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Abstract 
Understanding watershed runoff processes is critical for planning effective 
soil and water management practices and efficiently utilize available water 
resources. The main objective of this study was to investigate the perfor-
mance of the Soil and Water Assessment Tool (SWAT) to simulate stream-
flow from the Bina basin in the Madhya Pradesh state of India. The SWAT 
model was calibrated and validated on a daily and monthly basis using his-
torical streamflow and weather data from the Bina basin. The Sequential Un-
certainty Fitting (SUFI-2) technique in the SWAT  Calibration and Uncer-
tainty Procedures (SWAT-CUP) program was used to assess model uncer-
tainties. The SWAT model performed “satisfactory” and “very good” in si-
mulating streamflow at daily and monthly time steps, respectively. Model ca-
libration results showed that coefficients of determination (R2) values were 
0.66 and 0.96; while Nash-Sutcliffe (NSE) values were 0.65 and 0.94 for daily 
and monthly simulations, respectively. The R2 values of daily and monthly 
simulations during model validation were 0.65 and 0.72, respectively while 
the respective NSE values were 0.58 and 0.72. This study demonstrated that 
the SWAT model could be effectively used to simulate streamflow in the Bina 
river basin. 
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1. Introduction 

River basins are important hydrological and environmental improvements, and 
if managed properly, they generate steady streamflow from baseflow and runoff. 
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Runoff is the water flow that occurs when soil is saturated and excess water from 
rain, snowmelt, or other sources flows over the land surface and is a major 
component of the hydrologic cycle [1]. As with all characteristics of the water 
cycle, the interaction between precipitation and runoff varies according to time 
and location [2]. Runoff plays a crucial role in the hydrological cycle by dis-
charging excess precipitation to the oceans to control the amount of water flows 
into streams [3]. The water balance equation describes the hydrological cycle by 
accounting for the flow of water into and out of a system for a specific period of 
time [4]. 

The rainfall-runoff model is extensively used in hydrology. Runoff signal 
which leaves the watershed from the rainfall signal received by the basin is de-
termined by the rainfall-runoff model [5]. Rainfall-runoff model mathematically 
represents rainfall-runoff relations of a catchment area, drainage basin or wa-
tershed [6]. This mathematical representation is used for simplification of the 
actual process of runoff in nature. 

The main purpose of hydrological modeling is to quantify the hydrologic re-
sponse of a watershed to climatic parameters, soils, land use, and management 
conditions; this, in turn, plays a significant role in water resources planning, 
flood forecasting, pollution control, and numerous other applications [7]. Sever-
al methods have been developed by different researchers to simulate the rain-
fall-runoff process. 

The Soil and Water Assessment Tool (SWAT) is a watershed scale model de-
veloped by United States Department of Agriculture, Agricultural Research Ser-
vice (USDA-ARS) for predicting the impact of land management practices on 
water, sediment and agricultural chemical yields, runoff, water balance of a large 
basin in a complex watershed with varying soils, land use, and management 
conditions over long period of time [8].  

Similarly, several model calibration techniques exist for model optimization 
and uncertainty analysis such as the sequential uncertainty fitting (SUFI-2) pro-
gram in the SWAT Calibration Uncertainty Procedures (SWAT-CUP). The 
SWAT-CUP is a public domain computer program for the calibration of SWAT 
models. SWAT-CUP contains Generalized Likelihood Uncertainty Estimation 
(GLUE), Parameter Solution (Parasol), and Sequential Uncertainty Fitting 
(SUFI-2) [9]. The SWAT-CUP enables sensitivity analysis, calibration, valida-
tion and uncertainty analysis of the SWAT model. SUFI-2 combines calibration 
and uncertainty analysis to find parameter uncertainties while calculating the 
smallest possible prediction uncertainty range. Hence, these parameters uncer-
tainty reflect all sources of uncertainty [10]. In SUFI-2, the uncertainty of input 
parameters is depicted as a uniform distribution, while model output uncertain-
ty is quantified at the 95% prediction of uncertainty (95PPU). 

SWAT-CUP includes parallel processing, visualization of outlet location using 
Bing Map, the creation of multi-objective function, extraction, and calculation of 
95PPU for all variables into output. rich, output.hru, output.sub files without 
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measurements and one-at-a-time sensitivity analysis [9]. The main objective of 
this study was to investigate the performance of the SWAT model in simulating 
streamflow from the Bina basin in the Madhya Pradesh state of India. 

