contribute effectively to the economic and sustainable development of 
a company or enterprise. 
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1. Introduction 

Gauss-Markov’s theorem states that the least squares estimator is called BLUE, 
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because it is the Best linear Unbiased Estimator, in the sense that it provides the 
lowest variances for estimators ([1], p. 53). However, the presence of heteroske-
dasticity in a considered regression model may bias the standard deviations of 
parameters obtained by the Ordinary Least Square (OLS) method ([2], p. 31). In 
this case, several hypothesis tests on the model under consideration may be bi-
ased, for example, CHOW’s coefficient stability test (or structural change test) 
([3], p. 25), Student’s t-test and Fisher’s F-test. Heterosedasticity tests are already 
available in the literature. Examples include the Levene test, the Gold-
feld-Quandt test, the White test, the Gleisjer test and the Breush test. Most of 
these tests are based on the comparison of variances. 

Today, tests of comparison of Coefficients of Variation (CVs) have appeared 
in the literature. Examples include the Curto test [4], the application of the 
Rényi divergence proposed by Pardo (1999) [5], the test based on a numerical 
approach by Gokpinar (2015) [6], the Forkman test [7], McKay and Miller’s sta-
tistics [8]. 

To our knowledge, the first use of the coefficient of variation in the detection 
of heteroskedasticity was offered by Li and Yao (2017) [9]. Thus, the question is: 
“is it possible to find an application of these CV equality tests to detect the exis-
tence of heteroskedasticity?” 

The rest of this article is organized as follows: Section 2 will discuss the posi-
tion of our problem; Section 3 will present a state of the art on heteroskedasticity 
test; Section 4 will propose an approach to using a CV equality test when detect-
ing heteroskedasticity; and finally, a conclusion is given at the end. 

2. Position of Problem 

We have a simple linear regression model 

0 1 , 1,t t ty a a x t n= + + =                    (1) 

such that the t  are the errors made when applying the model. We want to 
check if the variance of the errors is constant for t ranging from 1 to n. That is, 
we want to test if the model is homoscedastic or heteroscedastic. Figure 1 shows 
an example of homoscedastic model, and Figures 2-4 show three examples of  
 

 
Figure 1. Homoskedastic model ( 2 constantσ = ). 
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Figure 2. Heteroscedastic model ( 2σ   increases with the exogenous variable). 

 

 
Figure 3. Heteroscedastic model ( 2σ   decreases with the exogenous variable). 

 

 
Figure 4. Heteroscedastic model ( 2σ   represents a concave look). 

 
heteroscedastic model. We note that these four models all have the same regres-
sion line equation: 2y x= + . 

3. State of the Art on the Homoskedasticity Test 

We consider the general linear regression model Y Xa= +  . The various tests, 
which we will mention below, consist in testing the following hypothesis:  

( )

1 2

0

1 1 2

 nul hypothesis : , 1, constant ;

alternative hypothesis : there are and , such as .
t

t t

H t n

H t t

σ σ

σ σ

 = =


≠

  
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3.1. Breusch-Pagan Test 

The Breusch-Pagan Test assumes that the squares of the errors 2
i  are related to 

the dependent variable Y. According to Leblond (2003) ([2], p. 31), the Breusch-Pagan 
test is done in four steps: 

1) Recover the residues t  of the regression;  
2) Generate the residue square ( 2

i );  
3) Regress the residue square on the variables dependent on the original re-

gression ( 2
0 1ˆ ˆt ta a y= + , where 0â  and 1â  to be determined);  

4) Test if the coefficients are jointly significant (Perform the F-test): 

( ) ( )

2

21 1
R kF

R n k
=

− − −
                     (2) 

where k is the number of explanatory variables ix , n is the sample size and 2R  
is the coefficient of determination of 2  and Y.  

Decision-making: We accept the null hypothesis 0H  at the confidence level 
( )1 100%α− × , if ; 1k n kF Fα

− −< , where ; 1k n kFα
− −  is the critical value of 

F-distribution at risk α , at k and 1n k− −  degrees of freedom.  

3.2. Goldfeld-Quandt Test 

The Goldfeld-Quandt test assumes that there is an explanatory variable iX  that 
influences the variance of errors, such as ( ) ( )2 2| i iE X h Xσ= + , where h is an 
increasing function ([10], p. 103). The test is summarized as follows:  

1) Sort the observation values according to the increasing or decreasing values 
of the explanatory variable iX  suspected of being the source of heteroskedasticity. 

