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Abstract 
Study of chaotic synchronization as a fundamental phenomenon in the non-
linear dynamical systems theory has been recently raised many interests in 
science, engineering, and technology. In this paper, we develop a new ma-
thematical framework in study of chaotic synchronization of discrete-time 
dynamical systems. In the novel drive-response discrete-time dynamical sys-
tem which has been coupled using convex link function, we introduce a syn-
chronization threshold which passes that makes the drive-response system 
lose complete coupling and synchronized behaviors. We provide the applica-
tion of this type of coupling in synchronized cycles of well-known Ricker 
model. This model displays a rich cascade of complex dynamics from stable 
fixed point and cascade of period-doubling bifurcation to chaos. We also 
numerically verify the effectiveness of the proposed scheme and demonstrate 
how this type of coupling makes this chaotic system and its corresponding 
coupled system starting from different initial conditions, quickly get syn-
chronized. 
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Lead Paragraph 

Synchronization of complex population oscillations in natural systems has been 
examined widely by many researchers. Due to the sensitivity on initial condi-
tions of chaotic systems, synchronization of chaotic systems does not look to be 
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possible. However, it has been shown that it is still possible that under some 
conditions, two synchronized systems in chaotic regime get synchronized again. 
There are many studies about how we can couple continuous time dynamical 
systems but we cannot find any explicit and concrete way to couple the dis-
crete-time dynamical systems. Since discrete-time systems play important role in 
modeling non-overlapping generations, we have developed a novel way to 
couple these systems which keeps the same qualitative dynamics and we have 
provided one well known example of this type of coupling. Also, we have defined 
a new concept in the area of chaos synchronization called synchronization thre-
shold. By passing the threshold both drive and response system lose the condi-
tion for complete synchronization and their solutions diverge from each other. 

1. Introduction 

Population dynamics can be modeled through the continuous-time system and 
the discrete-time system. However, when population size is small or that popula-
tion does not overlap, discrete-time system is more appropriate to use. Dis-
crete-time population models are widely used to describe the dynamics of hosts 
and parasitoids interactions [1] [2] [3]. There are many simple nonlinear dis-
crete-time biological models which create rich and complex spectrum of dy-
namics from coexistence of species through periodic cycles to irregular and 
chaotic behaviors [4] [5] [6] [7] [8]. Chaos and synchronization are two wide-
spread phenomena with application in many disciplines which have been consi-
dered as a central topic in nonlinear dynamics [9] [10] [11]. The presence of 
chaos in population models has been extensively reported by different research-
ers [4] [5] [6] [7] [8]. The main property of chaotic dynamics is its critical sensi-
tivity to initial conditions, which is responsible for initially neighboring trajecto-
ries separating from each other exponentially in the course of time. Synchroni-
zation implies that there is a strong correlation between coupled systems and 
intuitively, it refers to a phenomenon which makes the systems have the same 
dynamical behavior. Traditionally, synchronization was based upon periodic 
signals. However, after coming to the chaotic signals, more possibilities and 
flexibilities have been entered in this area. 

Chaos synchronization, has been started by the work of Fujisaka and Yamada 
[12] in 1983. After 1990, when the possibility of chaos synchronization was un-
derstood by researchers, this idea has received many attractions by people in 
different areas [13] [14] [15] [16] [17]. Synchronized chaos means that for any 
two chaotic systems for which any two nearby initial points in phase space 
quickly diverge and become unpredictable, it is possible that these two converge 
toward each other and evolve with each other in time. Complete synchronization 
takes place if there is a perfect linking of the chaotic solutions such that they re-
main in step with each other in time. In 1990, L.M. Pecora and L. Carroll, de-
scribed a coupling method which constructs a real set of chaotic synchronization 
circuits [13]. They have applied this common signal to several well-known con-
tinuous-time dynamical systems such as Lorenz and Rossler and they claimed 
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that it is possible to use this method with a slight variation for discrete-time dy-
namical systems. Chaos synchronization has great interest and application in 
different disciplines like physics [9] and biology [10], and it has been observed in 
a huge variety of phenomena in nature [11]. Synchronization has an important 
role in self-organization of organisms’ groups in various biological systems [18]. 
There are several types of synchronization, such as complete synchronization 
[14], generalized synchronization [19] [20] [21], phase synchronization [22], lag 
synchronization [23], antisynchronization and projective synchronization [24] 
and [25]. 