2. Materials and Methods 
2.1. Description of the Study Area 

This study was conducted in the Bina river basin, which has a total catchment 
area of 2822 km2 (Figure 1). Bina river, the main river in Bina basin, is among 
important tributaries of the Betwa River system (Figure 1) which drains part of 
the Madhya Pradesh and Uttar Pradesh which originates from the Begumganj 
block of Raisen district and enters Sagar district at Rahatgarh block and traverses 
through Kura and Bina tehsil before the confluence with river Betwa near Baso-
da town in Vidisha district [11]. Bina basin falls between 23˚3' to 24˚3'N and 
78˚1' to 78˚6'E. The catchment area is highly undulated and covered by forests, 
barren lands, and localized rain-fed agriculture. The stream density is more in 
the upper catchment as compared to the lower part of the river basin, the later 
mostly gentle sloping to plain topography mostly covered with agricultural 
fields, the streams are dry after the monsoon months (June to September). 

2.2. Input Data 

Input data for SWAT include spatial maps of Digital Elevation Model (DEM), 
soil information, and land use land cover. In addition, daily weather data (preci-
pitation, and minimum and maximum air temperature, relative humidity, aver-
age wind speed, and solar radiation) were used for simulating the streamflow. 
River discharge was also used for model calibration and validation purposes. 

2.2.1. Spatial Data 
1) Land use and land cover and Soil Map 

Landsat 8 ETM+ with a 30 m resolution for Path/Row: 145/043 and 145/044 
 

 
Figure 1. Madhya Pradesh River Basins (source [12]). 
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retrieved on 6 March 2015 was used. The images were retrieved from the USGS’ 
EarthExplorer site (https://earthexplorer.usgs.gov/). Landsat 8 ETM+ satellite 
images with optical bands with the standard false-color combinations were used 
to prepare the land use and land cover map of the basin, for which subsequent 
ground truth verification was carried out through extensive field visits. For the 
land use land cover, supervised classification using maximum likelihood clas-
sifier was applied. Land use and land cover spatial data were reclassified into 
SWAT land cover/crop types. 

Soil toposheets with sheet numbers of 1, 2, 4, and 5 prepared by the Indian 
Council of Agricultural Research-National Bureau of Soil Survey & Land Use 
Planning (ICAR-NBSS & LUP) on a scale of 1:250,000 and printed on a scale of 
1:500,000 were used to prepare soil map of the watershed. The soil map was 
linked with the user soil database. A user lookup table was created that identifies 
the SWAT code for the different categories of soil and land use a land cover on 
the map as per the required format. 

2) Aster Global Digital Elevation Model Version 002 (ASTER GDEM v2) 
The digital elevation model of 30 m spatial resolution was downloaded from 

the EarthExplorer website (https://earthexplorer.usgs.gov/) and used to delineate 
the watershed and to analyze the drainage patterns of the land surface terrain. 

2.2.2. Weather and Hydrological Data 
Daily streamflow, precipitation, air temperature (maximum and minimum), rel-
ative humidity, average wind speed and solar radiation from the Bina basin were 
used for the period 1989-1996. These data were collected from Madhya Pradesh 
State Data Center (MPSDC), Bhopal. The daily weather data and weather gene-
rator location (wgnloc) were prepared into a separate excel sheet and converted 
into .dbf format using Microsoft access before imported into the model setup. 
The model was set up with a two-year warmup period. Model calibration was 
conducted using data from 1991 to 1993 while data from 1994 to 1996 was used 
for validation. 

2.2.3. Model Setup 
All spatial data inputs (DEM, land use the land cover map, and soil map) were 
projected to Universal Transverse Mercator (UTM) 43 North and World Geo-
detic System (WGS) 84 datum and were resampled to a 30-pixel size using Bili-
nearresampling technique in ArcGIS 10.5.1. The Soil and Water Assessment 
Tool (Arc SWAT 2012.10.4.21) interfaced with Arc GIS 10.5.1. The software was 
used to derive catchment characteristics (e.g., watershed boundary, drainage 
area, slope, flow path, etc.) solely based on the spatial data inputs [13]. Wa-
tershed delineation and spatial arrangement of basin elements (e.g. sub-basin, 
reach segments and point sources) were defined [14]. The stream drainage lines 
were created using threshold stream cells of 348,395. The most popular setup 
was the sub-basin configuration, where the basin is divided into sub-basin and 
further sub-divided into hydrologic response units (HRUs) [15]. The minimum  
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threshold area of 5/5/5 [%] for land use/soil class/slope over the sub-basin area 
was used. The land use, soil and slopes percentage areas covering below the 
minimum threshold area were excluded, and then the remaining area was rede-
fined so that 100% of the sub-basin area could be used in the simulation. 