2) Divide the observations into two groups: 

2

2

1

11

2 2
1 2, ,

n

n

n n
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y y

Y Y

y y

+

+

  
  
  = =   
        




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  
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

 

where 1 3n n=  and 2 2 3n n= . 
3) Calculate the error variance estimators for each sub-sample: 

( ) ( ) ( ) ( ) ( )12 2
1 1 1 1 1 1 11

ˆ ˆ ˆ 1 1n
iiY X a Y X a n k e n kσ

=
 ′= − × − − − = − −   ∑     (3) 

( ) ( ) ( )

( ) ( )
2

2
2 2 2 2 2 2

2
21

ˆ ˆ ˆ 1

1n
ii n

Y X a Y X a n n k

e n n k

σ

= +

 ′= − × − − − −  

= − − −∑
          (4) 

where â  is the estimator of the parameter a by the least squares method, 
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( )0 1 1 1ˆ ˆ ˆi i i ike y a a x a x= − + + +  and k is the number of explanatory variables of 
the model. 

4) Calculate the Goldfeld-Quandt statistic:  
2
1
2
2

ˆ
ˆ

GQ σ
σ

=                            (5) 

The GQ  statistic follows the F-distribution at 1 1n k− −  and 2 1n n k− − −  
degrees of freedom, noted as 

1 21; 1n k n n kF − − − − − . 
Decision-making: The null hypothesis 0H  is rejected at confidence level 

( )1 100%α− × , if 
1 21; 1;n k n n kGQ F α− − − − −> . 

3.3. Gleisjer’s Test 

The Gleisjer test can detect both heteroskedasticity and the form that this he-
teroskedasticity takes ([1], p. 150). The Gleisjer test assumes that there is a re-
lationship between the error   of the model and the variable iX  assumed to 
be the cause of heteroskedasticity. The steps of the test are summarized as fol-
lows: 

Step 1: Determination of the residues generated by the suspected variable 

iX .  
1) Regress Y to X. This gives the simple regression model  

, 1,k ki kY aX b k n= + + = .  
2) Calculate the estimators of a and b using the Ordinary Least Squares me-

thod: â  and b̂ .  
3) Estimate the model’s residues kε  by its estimators:  

( )ˆˆ , 1,k k kie Y aX b k n= − + = . 
Thus, the vector of residues ke  is known.  
Step 2: Proposal of possible forms of existing heteroskedasticity.  
Gleisjer suggests testing different forms of possible relationships between e  

and iX , for example:  
1) Type 1: 

0 1 , 1, ,k ki ke a a X v k n= + + =                    (6) 

where kv  is the residue of this model. This relationship generates the type of 
heteroskedasticity 2 2 2ˆ

ke kic Xσ = , where c is a non-zero real constant. Thus, the 
variance of errors is a function of the squares of the suspected explanatory varia-
ble iX . 

2) Type 2: 

0 1 , 1, .k ki ie a a X v k n= + + =                   (7) 

This relationship generates the type of heteroskedasticity 2 2ˆ
ke kic Xσ = . In this 

case, the variance of the errors is proportional to the values of the suspected ex-
planatory variable iX  

3) Type 3:  

0 1
1 , 1, .k i

ki

e a a v k n
X

= + + =                    (8) 
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This relationship leads to heteroskedasticity of type 
2

2
2

ˆ
ke

ki

c
X

σ = . 

Step 3: Detection of heteroskedasticity 
Significance test of the regression coefficient 1a : 

1

1*

ˆ

ˆ
,

ˆa

a
t

σ
=                             (9) 

with 

( ) ( )( )1

2

ˆ 2

1

ˆˆ v
a n

ki ik h X h X

σσ
=

=
−∑

 

and 

( )( ) 22
0 11

1ˆ ˆ ˆ
2

n
v k kik e a a h X

n
σ

=
 = − + − ∑ , 

where 

( )
, for a type 1 relation ship;

, for a type 2 relation ship;
1 , for a type 3 relation ship.

x

h x x

x





= 




 

*t  follows the t-distribution at 2n −  degrees of freedom.  
Decision-making: The null hypothesis 0H  is rejected at confidence level 

( )1 100%α− × , if there is a *t , such that *
2;nt t α−> . 