This study proposes a new way to couple of discrete-time dynamical systems. 
We study three different types of synchronization for this new coupled system 
and we present the results related to the local stability of drive response system 
and we find the attractive set of this novel coupled system. This paper also stu-
dies the interesting dynamics of a drive-response Ricker model which has been 
coupled by convex link function. Our goal is to build an appropriate response 
system which traces the drive system and finally they evolve in time even in 
chaotic regime. We explain that how this coupling method can be applied on a 
general discrete-time dynamical system to get a complete synchronization. Fi-
nally, the long term analysis through bifurcation diagrams and also time-series 
analysis exhibit that this drive-response system which reveals complex dynamics 
including cascade of period doubling to chaotic solutions, for smaller synchro-
nization threshold, get completely synchronized. 

2. Description of the Coupling Method 
In this section, we study the complete synchronization in a general discrete-time 
drive-response system. Here, we use a convex function to build the proposed 
drive-response system. To begin with, consider the following discrete-time dy-
namical system: 

( )1n nX f X+ =                         (2.1) 

where nX ∈  is the state vector of drive system at time n, f is a mapping from 
n  to itself and is continuously differentiable. Next step is to find a perfect 

linking such that the system (2.1) and new coupled one remain in step with each 
other in time. To model the response system or coupled system, we use a convex 
link function as the form ( ) ( ), : 1H X Y s X sY= − +  where 2: n nH →   and 

, nX Y ∈  are the state vectors of response system at time n, and 0 1s< ≤  is 
synchronization threshold. Therefore, for ( ): 1n n nH s X sY= − + , the response 
system has the form: 

( ) ( )( )1 : 1n n n nY f H f s X sY+ = = − +             (2.2) 

and we demonstrate the error between the solutions of the drive system (2.1) 
and the response system (2.2) by ( ) n ne n Y X= − . 

2.1. Complete Synchronization Using Contraction Mapping  
Theorem 

To explain the complete synchronization between two systems (2.1) and (2.2), 

https://doi.org/10.4236/jamp.2020.83031


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/jamp.2020.83031 409 Journal of Applied Mathematics and Physics 
 

we need to recall some known concepts which are crucial part of the proposed 
coupling method: 

Definition 2.1 We say that the drive system (2.1) and response system (2.2) 
are in complete synchronization if 

( )lim lim 0n nn n
e n Y X

→∞ →∞
= − =                    (2.3) 

means that two systems eventually evolve identically in time. 
Definition 2.2 Let E be a Banach space. Then, the map :F E E→  is called a 

contraction mapping if there exists a constant 0 1α≤ <  such that for every pair 
of points ,X Y E∈ , we have ( ) ( )F X F Y X Yα− ≤ − , where α  is called a 
contraction constant of F on E [26]. 

The error between the drive and response system (2.1) and (2.2) has the fol-
lowing form: 

( ) ( )( ) ( )1 11 1n n n n ne n Y X f s X sY f X+ ++ = − = − + −         (2.4) 

We can easily see that for 0 1s< ≤ : 

( )( )1 n n n n ns X sY X s Y X− + − ≤ −  

Here, we assume that f is a contraction mapping. Then, for the Equation (2.4) 
we can write: 

( ) ( )( ) ( ) ( )1 1 n n n n ne n f s X sY f X Y X e nβ β+ = − + − ≤ − =  

where, β  is a contraction constant. 
As we defined before, to get complete synchronization, we need to have 

( )lim 0n e n→∞ = . Therefore, for contraction constant 0 1β≤ < , 

( ) 1 1lim 1 lim 0n nn n
e n Y X+ +→∞ →∞

+ = − =  

which means that the drive-response system (2.1)-(2.2) satisfies the complete 
synchronization properties. We will find β  in theorem (2.3). 