HRUs represent the smallest unit areas within the watershed with similar soil, 
topography, and land-use class [16]. In this study, HRUs definition was done 
based on eight classes of soil and eight classes of land use and land cover catego-
ries, and multiple slope discretization with three slope classes [<15%, 15% - 30% 
and >30%]. 

Land use and land cover map were reclassified into SWAT land cover/plant 
types [17]. Land use and land cover (LULC) of the basin was classified into eight 
classes and the final land use classes were decided to be assigned as, agriculture 
land-generic, barren land, current fallow, forest-deciduous, forest-evergreen, 
sandy area, urban area, and water body (Figure 2). Similarly, the basin’s soil was 
categorized into eight classes (Figure 3). 

The Soil Conservation Service Curve Numbers (SCS-CN) were determined 
based on the USDA National Engineering Handbook [18] [19] [20]. The 
SCS-CN is a function of the soil permeability, land use, and antecedent soil wa-
ter conditions. The SCS-CN method is an approach that is used in rain-
fall-runoff modeling to compute direct runoff. This method assumes an initial 
abstraction (Ia) before ponding, which is related to the SCS-CN. SCS-CN defines 
three antecedent moisture conditions: I—dry (wilting point), II—average mois-
ture and III—wet (field capacity) [21]. The SCS-CN method, in SWAT, relates 
runoff to soil type, land use, and management. The SCS-CN method is based on 
the principle of water balance and two fundamental assumptions [22].  

The first assumption is that the ratio of direct runoff to potential maximum 
runoff is equal to the ratio of infiltration to potential maximum retention. The 
second assumption states that the initial abstraction is proportional to the 
 

 
Figure 2. Land use and land cover map (LULC) of Bina River 
Basin. 
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Figure 3. Soil map of the Bina River Basin [CS is Clay Soil, D is Deep, 
ED is Extremely Drained, LS is Loam Soil, MD is Moderately Deep, 
MWD is Moderately Well Drained, S is Shallow, SD is Shallow Deep, 
VS is Very Shallow and WD is Well Drained]. 

 
potential maximum retention. The water balance equation and the two assump-
tions are expressed mathematically [23]: 

P Ia F Q= + +                                (1) 

Q Ia F S
P
− =                                 (2) 

Ia Sλ=                                     (3) 

where P is the total precipitation (mm), Ia is the initial abstraction before runoff 
(mm), F is the cumulative infiltration after runoff begins (mm), Q is direct ru-
noff (mm), S is the potential maximum retention (mm), and λ is the initial ab-
straction coefficient. The combination of Equations (1) and (2) leads to the pop-
ular form of the original SCS-CN method [24]: 
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where the CN is a dimensionless variable, ranging from 0 to 100 and it depends 
on land use, hydrological soil group, hydrologic conditions, and antecedent 
moisture conditions [25]. This increases accuracy and gives a much better phys-
ical description of the water balance. The hydrologic cycle as simulated by 
SWAT is based on the water balance equation [26]: 

( )day surf a seep gwSWt SWo R Q E W Q= + − − − −               (6) 
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where SWt is soil H2O content (mm) at time t in days, SWo is the initial soil 
H2O content (mm), Rday is amount of rainfall on day i (mm), Qsurf is the amount 
of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i 
(mm), Wseep is the amount of percolation and bypass exiting the soil profile bot-
tom on day i (mm), Qgw is the amount of return flow on day i (mm). 

2.2.4. Model Calibration and Validation 
The SWAT model was run both on a daily and monthly timesteps. A two-year 
model warm-up period (1989 and 1990) was used. Model sensitivity analysis, 
model calibration and validation were done using the SWAT-CUP tool. Eigh-
teen parameters were considered and tested for the model parameterization and 
sensitivity analysis. The model uncertainties have been tested and analyzed using 
the SUFI-2 uncertainty analysis procedure in SWAT-CUP [27] [28]. 

