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Abstract 
The work illustrates the impossibility of decreasing entropy in a strictly ran-
dom thermodynamic process in a non-isolated system using the example of 
heating a planet by solar radiation flux without and taking into account its 
rotation around its own axis. That is, the second law of thermodynamics 
formulated for isolated systems continues to govern such systems. We have 
shown that in order to achieve a stationary state at lower values of tempera-
ture and entropy far from thermodynamic equilibrium at a maximum of 
temperature and entropy, it is necessary to have regular factors of nonran-
dom nature, one of which in this example is the rotation of the planet around 
its own axis. This means that the reason for the appearance of ordered struc-
tured objects in non-isolated thermodynamic systems is not the random 
process itself, but the action of dynamic control mechanisms, such as periodic 
external influences, nonlinear elements with positive feedback, catalysts for 
chemical reactions, etc. We present the plots with dependences of tempera-
ture and entropy versus time in non-isolated systems with purely random 
processes and in the presence of a control factor of non-random na-
ture-rotation. 
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1. Introduction 

When studying the problem of origin of ordered structures: elementary particles, 
nuclei of atoms, crystals, biomolecules, cells, ..., basically one model is consi-
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dered: their occurrence in a random process [1] [2] [3]. With this 
“self-organization” the disorder should decrease. This means that entropy as a 
measure of disorder in a thermodynamic process should decrease. But the 
second law of thermodynamics prohibits a decrease in entropy in random 
processes in isolated systems. Therefore, our certain hopes are associated with 
the openness of real systems allowing the presence of ingoing and outgoing 
flows of heat (closed systems), heat and particles (open systems) that do not fall 
under action of the second law. It is believed that there it is possible, in principle, 
to reduce entropy due to its “removal” by the outgoing flows, and, therefore, the 
creation of conditions for the appearance of ordered structures in a random 
process. 

We consider the well-known “entropy pump” model which describes the 
process of decreasing entropy in the Earth’s ecosphere. In this model, a change 
in the entropy S with a speed dS/dt occurs in a non-isolated system in the course 
of a stationary process, when the ingoing ordered low-entropy heat flow Ps at 
solar temperature Ts is compared in equilibrium with the outgoing flow P = Ps. 
The latter is already more randomized (highly entropic) and having a lower 
temperature T < Ts. In this case, the rate of change in the entropy of the system 
becomes negative [4]:  

d 1 1 0
d s

s

S P
t T T

 
= − < 

 
                         (1) 

There are two comments regarding formula (1). Firstly, concerning a statio-
nary process in a homogeneous system, which in this example is a planet (neg-
lecting the atmosphere) heated by the solar radiation flux Ps, when two temper-
atures arise, Ts and T < Ts. Since temperature is a function of the state, then in an 
equilibrium thermodynamic state the system can have only one temperature 
equal to the temperature of the ingoing heat flow Ts. 

Secondly, the entropy S itself is also a function of the state, therefore, in equi-
librium state it must also be constant, that is, its rate of change dS/dt must be 
zero. 

Let’s see how we can obtain formula (1), and what it means in the classical 
thermodynamics of quasistatic systems, i.e. those in which a local thermody-
namic equilibrium can be established in a non-equilibrium process in a small 
neighborhood of each point. 

The simplest model was used (Figure 1), which we will describe in detail be-
low. As a result of solving her system of differential equations, the following re-
sults were obtained: 
- Taken with the opposite sign, formula (1) describes in fact the usually neg-

lected production of entropy at the input to the system at the boundary of a 
body and the environment during thermalization of the ingoing heat flow Ps 
and its randomization during interaction between the photons belonging to 
the ingoing solar radiation and atoms of the crystalline lattice at the surface 
of the system (the planet’s soil, in this example); 
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Figure 1. A non-isolated thermodynamic system with an input point outside the body. 
Thermalization of the ingoing heat flow at the system boundary. 

 
- Taking into account this production of entropy, despite its removal by the 

outgoing heat flow during the heating of the planet, the entropy of this 
non-isolated system does not decrease. That is, the second law of thermody-
namics remains valid for non-isolated homogeneous systems, if all the 
processes occurring in it are random; 

- At ( ) max
d, , 0,
ds
St T T S t S
t ∞→ ∞ → → → ; 

that is, a new asymptotic equilibrium state of the system is achieved at the 
maximum temperature T = Ts and the entropy S = S∞ max. There is no entropy 
pump here. 