Theorem 2.3 Given the non-linear coupled dynamical system (2.1) and (2.2), 

where the map 2: n nf →  , and for the values 1

A

s s
ρ α

< =
+

 , we get 

1 1lim 0n nn
Y X+ +→∞

− =  

means that passing the synchronization threshold s  makes the drive-response 
system (2.1) and (2.2) lose the complete synchronization properties. 

Proof. Suppose the following rC  maps which have a fixed point at the ori-
gin: 

( )1 ,n n nX AX F X+ = +                     (2.5) 

( )( ) ( )( )1 1 1 ,n n n n nY A s X sY F s X sY+ = − + + − +         (2.6) 

where the contraction mapping ( ) ( ) ( ) ( )( )2 1 ,
r

n n r n nF X F X F X O X−= + + +  
includes the vector-valued homogeneous polynomials of degree 2, ,r . Con-
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sider the following equation for the error: 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 11

1 1

1

n n

n n n n n n

n n n n n

e n Y X

s AX sAY AX F s X sY F X

s A Y X F s X sY F X

+ ++ = −

= − + − + − + −

= − + − + −

 

Since, we assumed that F is a contraction mapping, it satisfies the following 
inequality: 

( ) ( )F Y F X Y Xα− ≤ −  

where, α  is a contraction constant. By triangular inequality we can write: 

( ) ( ) ( )( ) ( )

( ) ( )

1 1n n n n n

A n n n n

A

e n sA Y X F s X sY F X

s Y X s Y X

s e n s e n

ρ α

ρ α

+ = − + − + −

≤ − + −

= +

 

where, 0 1s< ≤  and Aρ  is the spectral radius of A which is equal to 
maxA iρ λ=  where λ  is the root of characteristic polynomial or eigenvalue 

for A. Since, 0 1α≤ < , therefore 

( ) ( ) ( ) ( ) ( )1 A Ae n s e n s e n s e nρ α ρ α+ ≤ + = +  

We know that for complete synchronization, the error between the solutions 
should converge toward zero. Thus, ( )lim lim 0n n n ne n Y X→∞ →∞= − = . As a 
result, for ( ) 1As ρ α+ <  we have 

( ) 1 1lim 1 lim 0n nn n
e n Y X+ +→∞ →∞

+ = − =  

for which, 1

A

s s
ρ α

< =
+

 . Here, s β= , which we discussed in the beginning 

of this section. After passing s , we lose the complete synchronization between 
(2.1) and (2.2). 

Remark 1 Consider the drive system (2.1) becomes periodic with period  , 

i.e., n nX X+ =


. Then, for the values 1

A

s
ρ α

<
+

, the non-linear coupled dy-

namical system (2.1) and (2.2) become completely synchronized. In other word, 

1 1lim 0n nn
Y X+ +→∞

− =  

Here, similar to the proof of theorem (2.3), we decompose the nonlinear dy-
namical system (2.1) and (2.2) into linear and non-linear part. In this case, using 
triangular inequality we have: 

( ) ( )( ) ( )1 Ae n s e nρ α+ ≤ +


 

We know that 

( )lim lim 0n nn n
e n Y X

→∞ →∞
= − =  

Therefore, for ( )( ) 1As ρ α+ <


 we have 

( )lim 1 0
n

e n
→∞

+ =  
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for which, 1

A

s s
ρ α

< =
+

 . 