The parameters were related to stream-flow assessment and include viz. 
r_CN2.mgt (curve number), v__ALPHA_BF.gw (base flow alfa factor), 
v__GW_DELAY.gw (groundwater delay time), v__GWQMN.gw (threshold 
depth of water in shallow aquifer required for return flow), v__GW_REVAP.gw 
(groundwater ‘revap’ coefficient), v__ESCO.hru (soil evaporation compensation 
factor), v__CH_N2.rte (manning roughness for the main channel), 
v__CH_K2.rte (effective hydraulic conductivity in main conductivity), r__SOL_ 
AWC.sol (soil available water capacity), r__SOL_K.sol (soil hydraulic conduc-
tivity) v_RCHRG_DP.gw (Deep aquifer percolation fraction), r_SOL_BD.sol 
(Moist bulk density), r_SOL_Z.sol (Depth from the soil surface to bottom of the 
layer), r_SLSUBBSN.hru (Average slope length), r_OV_N.hru (Manning's "n" 
value for overland flow), CANMX.hru (Maximum canopy storage), v_EPCO.hru 
(Plant uptake compensation factor), v_SURLAG.bsn (Surface runoff lag time) 
have been considered for model parameterization and calibration and validation 
process. 

2.2.5. Model Evaluation Criteria 
A variety of verification criteria that could be used for the evaluation of models 
were proposed by the World Meteorological Organization (WMO) and other 
investigators [29]. Model evaluation was conducted using selected statistical 
evaluation metrics. The following model evaluation techniques were chosen to 
check the performance of the SWAT model. Moriasi et al. [30] recommended 
the use of the coefficient of determination (R2) together with the Nash-Sutcliffe 
model efficiency coefficient (NSE) to evaluate the performance of the SWAT 
model. The R2 (Equation (7)) value is a measure of the strength of the linear 
correlation between the predicted and observed values. The NSE (Equation (8)) 
is a measure of the predictive power of the model and is the most frequently 
used method for hydrological applications [31]. 
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where Oi is ith observed streamflow; O  is mean observed streamflow; Pi is ith 
predicted streamflow and; P  is mean predicted streamflow values and, n is the 
total number of observations. 

An NSE value of 1 indicates a perfect match between simulated and observed 
data. A value of 1 for the R2 also indicates a perfect linear correlation between 
simulated and observed data. In addition, Percent bias (PBIAS, Equation (9)), 
which measures the average tendency of the simulated data to be larger or 
smaller than their observed counterparts, was used in this study. The optimal 
value of PBIAS is 0.0, which indicates accurate model simulation. Positive PBIAS 
values indicate model underestimation bias, and negative values indicate model 
overestimation bias [30]. 
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2.2.6. Sensitivity Analysis 
The global sensitivity of streamflow parameters has been estimated by calculat-
ing multiple regression system, which regresses the Latin hypercube generated 
parameters against the objective function values. The t-stat and p-value are two 
factors commonly used to evaluate the sensitivity of model parameters in 
SWAT-CUP. The t-stat provides a measure of sensitivity as its absolute values go 
larger while the p-values determine the significance of the sensitivity magnitudes 
with close to zero value as more significant [32]. 

3. Results and Discussion 
3.1. Catchment Characteristics 
3.1.1. Hydrological Response Units (HRUs) 
The elevation of the basin ranges from 380 - 710 m. Among the land use and soil 
type classes, Forest-Deciduous and Clay Soil-Moderately Well Drained-Deep 
(CS-MWD-D) were dominant in the catchment, respectively (Table 1). Most 
(98%) of the catchment area has a flat to the moderate slope (0% - 15%). The 
catchment was divided into four sub-basins and classified into 68 HRUs (Table 
2). The HRUs of this basin have been classified into different classes mainly 
based on land use land cover, soil type, and slope. 

The catchment has an average CN of 83.3 (Table 3). Higher CN indicates 
greater run-off potential. Curve number is governed by land use, hydrological 
soil group, hydrologic conditions, and antecedent moisture conditions which 
depend on the average slope of the basin. 

3.1.2. The Sensitivity of Model Parameters 
The SWAT model has over 30 parameters. Arnold et al. [33] categorized SWAT 
model parameters by the process such as surface runoff, baseflow, sediment and  
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Table 1. Detail of LULC, soil, and slope. 