If the existence of heteroskedasticity is validated, then the relationship with 
the highest *t  represents the form of existing heteroskedasticity. 

3.4. White’s Test 

White’s test consists in testing the existence of a relationship between the square 
of the residue and one or more explanatory variables or its squares. The test 
procedures can be summarized as follows: 

Step 1: Determination of model’s residues.  
1) When the parameters of the model Y Xa= +   are estimated, then we 

have the estimation of the residues: ˆe Y Xa= − .  
2) Step 2: Regression of 2e  to 2

1 1, , , kx x x  and 2
kx  and validation. 

3) We consider the model:  
2 2 2 2

1 1 1 1 2 2 2 2 2 0 , 1, ,i i i i i k ik ik ie a x b x a x b x a x b x a v i n= + + + + + + + + =     (10) 

what can be written in matrix form: E Wu v= + , where 

0
2

1 11
2

1 22

2

, ,

n nn

n

a
a ve
b ve

E u v

a ve
b

 
            = = =                 
 

 


 and 

2 2
11 12 1 1

2 2
21 22 2 2

2 2
1 1

1
1

1

k k

k k

n n nk nk

x x x x
x x x x

W

x x x x

 
 
 =  
  
 





     


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4) The estimator of u is: ( ) 1û W W W E−′ ′= ⋅ ⋅ ⋅  

5) Calculate the variance of the errors: 
2

2 1
ˆ

ˆ
1

n
ii v

n k
σ ==

− −
∑

 , with ˆ ˆv E Wu= − . 

6) Calculate the variance-covariance matrix of parameters ia  and ib : 
( ) 12ˆ ˆu W Wσ −′Ω = ⋅ . 

In this case, the variance of i-th element of the vector u is: ˆˆ
iuσ  = i-th element 

of the diagonal of ˆ
uΩ . 

7) Significance test of parameters 1 1, , , ,k ka b a b : We calculate: *

ˆ

ˆ
ˆi

i

i
a

a

a
t

σ
=  and 

*

ˆ

ˆ

ˆi

i

i
b

b

b
t

σ
= , 1,i k= . 

The statistics *
iat  and *

ibt  follow the t-distribution at 1n k− −  degrees of 
freedom. 

Decision-making: The null hypothesis 0H  is rejected at the confidence level 
( )1 100%α− × , if there is a *

iut , such that *
1;iu n kt t α− −> . That means, the null 

hypothesis 0H  is rejected if there is a parameter iu  significantly different 
from 0.  

3.5. ANOVA Methods 

In order to determine the existence of heteroskedasticity, researchers proposed 
the method of analysis of variances, commonly said ANOVA. According to the 
application example presented in ([1], p. 147-148), the application of ANOVA 
consists in dividing the observations into several classes of values. Following the 
example of this same example by R. Bourbonnais, we propose the following steps: 

1) Order the observations according to the increasing values of the explanato-
ry variable iX  suspected to be the source of heteroskedasticity. 

2) Group the value of the variable iX  into z classes of values. To determine z, 
one of the following expressions can be used in ([11], p. 33): 

a) ( )z Int n= , where n is the total number of observations, and ( ).Int  is 
the integer part function;  

b) Sturge’s formula: ( )( )101 3.3logz Int n= + ;  
c) Yule’s formula: ( )42.5z Int n= .  
3) Group the values of the variable to be explained Y according to their cor-

responding classes ( iy  in the class corresponding to ix ). Thus, we obtain z 
samples of Y. 

4) Apply the ANOVA test to the z samples of Y, then draw a conclusion.  
In the following subsections, we will present some ANOVA tests that can be 

done in step 4. 

3.5.1. Bartlett’s Test 
Bartlett’s statistic1 is defined as follows:  

QB
L

=                           (11) 

 

 

1Maurice Stevenson Bartlett (June 18, 1910-January 8, 2002). 
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where 

( ) ( ) ( )2 2
1

1ln 1 lnz zi
i i ii i

nQ n z s n s
n z =

− = − − − − 
∑ ∑ , 

( ) 1

1 1 11
3 1 1

z
i

i

L
z n n z=

 
= + − − − − 

∑ , 

1
z

iin n
=

= ∑  and in  is the number of observations belonging to the i-th class, 

1,i z=  ([12], p. 273). 
Remark: Bartlett’s statistic B follows the chi-square distribution with 1z −  

degrees of freedom, noted as 2
1zχ − , if the residues i  are independent and fol-

low the standard normal distribution ( )0,1 . 
Decision-making: The homoskedasticity hypothesis 0H  is rejected at con-

fidence level ( )1 100%α− × , if 2
1;1zQ αχ − −≥ . 