But a paradox arises: in fact, however, real planets without a significant at-
mosphere (such as Mercury, Mars, and Pluto) really have two temperatures: Ts is 
the total radiation temperature of ingoing solar radiation and T∞ < Ts is the sta-
tionary temperature of the planet surface layer heated by solar heat. Therefore, 
they are not described by this thermodynamic model. 

It is clear, what is the reason for this difference. In the considered illustrative 
example, the influence of the planet’s rotation around its axis on the temperature 
and entropy balance is not taken into account. Therefore, we have a periodic 
change of day and night, at which heating, simultaneous emission of heat by the 
body and an increase in entropy occur on the day side of the planet, while on its 
night side the planet only radiates heat without generating entropy. 

This leads to the fact that the stationary state is achieved by a non-isolated 
system at lower values of temperature and entropy, far from the thermodynamic 
maximum. 

We took into account this rotation (in the general case, a periodic pulsed heat 
flow from the heater (Figure 2)) and we have obtained the expected result: rota-
tion of the planet around its axis decreases the stationary temperature of its sur-
face and entropy. 

The calculation of the day and night asymptotic temperature values Td∞ and 
Tn∞ for the planets mentioned above showed good agreement with the experi-
mental data (see Table 1). 
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Table 1. Calculation of the Day and Night temperatures for the three planets. 

Planet Mercury Mars Pluto 

Distance from the Sun, million km (a.u.) 57 (0.39) 230 (1.5) 6000 (40) 

Solar constant, W⁄m2 4200 590 1 

Rotation period, Earth days 58.6 1.03 6.39 

Total radiation temperature due to solar radiation, K 630 320 63 

Daily experimental temperature Td∞, K 500 - 700 200 - 300 40 

Daily calculated temperature Td∞, K 630 270 50 

Night experimental temperature Tn∞, K 100 150 - 250 - 

Night calculated temperature Tn∞, K 150 260 50 

 

 
Figure 2. The periodic heat flow Ps(t) as the regular control factor. 

 
Thus, in addition to the conclusion that entropy still does not decrease in a 

non-isolated system with purely random processes, which means that no 
self-organization phenomena are possible in purely random processes, one more 
result is obtained: the entropy of a stationary non-isolated system can become 
less than a thermodynamic maximum only under the influence of regular factors 
of a non-random dynamic nature (in this example, pulsed semi-periodic heat 
transfer, starting from t = 0). 

Hence the following conclusion is possible: the reason for the decrease in dis-
order and the appearance of structured objects is not the random process itself, 
but the action of not random ordering mechanisms, moreover of external origin: 
periodic external influences, such as nuclear or chemical reactions, nonlinear 
dynamic mechanisms with positive feedback, etc. 

This result is consistent with the Prigogine hypothesis about the existence of 
control parameters [1] [3]. We only note according to the result, that these pa-
rameters can be of a regular nature, and their nature needs to be investigated. 

For example, the considered mechanism of periodic interruption of the in-
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going heat flow is provided by the rotation of the planets during the gravitational 
interaction of bodies in the universe. 

2. Thermodynamic Model without Rotation 

In Figure 1, a low-entropic heat flow Ps with a total radiation temperature Ts 
falls on the boundary of a non-isolated system and becomes randomized when 
interacting with the surface of a body (planet). Other dissipative processes 
(thermal conductivity, diffusion, viscosity ...) are neglected.  

This heat flow begins to heat the body from the initial temperature T0 to T(t). 
When heated, the body begins to radiate a return heat flow into an external en-
vironment with increasing power P(t) until a new equilibrium state with the en-
tropy S(T) is reached, which, like the body temperature T(t), will be calculated 
from the following balance of entropy [5] [6]:  

( )

dd d d d d
d d d d d d

1 d
d

1 d 1
d d

inpext int out int

s s s

s s

v

SS S S S S
t t t t t t

P tP P P U A
T T T T T t

T Ac M
T t T t

δ

δ

 
= + = − + 

 
    +

= − + − =   
   

= +

               (2) 

Here Sext is the entropy transferred by heat flows: ingoing, Sinp, with speed s

s

P
T

, 

and outgoing, Sout, with speed ( )P T
T

; Sint is the entropy produced inside the 

system during thermalization of the ingoing heat flow at a speed equal to the in-

crement s s

s

P P
T T

 
− 

 
; dU is the differential of internal energy, cv is the heat capacity 

of a body with a heated mass M; δA is a work performed by the body in the 
process of thermalization of the ingoing heat flow. 