LULC Category LULC Class Area [ha] Watershed area (%) 

Sandy Area SND 124.74 0.05 

Forest-Evergreen FRSE 489.24 0.18 

Current fallow in District Sagar E137 33197.85 12.01 

Forest-Deciduous FRSD 72464.22 26.21 

Water body WATR 48421.8 17.52 

Urban Area SETL 37851.3 13.69 

Barren Land BARN 34492.23 12.48 

Agricultural Land-Generic AGRL 49388.94 17.87 

Soil Category Soil class Area [ha] Watershed area (%) 

Clay soil-Moderately Well 
Drained-Deep 

CS-MWD-D 199204.1 72.06 

Clay Soil-Well Drained-Drained CS-WD-D 12556.62 4.54 

Clay Soil-Well Drained-Moderately 
Deep 

CS-WD-MD 20497.05 7.41 

Loam Soil-Extremely 
Drained-Shallow 

LS-ED-S 4614.57 1.67 

Loam Soil-Extremely Drained-Very 
Shallow 

LS-ED-VS 5021.19 1.82 

Loam Soil-Well Drained-Deep LS-WD-D 32758.02 11.85 

Loam Soil-Well Drained-Shallow LS-WD-S 1718.82 0.62 

Loam Soil-Well Drained-Shallow 
Deep 

LS-WD-SD 59.94 0.02 

Slope Category Slope class (%) Area [ha] Watershed area (%) 

1 0 - 15 271009.8 98.04 

2 15 - 30 5158.89 1.87 

3 30 - 99.99 261.63 0.09 

 
Table 2. Hydrological response units (HRUs) classification. 

Sub 
Sub basin Input Summary 

HRUs 
Latitude Elevation(m) 

1 24.07 411 6 

2 23.79 449 20 

3 23.8 483 19 

4 23.52 543 23 
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Table 3. Bina River Basin hydrological components value. 

8 Hydrological parameters Value (mm) 

1 Precipitation 1210.2 

2 Surface runoff 225.8 

3 Lateral flow 0.62 

4 Groundwater 12.51 

5 Evaporation from shallow aquifer 0.82 

6 Recharge to deep aquifer 0.7 

7 Total aquifer recharge 14.04 

8 Total water yield 237.92 

9 Percolation to shallow aquifer 13.13 

10 Actual evapotranspiration 978.9 

11 Potential evapotranspiration 2256.1 

12 Transmission Losses 1 

13 Average curve number 83.3 

 
nutrient and pesticide using the report of input parameters in SWAT model ca-
libration for 64 selected watershed studies. 

In this study, following a comprehensive literature review, 18 parameters were 
selected for model simulation on daily and monthly timesteps. The parameters 
primarily represented the channel, runoff and soil processes. The initial value 
ranges used for these selected parameters are shown in Table 4. It was observed 
that using the fitted parameters and their appropriate initial range had a signifi-
cant effect on the streamflow simulation process. 

There are mainly two approaches to analyze the sensitivity of model parame-
ters: local sensitivity analysis and global sensitivity analysis. The local sensitivity 
analysis is a one-at-a-time (OAT) technique that analyses the impact of a single 
parameter at a time, keeping the other parameters fixed [9]. The global sensitiv-
ity of model parameters has been estimated by calculating the multiple regres-
sion system, which regresses the Latin hypercube generated parameters against 
the objective function values [32]. In the present study, the most sensitive para-
meters observed after global sensitivity analysis for daily and monthly calibra-
tion in SUFI-2 are shown in Table 5 and Table 6, respectively. Results showed 
that r_SOL_BD.sol (moist bulk density), v__ALPHA_BF.gw (base flow alfa fac-
tor) and v__CH_N2.rte (Manning roughness for the main channel) for a daily 
basis and r__SOL_AWC.sol (soil available water capacity), r_SOL_Z.sol (Depth 
from the soil surface to bottom of the layer) and r_CN2.mgt (curve number) for 
monthly simulations were found the most sensitive model parameters. It was 
experienced that the streamflow simulations process was not affected by para-
meters that are relatively insensitive compared to sensitive parameters and 
changes in their range had not caused significant changes in the model result. 
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Table 4. Selected parameters and their initial range. 