2.2. Local Dynamics, Attractors and Attracting Set of 
Drive-Response System 

We continue this section by seeking appropriate closed subset nΩ∈  in which 
for drive and response system (2.1) and (2.2); where ( )0 1, , , nX X X X=   and 

( )0 1, , , nY Y Y Y=  , the following conditions hold: 
1) for all ,X Y ∈Ω , then ( ) ( ),f X f H∈Ω ∈Ω×Ω . 
2) f is a contraction on Ω . 
The Jacobian matrix for drive-response system (2.1)-(2.2) has the following 

form: 

( )

( ) ( )

0
:

f X
XJ

f H f H
X Y

∂ 
 ∂ =
∂ ∂ 
 ∂ ∂ 

                   (2.7) 

We can immediately obtain the following result: 
Proposition 2.4 Given Jacobian matrix (2.7), for which the following inequa-

lity holds: 

: max 1J iJ ρ λ β= = ≤ <                  (2.8) 

where β  is the contraction constant, Jρ  is the spectral radius of J and iλ  
for 1, ,i n=   are the eigenvalues of Jacobian matrix J. Then, the mapping f is a 
contraction and the drive-response system (2.1)-(2.2) satisfies the complete 
synchronization properties, i.e. 

( ) 1 1lim 1 lim 0n nn n
e n Y X+ +→∞ →∞

+ = − =  

Proof. By contraction mapping theorem. Assume that the eigenvalues of the 
Jacobian matrix (2.7) have absolute values less than one. Then, using the con-
traction mapping theorem, f satisfies the contraction properties and would be a 
contraction mapping. Therefore, for the Equation (2.4) we can write: 

( ) ( )( ) ( ) ( )1 1 n n n n ne n f s X sY f X Y X e nβ β+ = − + − ≤ − =  

where, β  is a contraction constant. Thus, for contraction constant 0 1β≤ < , 

( ) 1 1lim 1 lim 0n nn n
e n Y X+ +→∞ →∞

+ = − =  

which means that the drive-response system (2.1)-(2.2) satisfies the complete 
synchronization properties. 

The schematic representation for this type of coupling to obtain complete 
synchronization has been demonstrated in Figure 1. 

Recall from the theorem (2.3) that the linearization of a given autonomous 
drive-response problem discrete dynamical system can be written as the form: 

( ) ( )1 : ,n n n nZ h Z JZ h Z+ = = +                 (2.9) 
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Figure 1. The schematic diagram for complete synchronization in a dis-
crete-time drive-response dynamical system. 

 
where, ( ),Z X Y=  and 2 2: n nh →   is a sufficiently smooth governing tran-
sition function. 

Remark 2. For drive-response system (2.9), the following hold: 
1) For all Z ∈Ω×Ω , then ( )h Z ∈Ω×Ω . 
2) h is a contraction on Ω×Ω . 
Therefore, we have the following statements for system (2.9). 
Proposition 2.5 Consider the drive-response system 2 2: n nh →   which is 

defined on a closed subset 2nΩ×Ω ⊂   and satisfies the conditions in remark 
(2.2). Then, there exists a unique *Z  with ( )* *h Z Z= . In another word, if (2.8) 
holds, then the drive-response system (2.9) has a unique fixed point. 

Remark 3 According to the well known contraction mapping theorem, the 
converse of proposition (2.5) does not necessarily hold. 

For drive-response system (2.9), we can establish notions of sequential con-
vergence and hence of stability for drive-response system (2.9). We now provide 
a general theorem which is the result of proposition (2.4). 

Theorem 2.6 Let 2 2: n nh →   be a continuously differentiable map de-
fined on a closed subset 2nΩ×Ω ⊂   and let J satisfying the form (2.7) be the 

Jacobian matrix of drive-response system (2.9) with ( ) 1
f X

X
∂

<
∂

 and  

( ) 1
f H

Y
∂

<
∂

. Then, the following hold: 

1) The solutions ( ),Z X Y= ∈Ω×Ω  of drive-response system (9) completely 
synchronized. 

2) Equilibrium *Z  of drive-response system (9) is stable; i.e. 
for any 0ε > , there exists 0δ >  such that *Z Z δ− <  implies that 
( ) *h Z Z ε− <  for 0> . 

Proof. The proof is straightforward. 
Remark 4 In theorem (2.6), hyperbolicity is a robust property and it is one of 

the most important assumptions. 
It has been experimentally observed that there may be some situations in 

which the response system is stable but the response system has complex dy-
namics and the reason is using non differentiable link function or any 
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non-differentiable transport system. In this study, we take the advantages of us-
ing a continuous convex link function which can completely control over the 
behavior of response system and we will numerically show that the response 
system inherits the same qualitative dynamics as its drive system and even for 
smaller synchronization threshold, the response system and drive system are 
almost completely equivalent. 