3.5.2. Levene’s Test 
The Howard Levene’s statistic proposed in 1960 ([13], p. 4) is defined as follows: 

( )

( )

2
. ..

1

2
.

1 1

1 i

z

i
i
nz

i ij i
i j

d d
n zF
z n d d

=

= =

−
−

= ×
− −

∑

∑∑
                (12) 

where, 
 z is the number of groups or value categories obtained,  
 in  is the number of observations belonging to the i-th class, and  

1
z

iin n
=

= ∑ ,  

 .ij ij id y y= − ,  

 . 1

1 in
i ijj

i

d d
n =

= ∑  (average of ijd  in the i class),  

 .. 1 1

1 iz n
iji jd d

n = =
= ∑ ∑  (average of all ijd ).  

Remark: Levene’s F statistic follows the F-distribution with 1z −  and n z−  
degrees of freedom, noted 1;z n zF − − . Bartlett’s test is not robust if the normality 
assumption of iepsilon  is not verified. However, the Levene test is stable even 
in the absence of this hypothesis. 

Decision making: The null hypothesis 0H  is rejected at the confidence level 
( )1 100%α− ×  if 1; ;z n zF F α− −> . 

3.5.3. Brown-Forsythe’s Test 
The Brown-Forsythe test is an improvement on the Levene test. To get the 
Brown-Forsythe statistic, just change .ij ij id y y= −  to ij ij id y me= − , where 

ime  is the median of the i-th group of values. Brown-Forsythe’s statistic is more 
robust than Levene’s.  

3.5.4. Hartley’s Test 
We define the Hartley’s statistic ([14], p. 14) by: 

https://doi.org/10.4236/ajcm.2020.101005


J. M. Tovohery et al. 
 

 

DOI: 10.4236/ajcm.2020.101005 81 American Journal of Computational Mathematics 
 

2
max
2
min

sH
s

=                            (13) 

where { }2 2 2
max 1max ; ; zs s s=  , { }2 2 2

min 1min ; ; zs s s=   and 2
is  = variance of the 

Y values of the i-th group, such as 1,2, ,i z=  . 
Remark: The Hartley test cannot be used if the group sizes in  are not equal. 

The critical values of the H statistic are tabulated in the Hartley table. 
Decision making: We reject null hypothesis 0H  0H  at the confidence level 

( )1 100%α− ×  if ( )criticalH H α>  

3.5.5. Cochran’s Test 
The Cochran’s statistic is defined as follows:  

2
max

2
1

z
ii

sC
s

=

=
∑

                         (14) 

Remarks: The Cochran’s test cannot be used if the group sizes in  are not 
equal. The critical values of the C statistic are tabulated in the Cochran’s table. 

Decision making: We reject the null hypothesis 0H  at the confidence level 
( )1 %α−  if ( )criticalC C α> . 

3.6. Zhaoyuan Li and Jianfeng Yao Test 

Zhaoyuan Li and Jianfeng Yao [9] proposed two measures to detect heteroskedasticity 
in a multivariate linear model.  

1) Test based on the likelihood ratio: 

( )

2
1

1 1/
2

1

1 ˆ
ln

ˆ

n
ii

nn
ii

nT
=

=

 
 

=  
  
 

∑

∏




                       (15) 

where ˆˆ Y Xa= −  and ( ) 1â X X X Y−′ ′=  ([9], p. 9). 
( )( )1

1 2

ln 2

2
2

n T
Z

γ− +  =
π

−
 follows the standard normal distribution ( )0,1 , 

and ~ 0.5772γ  is the Euler’s constant ([9], p. 10). 

Decision making: the 0H  assumption is rejected at the confidence level 
( )1 100%α− × , if 1 2Z zα> , where 2zα  is the quantile of ( )0,1  at the risk 
threshold α . For 0.05α = , we have 2 1.96zα = . 

2) Coefficient of variation test: 

( )2

2 2

1

21 ˆn
iinT

=
−

=
∑  


                    (16) 

where 2
1

1 ˆn
iin =

= ∑  . 