Sr.no Parameter_Name Description of parameters Min_value Max_value 

1 R__CN2.mgt Curve number −0.2 0.2 

2 V__ALPHA_BF.gw Baseflow alfa factor 0 1 

3 V__GW_DELAY.gw Groundwater delay time 30 450 

4 R__SOL_K (..).sol Soil hydraulic conductivity −25 25 

5 V__EPCO.hru Plant uptake compensation factor 0.01 1 

6 R__SOL_BD (..).sol Moist bulk density −25 25 

7 V__OV_N.hru Manning’s “n” value for overland flow 0.01 30 

8 V__SURLAG.bsn Surface runoff lag time 1 24 

9 V__CANMX.hru Maximum canopy storage 0 10 

10 R__SOL_Z (..).sol Depth from soil surfaces to bottom of the layer −25 25 

11 V__CH_K2.rte Effective hydraulic conductivity 0 150 

12 V__CH_N2.rte Manning roughness for main channel 0 0.3 

13 R__SLSUBBSN.hru Average slope length 10 150 

14 V__GW_REVAP.gw Groundwater “revap” coefficient 0.02 0.2 

15 R__SOL_AWC (..).sol Soil available water capacity −25 25 

16 V__RCHRG_DP.gw Deep aquifer percolation fraction 0 1 

17 V__ESCO.hru Soil evaporation compensation factor 0.01 1 

18 A__GWQMN.gw Threshold depth of water in the shallow aquifer. 0 200 

V = Replaced by value, R = (1 + multiply by value (%)) and A = added on value. 

 
Table 5. Ranking the sensitivity of streamflow parameters in Bina watershed for daily timescale (the ranking is based on the abso-
lute value of the t-statistics). 

Rank Parameters t-stat p-value 

1 r_SOL_BD.sol 14.76 0.00 

2 v__ALPHA_BF.gw 3.97 0.00 

3 v__CH_N2.rte −3.93 0.00 

4 r_SOL_Z.sol −3.42 0.00 

5 v_SURLAG.bsn 1.78 0.08 

6 v__CH_K2.rte 1.76 0.08 

7 r__SOL_K.sol 1.29 0.20 

8 v__GW_DELAY.gw 1.20 0.23 

9 r_SLSUBBSN.hru 1.05 0.30 

10 r__SOL_ AWC.sol −0.73 0.47 

11 v_CANMX.hru 0.66 0.51 

12 v_RCHRG_DP.gw 0.62 0.54 

13 r_CN2.mgt 0.27 0.79 

14 v_EPCO.hru −0.22 0.83 

15 v__GWQMN.gw 0.15 0.88 

16 r_OV_N.hru 0.12 0.90 

17 v__ESCO.hru −0.03 0.98 
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Table 6. Ranking the sensitivity of flow parameters in Bina Watershed for monthly time-
scale (the ranking is based on the absolute value of the t-statistics). 

Rank Parameters t-stat p-value 

1 r__SOL_AWC.sol 12.75 0.00 

2 r_SOL_Z.sol 8.30 0.00 

3 r_CN2.mgt −3.37 0.00 

4 v__ESCO.hru 2.16 0.03 

5 v__ALPHA_BF.gw 2.12 0.03 

6 v_EPCO.hru −2.07 0.04 

7 v_CANMX.hru 1.81 0.07 

8 v_RCHRG_DP.gw 1.72 0.09 

9 r__SOL_K.sol −1.72 0.09 

10 v__CH_K2.rte −1.34 0.18 

11 v__GW_DELAY.gw 0.75 0.46 

12 r_SOL_BD.sol 0.66 0.51 

13 r_SLSUBBSN.hru 0.66 0.51 

14 v__GW_REVAP.gw 0.65 0.52 

15 v__CH_N2.rte −0.22 0.82 

16 v__GWQMN.gw −0.16 0.87 

17 r_OV_N.hru −0.08 0.93 

18 v_SURLAG.bsn −0.06 0.96 

 
These results were supported by various authors i.e. Singh et al. [34] calibrated 

SWAT model for Tungabhadra River and found CH_K2, SOL_K, CN2, 
ALPHA_BF, ALPHA_BNK as most sensitive parameters. Setegn et al. [35] si-
mulated streamflow using the SWAT model in the Lake Tana Basin, in their 
study, they have evaluated the relative sensitivity of the Nineteen parameters and 
found that soil evaporation compensation factor (ESCO), initial SCS Curve 
Number II value (CN2) and base flow alpha-factor (Alpha_Bf) [days] were the 
most sensitive parameters. Himanshu et al. [36] indicated that a total of 27 sen-
sitive parameters were considered collectively for runoff and sediment, and their 
rank was determined according to sensitivity to the output. Sensitivity analysis 
shows that curve number (CN2) and effective hydraulic conductivity (Ch_K2) 
are the most sensitive model parameters for both runoff and sediment yield 
computations. Soil evaporation compensation factor (Esco), an available water 
capacity of soil layer (Sol_Awc), depth from the soil surface to bottom of (Sol_Z) 
are relatively more sensitive to runoff but less to sediment. Hosseini et al. [10] 
applied the SWAT model for the runoff estimation in a Taleghan basin and 
found that the Baseflow alpha factors (ALPHA_BF) followed by Snowfall tem-
perature (SFTMP) and Groundwater delay time (GW_DELAY) are more sensi-
tive parameters. 