3. Application of Chaos Synchronization in Population  
Dynamics 

The chaotic behavior may be observed experimentally in natural systems in 
many scientific areas. Chaos can be defined as irregular and unpredictable time 
evolution of non linear systems. Main characteristic of chaos is sensitivity on in-
itial conditions and that system does not repeat its past behavior. Despite the fact 
that chaotic systems are sensitive to initial conditions, it has been experimentally 
shown that the chaotic oscillators could be coupled. Chaos synchronization oc-
curs when a chaotic oscillator drives another chaotic oscillator and is a very im-
portant phenomenon which has been occurred widely in ecological systems [27] 
[28] [29] [30]. Because of importance of synchronization and its consequences 
on population dynamics, we study Ricker model and its synchronized system 
and we present their qualitative dynamics using different dynamical system 
tools. 

The Ricker model is one of the most widely-used ecological models which 
displays regular and irregular complex nonlinear dynamics [31] [32] and its 
coupled system as the following form: 

( ) ( )
( )11

1 1 1: 1 e
x n

r
kR x n x n

 
−  

 = + =                 (3.1) 

( )
1

2 2: 1 e
Hr
kR x n H

 − 
 = + =                   (3.2) 

where 

( ) ( )1 2 1 2, : 1H x x s x sx= − +                   (3.3) 

Here, 1x  demonstrates the population size of drive system, 2x  represents 
the population size of response system, r is the intrinsic growth rate, k is the 
carrying capacity of the environment, ( ]0,1s∈  is synchronization threshold 
and ( ) 2

1 2, :H x x →   is a link function which has been used to couple (3.2) 
and (3.2). Thus, if drive system 1 :R →  , the corresponding response system 
would be 2

2 :R →  , where H is a function of 1x  and 2x . 
For drive-response (3.2)-(3.2), the steady states are ( )0,0 , ( )*

20, x , and 
( ),k k . The Jacobian matrix for (3.1)-(3.2) has the form 

1

1

1 1

1 2

0
:

R
x

J
R R
x x

∂ 
 ∂ =
∂ ∂ 
 ∂ ∂ 

                      (3.4) 
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where 

1 1 1

1

1 exp 1R rx xr
x k k

∂     = − −    ∂     
 

( ) ( ) ( )( )1 21 21

1

11
1 exp 1 1

s x sx rs x sxR s r
x k k

 − + − + ∂
= − − −     ∂    

 

( ) ( )1 2 1 21

2

1 1
exp 1 1

s x sx s x sxR s r
x k k

 − − − +   ∂
= − −     ∂     

 

Then, at the origin we have 

( ) ( )0,0

e 0
1 e e

r

r rJ
s s

 
=   − 

 

and for the positive fixed point ( ),k k  we have 

( ),

1 0
1k k

r
J

s r rs s rs
− 

=  − − + − 
 

Also, for ( )*
20, x , 

( ) ( )*
2

* * * *
0, 2 2 2 2

e 0

1 exp 1 1 exp 1 1

r

xJ x x r x xs r s r
k k k k

 
 

=            − − − − −                         

 

Proposition 3.1 The local stability analysis results for the fixed points of 
(3.1)-(3.2) are summarized as below: 

1) The equilibrium point ( )0,0  for lnr s< −  is a saddle point, and for 
lnr s> −  is an unstable fixed point. 

2) The equilibrium point ( ),k k  is a stable point in the interior of positive 
quadratic if ( )1 1 ,0 1s r r< − < <  and ( )1 1 ,1 2s r r> − < < , or  

( )1 1 ,0 1s r r< − < <  and ( )1 1 ,1 2s r r< − − < < . ( ),k k  is a saddle point if 
( )1 1 , 2s r r> − >  or ( )1 1 , 2s r r< − − > . 