For simplicity, we assume that all heat flows are radiated by a completely 
black body: 

4
s sP Tσ= Π ,                           (3) 

4P Tσ= Π ,                           (4) 

where Π -surface area of the heated body, σ-Stefan-Boltzmann constant. 
From relations (2)-(4), it follows: 

( )3 3d 1 d
d d

ext
s v

S TT T c M
t T t

σ= Π − = ,               (5) 

d 1 1 1
d d

int
s

s

S AP
t T T T t

δ 
= − = 

 
,                    (6) 

( )4 4d
d s
S T T
t T

σΠ
= − .                       (7) 

From (5) we obtain the equation for ( )T t : 
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3 3
1 dd

v s

Tt
c M T T T
σΠ

=
−

                       (8) 

and from (7), substituting into it the time differential dt from (8), we obtain the 
equation for ( )S T : 

( )
4 4

2 3 3
d d .s

v
s

T TS c M T
T T T

−
=

−
                    (9) 

For convenience, we introduce dimensionless quantities (with a tilde) 

d d ,
2

t tτ
=   

d d ,sT T T=                           (10) 

d d .vS c M S=   

Substituting (10) into (8) and (9), we finally obtain the differential equations for 
( )T t   and ( )TS   in the dimensionless form: 

3
1 dd ,

1
Tt

T T
α =

−





 

                        (11) 

4

2 3
1 1d d ,

1
T T

T T
S −
=

−





 

                        (12) 

where the dimensionless constant is  

3

2 s
v

T
c M
στα Π

= .                        (13) 

3. Non-Isolated System without Rotation 

Integrating Equation (11), Equation (12) with the initial conditions:  

( )0 0 0 0, ,t t T T S tS== =   

                       (14) 

and omitting hereinafter all tildes for dimensionless temperatures T(t) and en-
tropy increment: 

( ) ( ) ( )0 0S t S t S t∆ = −                       (15) 

we get the following solutions:  

( ) ( ) ( )( )0

1
33 3

01 1 e t tT t T α −− −−= − − ,                  (16) 

( )
2

0
2

0 0 0

1 1 1 1 2 2 1 2 1ln 2 arctg arctg
2 1 3 3 3

T T T TS T
T T T T

  + + + + ∆ = + − − −     + +    
.(17) 

Equation (11), Equation (13) and their solutions (16), (17) are valid within the 
framework of the classical nonrelativistic thermodynamics for any non-isolated 
homogeneous systems in which thermodynamic random processes occur. But in 
the capacity of an illustrative example explaining the meaning of the quantities 
introduced in the model, we consider heating a planet of mass M with specific 
heat capacity of the heated layer cv with surface area Π  by solar radiation with 
a heat flow Ps and with a total radiation temperature at the input to the system Ts, 
which is then reradiated by the planet into the surrounding vacuum by the heat 
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flow P(T) at a changing temperature T(t) until a new equilibrium state is reached 
at t → ∞. 

From the solutions (16), (17) it directly follows that both the temperature T(t) 
and the entropy S(T(t)) are monotonically increasing functions which depend on 
time t, reaching their equilibrium values T∞ and S∞ in the asymptotics t → ∞ cor-
responding to the thermodynamic maximum (Figure 3, Figure 4, curves at ω = 0). 
 

 
Figure 3. The dependence of the dimensionless body (planet) temperature T(t, T0) of a 
non-isolated thermodynamic system in the absence of rotation (ω = 0) and in the pres-
ence of rotation (ω ≠ 0) (periodic heat flow at the input) on the day and night sides. 
 

 
Figure 4. The entropy increment ∆S of a non-isolated system in a random process (u = 0, 
there is no rotation as a control factor) and increments of entropy on the day and night 
sides of the planet relative to its initial value S0(T0) in the presence of a control factor of 
non-random nature (planet rotation around its axis, ω ≠ 0). ∆S∞ max is the dimensionless 
thermodynamic maximum of the entropy increment in a random process without con-
trolling factors of non-random nature; δSd ∞ and δSn ∞ are the asymptotic stationary incre-
ments of entropy on the day and night sides of the planet, taking into account its rotation. 
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Thus, the second law of thermodynamics continues to govern at least for the 
considered class of non-isolated systems and random processes in them. This 
situation is shown in the graphs T(t) and ∆S(t) in Figure 3, Figure 4. The 
asymptotic values of temperature and entropy are shown at t → ∞, in a state of 
new thermodynamic equilibrium:  

( ) 1,T t T∞→ =  

( ) ( ) ( )2
0 0

0

0

1 11 ln3 ln 1 2 1
2

2 1 2arctg 0.
33 3

S T S T T
T

T

∞

  
∆ → ∆ = − + + + −    

π + − − > 
 

       (18) 

4. Accounting for Body Rotation Being a Regular Factor of  
Non-Random Nature 

Before you begin to format your It is possible to lower the entropy of the body to 
values less than its thermodynamic maximum by introducing a regular factor 
into the system, for example, periodically interrupting the ingoing heat flow 

( ) ( )s sP t P t τ= +  in the considered example, taking into account the rotation of 
the planet around its axis (Figure 2, τ is the planet’s day length (day + night)). 