https://doi.org/10.4236/jwarp.2020.123013


F. T. Teshome et al. 
 

 
DOI: 10.4236/jwarp.2020.123013 215 Journal of Water Resource and Protection 
 

3.1.3. Streamflow Simulation 
Overall, the SWAT model performed “satisfactorily” during daily simulations 
while during the monthly simulation the model performed “very good”. The 
PBIAS for both daily and monthly time periods was in the acceptable range; with 
2.2% and 18% for calibration and 4.5% and 3.9% for validation, respectively [30]. 
The coefficients of determination (R2) of calibration for the daily and monthly 
data were 0.66 and 0.96, respectively. The R2 value of both daily and monthly 
timescales shows there is a good correlation between the observed and simulated 
flows [30]. However, it was clear that the model’s performance significantly im-
proved with monthly simulations. Similarly, NSE values for monthly simulations 
both during calibration and validation showed significant improvements com-
pared to respective daily simulations. These are related studies that could sup-
port our results: Jain and Sharma. [37] found that the SWAT model could be 
employed for simulation of runoff and sediment yield behavior of the Vamsad-
hara river basin. Srinivas G and Naik [38] reported that the SWAT model gave 
good correlation during daily simulation results and a very good correlation for 
monthly time series at the Musi river basin. Jain et al. [39] reported that the 
SWAT model was calibrated and validated with daily streamflow data and the 
results were indicated a good simulation of streamflow of the Himalayan moun-
tain basin.  

The R2 and NS coefficient are two important statistical analyses for the evalua-
tion of the results. According to Santhi et al. [40], when R2 equals 1, the regres-
sion equation model considered as a perfect fit model, while an R2 value less 
than 0.5 (near to zero), suggests that the model is not suitable. The strength of 
the model calibration and uncertainty procedure was also analyzed using the 
R-factor. The R-factor values were estimated as 0.22 and 0.52 for the daily and 
monthly simulations, respectively (Table 7). The best model parameters and 
their value ranges for both daily and monthly model simulations are presented 
in Table 8 and Table 9. In addition, observed and simulated time series daily 
and monthly streamflow were plotted for visual comparison to explore how the 
model performs during peak and low flows (Figures 4-11). 
 
Table 7. Model evaluation objective functions daily and monthly results. 

No 
 Daily  Monthly  

Objective Variables Calibration Validation Calibration Validation 

1 P-factor 0.49 0.42 0.44 0.25 

2 R-factor 0.22 0.35 0.52 0.27 

3 R2 0.66 0.65 0.96 0.72 

4 NS 0.65 0.58 0.94 0.72 

5 bR2 0.39 0.35 0.80 0.52 
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Table 8. Daily best parameters with calibrated values. 

Sr.No Parameter_Name Fitted_Value Min_value Max_value 

1 R__CN2.mgt −0.2419 −0.3160 −0.1754 

2 V__ALPHA_BF.gw 0.9076 0.7660 1.2156 

3 V__GW_DELAY.gw 339.4813 282.1209 402.8797 

4 V__OV_N.hru 29.4613 25.9809 33.5634 

5 V__CH_N2.rte 0.0160 −0.0014 0.0415 

6 V__CH_K2.rte 101.2698 73.3829 129.7200 

7 A__GWQMN.gw 20.3172 16.3810 96.7126 

8 V__RCHRG_DP.gw 0.3463 0.0560 0.4220 

9 R__SLSUBBSN.hru −36.8985 −44.8489 −30.5237 

10 V__EPCO.hru 0.5186 0.5173 0.9265 

11 V__ESCO.hru 0.3483 0.2250 0.4228 

12 V__SURLAG.bsn 14.8983 14.3081 19.3521 

13 R__SOL_K(..).sol 30.8894 15.0737 39.4429 

14 R__SOL_BD(..).sol 11.1450 −7.1659 20.9614 

15 R__SOL_Z(..).sol 22.6821 5.6266 27.2432 

16 R__SOL_AWC(..).sol 16.8007 15.4220 33.8054 

17 V__CANMX.hru 1.6540 1.5581 3.1297 

 
Table 9. Monthly best parameters with calibrated values. 