( )2
2

2
24

n T
Z

−
=  follows the standard normal distribution ( )0,1  ([9], p. 

11).  
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Decision making: the 0H  assumption is rejected at the confidence level 
( )1 100%α− × , if 2 2Z zα> . 

This last test shows a trend in the use of coefficient of variation in the detec-
tion of heteroskedasticity. 

4. Application of the Equality Test of Coefficients of  
Variation to the Heteroskedasticity Test  

4.1. Our Approach 

In this section, we will show that the test of equality of coefficients of variation 
allows us to detect the existence of heteroskedasticity. The steps of our approach 
can be summarized as follows: 

1) Estimate the parameter a of the regression model of Y to X, noted as â .  
2) Estimate the model’s residues: ˆˆ Y Xa= − .  
3) Calculate the square of residues: 2̂ .  
4) As the Goldfeld-Quandt method, divide the residue squares into two 

groups:  

2

2

1

22
11

2 2
22 2 2

1 2

2 2

ˆ ˆet

n

n

n n

ee
e e

e e

+

+

  
  
  = =   
        





   

where 1 3n n=  and 2 2 3n n= . 
5) Calculate the Johannes Forkman’s statistic ([7], p. 10):  

( )
( )

2 2
1 1 1 1*
2 2
2 2 2 2

1 1

1 1

c c n n
F

c c n n

 + − =
 + − 

                 (17) 

where i i ic s m=  for 1,2i = , 

2
1 1

1

1 in
iim e

n =
= ∑ , 

2

2
2

2

1
1

n
ii nm e

n n =
=

− + ∑ , 

( )1 22
1 11

1

1
1

n
iis e m

n =
= −

− ∑  and ( )
2

22
2 2

2

1
1

n
ii ns e m

n n =
= −

− + ∑ . 

Decision making: if ( )1 2

*
1, 1,n nF F α− −< , then we accept 0H  at the confidence 

level ( )1 100%α− × . ( )1 21, 1,n nF α− −  is the quantile α  of F-distribution with 

1 1n −  and 2 1n −  degrees of freedom.  
We chose Forkman’s statistic because *F  is stable for all 3in ≥ , where 
1,2i =  ([7], p. 11). 

4.2. Monte Carlo Simulation 

Now, we will test the robustness of these measures proposed in the literature and 
the one in which we have proposed.  

4.2.1. Methodology 
Like the Gleisjer method, our simulation consists of generating two variables X 
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and Y of size { }15;30;40;50;80;100n = , such as Y b aX= + +   and  
( )0 1a a h X= + ⋅  (see the Section 3.3). Thus, we consider 3 forms of hete-

roskedasticity: 1) ( )h X X= , 2) ( )h X X=  and 3) ( ) 1h X X=  ([1], p. 
151). 

Moreover, in order to enrich the forms of heteroskedasticity studied, we also 
propose to take the other three forms considered by Li and Yao: 4)  
( ) ( )expi ih X g cX= , 5) ( ) ( )( )2

1 sin 10i ih X g c X= +  and 6)  
( ) ( )21i ih X g cX= + , where ig  is a random variable following the standard 

normal distribution ( )0,1  ([9], p. 15). 
In this simulation, we consider only the simple regression model. We repeat 

100m =  times this test, and we count the number k of times the test rejects the 

0H  hypothesis at the 95% confidence level. Then, the probability p k m=  is 
calculated. 

As p is a random variable, then we repeat these procedures several times (1000 

times), then we calculate ( )1000
1 1000iip p
=

= ∑ . We really put ourselves in the  

case where the error is significantly not negligible (value of 1a  sufficiently dif-
ferent from 0). 

So, if 0.05p > , then the test is considered robust. In addition, the measure 
with the highest p  is the measure considered most sensitive to the type of error 
i considered ( 1,6i = ). 

As we want to test the robustness of the test, then it would be better to check 
whether the test in question detects small variations or not. During the simula-
tions we did, we took 3a = , 2b = , 0 2a =  and 1 1a c= = . We took 1 1a = , 
because it is already different from 0, but judged subjectively low value. 