3) The equilibrium point ( )*
20, x  for ( ) ( )* *

2 2exps k r x k k k x > − −   or 
( ) ( )* *

2 2exps k r x k k x k < − −   is an unstable point, and for  

( ) ( )* *
2 2exps k r x k k k x < − −   is a saddle point. 

To study the global stability of the equilibrium points of both systems, at first 
we prove that all solutions in the first quadrant 2

+  are eventually bounded. 
Theorem 3.2 For 0, 0r k> >  and initial conditions in the first quadrant 2

+ , 
i.e. ( )1 0 0x >  and ( )2 0 0x > , for system of (3.1)-(3.2) we have: 1 0x >  and 

2 0x >  for all n +∈ . In addition, we can find some positive number M, such 
that ( ) ( ){ }1 2max ,

n
x n x n M+∈

≤


. 
Proof. By induction. 

Since ( )1 0 0x >  we have 
( )1 0

exp 1 0
x

r
k

  
− >     

, hence 

( ) ( )
( )1 0

1

1 11 0 e 0
x

r
kx x

 
−  

 = >  
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Assume that for n l≤ , we have ( )1 0x l > . Then for 1n l= +  we have 

( ) ( )
( )11

1 11 e 0
x l

r
kx l x l

 
−  

 + = >  

Therefore ( )1 0x n >  for any n +∈ . Similarly, since ( )1 0 0x >  and  

( )2 0 0x > , we have 
( ) ( ) ( )1 21 0 0

1

e
s x sx

r
k

− + 
−  

   is positive. Hence, 

( ) ( ) ( ) ( )( )
( ) ( ) ( )1 21 0 0

1

2 1 21 1 0 0 e 0
s x sx

r
kx s x sx

− + 
−  

 = − + >  

Assume that for n l≤ , we have ( )2 0x l > . Then for 1n l= +  we have 

( ) ( ) ( ) ( )( )
( ) ( ) ( )1 21

1

2 1 21 1 e 0
s x l sx l

r
kx l s x l sx l

− + 
−  

 + = − + >  

Therefore ( )2 0x n >  for any n +∈ . To find an upper bound, we know, 

( ) ( )
( )

( ){ }
11

1 11 e max
x n

r
k

x
x n x n f x

+

 
−  

 

∈
+ = ≤


 

If we define ( )
1

e
xr
kf x x

 − 
 = , then ( )

1
1 e

xr
krxf x

k

 − 
  ′ = − 

 
 and ( )f x  has 

critical points at 
kx
r

= . Since ( ) 0f x′ >  if 
kx
r

<  and ( ) 0f x′ <  if 
kx
r

> , 

then 
kx
r

=  is the maximal point of ( )f x , i.e. ( ){ }max
x

kf x f
r+∈

 =  
 

. 

Hence, 

( ) ( )
( )1 11 1

1 1
e1 e max e

x n x rr rk k

x

k kx n x n x f M
r r+

    −−  −   
   

∈

    + = ≤ = = =   
   

 

Similarly, 

( ) ( ) ( ) ( )( )
( ) ( ) ( )1 21

1

2 1 2

11 1

1 1 e

ee max e

s x n sx n
r

k

H H rr r
k k

x

x n s x n sx n

kH H M
r+

− + 
−  

 

    −− −   
   

∈

+ = − +

  = ≤ = = 
  

 

Therefore, we can find some positive number M, such that  
( ) ( ){ }1 2max ,

n
x n x n M+∈

≤


. 
Theorem 3.3 If there are positive constants 0m >  and 0M >  such that the 

solution ( ) ( )( )1 2,x n x n  of system satisfies 

( ) ( )
1

1 1
e0 lim inf lim sup

r

n n

km x n x n M
r

−

→+∞ →+∞
< ≤ ≤ ≤ =  

( ) ( )
1

2 2
e0 lim inf lim sup

r

n n

km x n x n M
r

−

→+∞ →+∞
< ≤ ≤ ≤ =  

Then, system (3.1)-(3.2) is persistent. If system is not persistent, it is called 
non-persistent [33]. 
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Theorem 3.4 Given 0, 0r k> >  and initial conditions ( )1 0 0x >  and 
( )2 0 0x >  in system (3.1)-(3.2), if the following conditions hold: 