Sr.No Parameter_Name Fitted_Value Min_value Max_value 

1 R__CN2.mgt −0.1229 −0.1558 0.0814 

2 V__ALPHA_BF.gw 1.2160 0.4104 1.2316 

3 V__GW_DELAY.gw 326.1514 210.7675 572.4725 

4 R__SOL_K(..).sol −13.1914 −43.7799 2.0799 

5 V__EPCO.hru 0.8876 0.4905 1.4520 

6 R__SOL_BD(..).sol 16.6925 −1.1801 46.4801 

7 V__OV_N.hru 3.6721 1.9713 20.6612 

8 V__SURLAG.bsn 7.5954 7.4032 20.2188 

9 V__CANMX.hru 5.0864 3.2640 9.7960 

10 R__SOL_Z(..).sol 40.2362 −3.1300 40.6300 

11 V__CH_K2.rte 12.9645 −60.8398 79.7398 

12 V__CH_N2.rte 0.1474 0.1036 0.3110 

13 R__SLSUBBSN.hru 112.8324 75.1561 205.5238 

14 V__GW_REVAP.gw 0.1150 −0.0211 0.1263 

15 R__SOL_AWC(..).sol 10.1709 −5.5300 33.4300 

16 V__RCHRG_DP.gw 0.5795 0.1554 0.7186 

17 V__ESCO.hru 1.0107 0.4500 1.3303 

18 A__GWQMN.gw 56.5522 54.4804 163.5196 
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Figure 4. Observed and simulated hydrographs of daily streamflow at the Bina River Basin 
from 1991 to 1993 (calibration period). The green shaded part is the 95% prediction uncer-
tainty. 

 

 
Figure 5. Scatter plot of observed and simulated daily streamflow of the Bina River Basin 
from 1991 to 1993 (calibration period). 

 

 
Figure 6. Observed and simulated hydrographs of daily streamflow at the Bina River Basin 
from 1994 to 1996 (validation period). The green shaded part is the 95% prediction uncer-
tainty. 
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Figure 7. Scatter plot of observed and simulated daily streamflow of the Bina River Basin 
from 1994 to 1996 (validation period). 

 

 
Figure 8. Observed and simulated hydrographs of monthly streamflow at the Bina River Basin from 
1991 to 1993 (calibration period). The green shaded part is the 95% prediction uncertainty. 

 

 
Figure 9. Scatter plot of observed and simulated monthly streamflow of the Bina River Basin from 
1991 to 1993 (calibration period). 
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Figure 10. Observed and simulated hydrographs of monthly streamflow at the Bina River Basin 
from 1994 to 1996 (validation period). The green shaded part is the 95% prediction uncertainty. 

 

 
Figure 11. Scatter plot of observed and simulated monthly streamflow of the Bina River Basin from 
1994 to 1996 (validation periods). 

4. Conclusions 

Hydrological modeling could be a useful tool for several purposes including wa-
ter resources planning, development, and management. In this study, the per-
formance of the SWAT model was evaluated in simulating streamflow from the 
Bina basin. The SWAT-CUP advance calibration and uncertainty analysis tool 
was used for automatic calibration/uncertainty analysis, validation, and sensitiv-
ity analysis of stream-flow measurements on a daily and monthly basis for the 
period 1989-1996. Results showed that the R2 values for the daily and monthly 
time steps were 0.66 and 0.96, respectively during model calibration, while R2 
values during the validation period were 0.65 and 0.72, respectively. 

Overall, the SWAT model performed “satisfactory” and “very good” in simu-
lating streamflow at daily and monthly time steps, respectively. The model re-
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produced the observed flow well both during peak and low flow periods. How-
ever, the model results showed that prediction uncertainties exist especially with 
the daily simulations. These uncertainties could be due to the quality of the 
streamflow records. 

This study demonstrated that the SWAT model performed satisfactorily and 
could be effectively used to simulate streamflow in the Bina river basin, and re-
sults could be used to inform decisions towards planning soil and water man-
agement practices in the basin. 
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