In Table 1, the probabilities 1p , 2p , 3p , 4p , 5p , 6p , 7p  and 8p  
correspond respectively to the rejection probabilities of the null hypothesis 0H  
of the Breush, Goldfeld-Quandt, Gleisjer, White, Bartlette, Levene, Li and Yao 
tests, and our proposal. 

4.2.2. Simulation Results 
From Table 1, we obtain the classifications in Tables 2-6. 

4.3. Discussion 

First of all, from these simulations, it is indisputable that the Levene test is the 
most robust and sensitive of all the tests considered in this study. 

However, these results show that, among the 06 forms of heteroskedasticity 
proposed, our proposal can detect 04 for 50n < , and 05 for 50n ≥ . 

In general, our proposal fails to detect the only form of heteroskedasticity 
( ) ( )( )2

1 sin 10h X g c X= +  (whether for 50n <  or 50n ≥ .) 
Furthermore, it is the second best test to detect the heteroskedasticity of type 
( ) 1h X X=  for 50n ≥ . 
In addition, our proposal seems better than the Li and Yao test, which is, to 

our knowledge, the first tendency to use the coefficient of variation to detect he-
teroskedasticity. 
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Table 1. Results of monte carlo simulations. 

Formes 15n =  30n =  40n =  50n =  80n =  100n =  

( )h X X=  1 0.5947p =  1 0.79422p =  1 0.86975p =  1 0.91714p =  1 0.97982p =  1 0.99321p =  

 2 0.36198p =  2 0.99374p =  2 0.99953p =  2 0.99996p =  2 1p =  2 1p =  

 3 0.75472p =  3 0.96118p =  3 0.97529p =  3 0.98452p =  3 0.98897p =  3 099228p =  

 4 0.17256p =  4 0.48818p =  4 0.60891p =  4 0.70495p =  4 0.87512p =  4 0.93361p =  

 5 0.17245p =  5 0.54363p =  5 0.88649p =  5 0.99279p =  5 1p =  5 1p =  

 6 0.85861p =  6 0.99987p =  6 1p =  6 1p =  6 1p =  6 1p =  

 7 0p =  7 0.00007p =  7 0p =  7 0.00002p =  7 0.00001p =  7 0p =  

 8 0p =  8 0.03175p =  8 0.05503p =  8 0.09824p =  8 0.30432p =  8 0.54455p =  

( )h X X=  1 0.36751p =  1 0.79705p =  1 0.91274p =  1 0.9628p =  1 0.99788p =  1 0.99972p =  

 2 0.04419p =  2 0.17683p =  2 0.61035p =  2 0.9125p =  2 0.99891p =  2 0.99992p =  

 3 0.40739p =  3 0.84986p =  3 0.94284p =  3 0.97647p =  3 0.998p =  3 0.99821p =  

 4 0.10525p =  4 0.2614p =  4 0.41659p =  4 0.57791p =  4 0.88057p =  4 0.9524p =  

 5 0.01851p =  5 0.01275p =  5 0.01478p =  5 0.01782p =  5 0.00947p =  5 0.01216p =  

 6 0.98207p =  6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  

 7 0p =  7 0p =  7 0p =  7 0p =  7 0p =  7 0p =  

 8 0p =  8 0.21218p =  8 0.41056p =  8 0.63869p =  8 0.91821p =  8 0.97027p =  

( ) 1h X X=  1 0.09467p =  1 0.09515p =  1 0.09298p =  1 0.09494p =  1 0.09031p =  1 0.08729p =  

 2 0.01856p =  2 0.00989p =  2 0.00966p =  2 0.00874p =  2 0.00812p =  2 0.00767p =  

 3 0.10965p =  3 0.14892p =  3 0.16854p =  3 0.18732p =  3 0.21713p =  3 0.22787p =  

 4 0.08128p =  4 0.09837p =  4 0.10196p =  4 0.10286p =  4 0.10383p =  4 0.10399p =  

 5 0.00045p =  5 0p =  5 0p =  5 0p =  5 0p =  5 0p =  

 6 0.99999p =  6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  

 7 0p =  7 0p =  7 0p =  7 0p =  7 0p =  7 0p =  

 8 0p =  8 0.06337p =  8 0.13264p =  8 0.25046p =  8 0.6156p =  8 0.78673p =  

( ) ( )exph X g cX=  1 0.83148p =  1 0.91736p =  1 0.93403p =  1 0.94213p =  1 0.95797p =  1 0.96288p =  