5. The Night Side of the Planet 

On the day side, Equation (11), Equation (12) and their solutions (16), (17) re-
main valid. There is no ingoing heat flow on the night side, therefore,  

d d0, 0, 0, 0,
d d d

inp int
s

S S AP
t t t

δ
= = = =                   (19) 

whence it follows from (2) (dimensional record): 

( ) 3d d d 1 d .
d d d d

ext out
v

P TS S S TT c M
t t t T T t

σ= = − = − = −Π =          (20) 

The dimensionless equations follow from (20): 

4
dd Tt
T

α− = ,                          (21) 

dd TS
T

=                             22) 

And their solutions: 

( ) ( )( )
1

3 33 ,T t t t Tα
−−

∗ ∗= − +                     (23) 

( ) ( ) ln ,TS S T S T
T∗ ∗
∗

∆ = − =                     (24) 

where T∗  and S∗  are the temperature and entropy at the beginning of the 
night at t t∗= . 
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6. The Decrease in Entropy When a Periodic Factor of  
Non-Random Nature Is in Effect 

Consider the temperatures Td and Tn and the entropies Sd and Sn at the ends of 
the day and night sections (Figure 3, Figure 4, lower curves, the initial value T0 
is given): 

Day: 2 2 1, 0,1,2,n t n n≤ ≤ + =      

( )( )
1

3 3 3
2 1 21 ,1 ed n n nT T α −− −

+ = + −                    (25) 

2 1 2 1 2

2
2 1 2 1

2
2 2 12 2

2 1 2

11 1 1ln 2
2 1

2 1 2 12 arctg arctg .
3 3 3

d n d n n n

d n d n

n n d nn n n n

d n n n

S S S

T T
T TT T

T T

+ +

+ +

+

+

∆ = −

  + +
= + −   + +  

+ +  
− −   

         (26) 

Night: 2 1 2 2n t n+ ≤ ≤ +      

( )
1

3 3
2 2 2 13 ,n n d nT Tα

−−
+ += +                      (27) 

2 2
2 2 2 2 2 1

2 1

ln .n n
n n n n d n

d n

T
S S S

T
+

+ + +
+

∆ = − =                (28) 

In formulas (26)-(28), the first n means “night”, and the second 0,1,2,n∈   
means integers. 

2 1 2 1 0 2 2 1 0;d n d n n n d nS S S S S Sδ + + += − = + ∆ −  

2 2 2 2 0 2 1 2 2 0.n n n n d n n nS S S S S Sδ + + + += − = + ∆ −  

Their dependence on time is shown in Figure 4. 
At n → ∞, a rotating planet changes to its new stationary state at constant day 

and night asymptotic temperatures dT ∞ , nT ∞  and entropies dSδ ∞ , nSδ ∞ : 
1

3 3

3
3 e1 ,
1 edT

α

α

α
−−

∞ −

 
= + − 

                     (29) 

1
3

3
31 ,

1 enT α

α −

∞ −
 = + − 

                     (30) 

2

2

11 1 1ln 2
2 1

2 1 2 12 arctg arctg
3 3 3

0,

d d
d

n dn n

d n

T T
S

T TT T

T T

∞ ∞
∞

∞ ∞∞ ∞

∞ ∞

  + +
∆ = + −   + +  

+ +  
− −   

>

            (31) 

ln 0.n
n

d

T
S

T
∞

∞
∞

∆ = <                      (32) 

Their graphs are presented in Figure 3, Figure 4. Two important results fol-
low from these data: 
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- The increments of temperature and entropy on the day side are always great-
er than the decreases in temperature and entropy on the night side; the in-
crement of entropy for a period, that is, for one revolution, always grows; 

- At t → ∞ (n → ∞), the stationary asymptotic temperature and entropy incre-
ments, dT ∞ , nT ∞  and dSδ ∞ , nSδ ∞  are less than their maximum equili-
brium values in a purely random process. 