 2 0.98694p =  2 1p =  2 1p =  2 1p =  2 1p =  2 1p =  

 3 0.64155p =  3 0.73515p =  3 0.76323p =  3 0.75063p =  3 0.81769p =  3 0.73387p =  

 4 0.53062p =  4 0.68474p =  4 0.74005p =  4 0.7433p =  4 0.81738p =  4 0.73387p =  

 5 1p =  5 1p =  5 1p =  5 1p =  5 1p =  5 1p =  
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Continued 

 6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  

 7 0p =  7 0.85231p =  7 0.98921p =  7 0.99939p =  7 1p =  7 1p =  

 8 0p =  8 0.01646p =  8 0.02289p =  8 0.05477p =  8 0.98939p =  8 0.99824p =  

( ) ( )( )2
1 sin 10h X g c X= +  1 0.04149p =  1 0.02013p =  1 0.01793p =  1 0.01863p =  1 0.02393p =  1 0.02117p =  

 2 0.12345p =  2 0.24139p =  2 0.26078p =  2 0.27889p =  2 0.27596p =  2 0.29125p =  

 3 0.06083p =  3 0.03334p =  3 0.02658p =  3 0.02517p =  3 0.02429p =  3 0.02068p =  

 4 0.00891p =  4 0.01691p =  4 0.01527p =  4 0.01843p =  4 0.03743p =  4 0.02913p =  

 5 0p =  5 0p =  5 0p =  5 0p =  5 0p =  5 0p =  

 6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  6 1p =  

 7 0p =  7 0.02105p =  7 0.04922p =  7 0.08594p =  7 0.17746p =  7 0.28p =  

 8 0p =  8 0.00058p =  8 0.00057p =  8 0.00023p =  8 0.00002p =  8 0.00001p =  

( ) ( )21h X g cX= +  1 0.28919p =  1 0.39289p =  1 0.41932p =  1 0.44054p =  1 0.47065p =  1 0.48058p =  

 2 0.92111p =  2 0.99998p =  2 1p =  2 1p =  2 1p =  2 1p =  

 3 0.60642p =  3 0.8823p =  3 0.83984p =  3 0.91048p =  3 0.85081p =  3 0.94033p =  

 4 0.11691p =  4 0.23252p =  4 0.30714p =  4 0.40276p =  4 0.5692p =  4 0.72512p =  

 5 0.93684p =  5 0.99999p =  5 1p =  5 1p =  5 1p =  5 1p =  

 6 0.94399p =  6 0.99965p =  6 1p =  6 0.99999p =  6 1p =  6 1p =  

 7 0p =  7 0.01478p =  7 0.04695p =  7 0.08402p =  7 0.21858p =  7 0.31826p =  

 8 0p =  8 0.02982p =  8 0.07841p =  8 0.13746p =  8 0.16981p =  8 0.14072p =  

1p  = Breush, 2p  = Goldfeld-Quandt, 3p  = Gleisjer, 

4p  = White, 5p  = Bartlette, 6p  = Levene, 7p  = Li et Yao et, 8p  = notre proposition. 

 
Table 2. Classification of tests in ascending order according to their wrong acceptance numbers of H0. 

Test Number of times the test incorrectly accepts H0 

lightaqua  

Levene 00 

Goldfeld - Quandt 01 

Gleisjer 01 

Breush 02 

White 02 

Our proposal 03 

Bartlette 06 

Li et Yao 08 
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Table 3. Classification in ascending order of tests according to their sensitivities to the 03 
types of heteroskedasticity proposed by Gleisjeir for 50n < . 

Forms 
for 50n <  

( )h X X=  ( )h X X=  ( ) 1h X X=  

classification in 
ascending order 
of test sensitivity 

(*: the test accepts H0) 

1) Levene 1) Levene 1) Levene 

2) Goldfeld-Quandt 2) Gleisjer 2) Gleisjer 

3) Gleisjer 3) Breush 3) Breush 

4) Breush 4) White 4) White 

5) Bartlette 5) Goldfeld-Quandt 5) Our proposal 

6) White 6) Our proposal 6) Goldfeld-Quandt* 

7) Our proposal 7) Bartlette* 7) Bartlette* 

8) Li and Yao* 8) Li and Yao* 8) Li and Yao* 

 
Table 4. Classification in ascending order of tests according to their sensitivities to the 03 
types of heteroskedasticity proposed by Gleisjeir for 50n ≥ . 