In principle, if to extend the night state in time (pause when the body heats up) 
and reduce the daytime state in time, we can achieve a decrease in temperature, 
and therefore, entropy, according to the third law of thermodynamics (Nernst 
theorem [5]), down to zero. But we will not do this in this work, this is a separate 
task that requires complicating the model by taking into account the dependence 
of the heat capacity of the body on temperature and fulfilling the condition: at 

0t → , ( )lim 0vc T = . The results will not be affected by such a complication 
obtained in this model. 

Using formulas (29), (30), we can calculate the value of the day and night 
asymptotic temperatures for three planets: Mercury, Mars, and Pluto, calculating 
the parameter α (13) for them from the known experimental values: the planet’s 
revolution period τ, the total radiation temperature due to solar radiation Ts, 
heat capacity cv, density of matter on the surface of the planet ρ, and the depth of 
daily heating h [7]: 

3

2
s

v

T
c h
στα

ρ
=                            (33) 

The following values were selected as average: heat capacity 1000 Joule/kg K, 
soil density 5000 kg /m3, depth of daily heating of the planet’s surface 1 m. 

The results are presented in Table 1. It can be seen from it that the theoretical 
dimensional values of Td∞, Tn∞ are in good agreement with their experimentally 
obtained values [7].  

The asymptotic temperature (t → ∞) of Mercury on the day side Td∞ is equal 
to the total radiation temperature due to solar radiation Ts. This is due to the fact 
that the day of Mercury is long enough; it manages to come into a state of ther-
mal equilibrium with radiation. And during the night, it manages to cool noti-
ceably: the temperature difference on the day and night sides is 480 K. 

The days of Mars are relatively short. Therefore, the temperature difference is 
not so significant. The shorter the revolution period τ, the smaller the difference 
in the dimensional temperatures Td∞ and Tn∞. In this regard, the difference in 
day and night temperatures in Mars is small and is equal to 10 K. 

The length of the day in Pluto is several times longer than that of Mars, but 
the total radiation temperature due to solar radiation is much less due to the 
great remoteness of Pluto from the Sun. Because of this, its temperature practi-
cally does not change during its day. 

7. Discussion of Results 

In the world around, everything is ordered and expedient. Why so? Indeed, there 

https://doi.org/10.4236/jmp.2020.113021


A. Y. Khlestkov et al. 
 

 

DOI: 10.4236/jmp.2020.113021 353 Journal of Modern Physics 
 

are always random collisions in it of the particles forming it, knocking out indi-
vidual atoms from the ordered structures. If we didn’t take any action that would 
return randomly detached atoms to their place, then the world would, according 
to the second law, surely collapse, and turn into chaos or cosmic dust in a finite 
time. 

However, this does not happen. This means that there are guarding and res-
toring forces in nature, always returning “fallen atoms” to their place, i.e. ensur-
ing the stability of the existence of each object: an elementary particle, the nuc-
leus of an atom, cell, planet, star, ... the universe as a whole. 

What are these forces doing? What does the “existence” of an object mean? 
When it’s possible? Can forces of random, thermodynamic origin do this? Most 
likely, they cannot, and for a very simple reason. Because these forces (thermal 
conductivity, viscosity, diffusion, etc.) are rough, many micro particles always 
fall into their coverage area. But “building” and “restoring” forces need the abil-
ity to act locally; they influence on each particle separately in order to either 
build an ordered structured object in conditions of random collisions, or to 
recreate an object that deforms under random collisions. Otherwise, an attempt 
to rearrange, say, one micro particle, would entail the collective movement of 
many other micro particles that fell into the zone of action of thermodynamic 
forces. 

8. Conclusions 

The main result that can follow from this simple thermodynamic model of 
non-isolated systems: the cause of a decrease in entropy as a measure of disorder 
in such systems, which makes it possible for the phenomenon of “self-organization” 
to occur (the appearance of such structures as, say, Benard cells, the Belou-
sov-Zhabotinsky reaction [8] [9] [10], etc.) is not the random process itself of 
entropy removal by the outgoing heat flow in non-isolated systems. As shown in 
this paper, it actually leads to the increase in entropy and to achieve a thermo-
dynamic maximum in temperature and entropy in equilibrium state, as it takes 
in isolated systems. 

An “entropy pump”, which was regarded in some studies on synergetics as 
acting due to purely random processes of exporting entropy from a non-isolated 
system, does not work if we take into account the increase in entropy of the in-
going heat flow when it is thermalized at the input during the scattering of pho-
tons on the crystal lattice of the body (planet) surface. 

The reason for the decrease in entropy can be regular factors of non-random 
nature (for example, periodic interruption of the ingoing heat flow), which can 
ensure that the temperature and entropy achieved in the new stationary state the 
values below the thermodynamic maximum. 
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