Forms 
For 50n ≥  

( )h X X=  ( )h X X=  ( ) 1h X X=  

classification in 
ascending order 
of test sensitivity 

(*: the test accepts H0) 

1) Levene 1) Levene 1) Levene 

2) Goldfeld-Quandt 2) Gleisjer 2) Our proposal 

3) Bartlette 3) Breush 3) Gleisjer 

4) Gleisjer 4) Goldfeld-Quandt 4) White 

5) Breush 5) Our proposal 5) Breush 

6) White 6) White 6) Goldfeld-Quandt* 

7) Our proposal 7) Bartlette* 7) Bartlette* and 

8) Li and Yao* 8) Li and Yao* 8) Li & Yao* 

 
Table 5. Classification in ascending order of tests according to their sensitivities to the 03 
types of heteroskedasticity considered by Li and Yao for 50n < . 

Forms 
For 50n <  

( ) ( )exph X g cX= ⋅  ( ) ( )( )2
1 sin 10h X g c X= ⋅ +  ( ) ( )21h X g cX= ⋅ +  

Classification 
in ascending 
order of test 
sensitivity 
(*: the test 
accepts H0) 

1) Levene and Bartlette 1) Levene 1) Levene 

2) Goldfeld-Quandt 2) Goldfeld-Quandt 2) Bartlette 

3) Breush 3) Gleisjer 3) Goldfeld-Quandt 

4) Gleisjer 4) Breush* 4) Gleisjer 

5) White 5)Li and Yao* 5) Breush 

6) Li and Yao 6) White* 6) White 

7) Our proposal* 7) Our proposal* 7) Our proposal 

 8) Bartlette* 8) Li and Yao* 
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Table 6. Classification in ascending order of tests according to their sensitivities to the 03 
types of heteroskedasticity considered by Li and Yao for 50n ≥ . 

Forms 
For 50n ≥  

( ) ( )exph X g cX= ⋅  ( ) ( )( )2
1 sin 10h X g c X= ⋅ +  ( ) ( )21h X g cX= ⋅ +  

Classification 
in ascending 
order of test 
sensitivity 
(*: the test 
accepts H0) 

1) Levene, Bartlette 
and Goldfeld-Quandt 

1) Levene 
1) Bartlette, 
Goldfeld-Quandt 
and Levene 

2) Li and Yao 2) Goldfeld-Quandt 2) Gleisjer 

3) Breush 3) Li and Yao 3) White 

4) Gleisjer 4) White* 4) Breush 

5) White 5) Gleisjer* 5) Li and Yao 

6) Our proposal 6) Breush* 6) Our proposal 

 7) Our proposal*  

 8) Bartlette*  

 
Finally, these results contribute to the justification of the weakness of Bar-

tlette’s test. Indeed, we see from these results that this test is less robust than our 
proposal. 

5. Conclusions 

In this paper, we proposed a technique to detect the existence of heteroskedasticity 
by an equality test of the coefficients of variation. Thus, to illustrate our state of 
the art, we first recalled some tests to detect the existence of heteroskedasticity 
existing in the literature, such as the Breusch-Pagan test, the Goldfeld-Quandt 
test, the Gleisjer test, the White test and some heteroskedasticity tests based on 
an analysis of variance (ANOVA): Bartlett’s test, Levene’s test, Brown-Forsythe’s 
test, Hartley’s test and Cochran’s test. 

Next, we also presented the heteroskedasticity test of Zhaoyuan Li and Jian-
feng Yao. To the best of our knowledge, the Zhaoyuan Li and Jianfeng Yao test 
was the first tendency to use coefficients of variation to determine the existence 
of heteroskedasticity. 

Among the equality tests of coefficients of variation available in the literature, 
we have considered Forkman’s test to illustrate our approach, as it is a robust 
and stable test for a sample with size 3n ≥ . The results of our performance tests 
have shown that our approach can detect 5 types of heteroskedasticity among 
the 6 types considered in this paper. 

At the end of this analysis, we affirm that the equality test of coefficients of 
variation allows us to detect the existence of possible heteroskedasticity in a sim-
ple regression model. Thus, our study contributes to the reapplication of several 
equality tests of coefficients of variation that have already appeared in the litera-
ture. 
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