1) 1 11 exp 1 1rx xr
k k

    − − <    
    

 

2) 
( ) ( )1 2 1 21 1

1 exp 1 1
s x sx s x sx

s r
k k

 − + − −   
− − <         

  

Then for drive-response system (3.1)-(3.2) for ( )1 2,x x ∈Ω×Ω  we have, 

( ) ( ) ( )2 1lim 1 lim 1 1 0
n n

e n x n x n
→∞ →∞

+ = + − + =  

where 

( ) ( ) ( ){ }
1

1 2 1 2
e, | max ,

r

x

kx x x n x n
r+

−

∈

 
Ω×Ω = ≤ 

 
          (3.5) 

Proof. Using theorem (2.6), since Ω×Ω  is closed and the conditions of 
proposition (2.4) are satisfied, therefore the solutions of drive-response system 
(3.1)-(3.2) are completely synchronized and the error between the solutions 
converges toward zero. 

3.1. Phase and Amplitude Synchronization in Population  
Dynamics 

We begin with two important concepts in theory of synchronization of chaotic 
systems: a) mean phase difference, b) mean amplitude difference. We analyze 
these two types of synchronizations for drive-response population model 
(3.1)-(3.2) which have been coupled using the proposed link function. We con-
sider the oscillations of this discrete-time population system as being synchro-
nized if their phases coincide repeatedly and they have identical mean amplitude. 
These two types of synchronization have been studied widely in science, nature, 
engineering, or social life [34]-[39] and before using them, we briefly define 
them. 

Definition 3.5 We call two systems are in phase synchronization if they have 
equivalent mean phase or they have a constant difference in phase. We define 
mean phase for two oscillators as 

1
1

N
nn

n n nX X
N

τ

τ
τ

=
+

Φ
Φ ≡ − ⇒ Φ = ∑               (3.7) 

where, Nτ  is the number of cycles within a time τ . 
In fact, for two non-identical oscillators, phase synchronization happens when 

their phases evolve in synchrony but their amplitude remain unsynchronized. 
Definition 3.6 We call two systems are in amplitude synchronization if they 

have identical mean amplitude. We define mean amplitude for two oscillators as 

1
N

nn A
A

N

τ

τ

== ∑                         (3.8) 

Remark 5 The mean amplitude and mean phase are qualitatively similar with 
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each other. 
Figure 2 demonstrates the mean phase difference, i.e. 

2 1R RΦ −Φ  and the 
mean amplitude difference, i.e. 

2 1R RA A−  corresponding to Ricker model and 
its synchronized model (3.1) and (3.2). As we can see, using these two tools, we 
can numerically catch the threshold at which the systems (3.1) and (3.2) satisfy 
the phase synchronization and amplitude synchronization properties. 

3.2. Complete Synchronization in Population Dynamics 

In this section, we study the complete synchronization for drive-response system 
(3.1)-(3.2) using some qualitative methods which have been used frequently to 
detect chaos. In order to understand some dynamical behaviors of systems in-
cluding period doubling bifurcations and chaotic oscillations, we picked a single 
parameter bifurcation, which can demonstrate how dependence is the dynamics 
of the systems on a certain parameter. 

Figure 3 demonstrates the solutions of drive system (3.1) (red color) and re-
sponse system (3.2) (black color) with different initial conditions and some in-
teresting r values while 0.5s = . 

For 1.3r =  and 0.5s =  both drive and response system (3.1)-(3.2) evi-
dently, exhibit the sigmoidal approach to carrying capacity reminiscent of the 
logistic model. For 1.9r = , we have damped oscillations toward steady state 
which is because of two biological phenomena at first, the population which 
started below carrying capacity does not smoothly approach steady state through 
a phenomenon called as overcompensation and then this follows by the second 
phenomenon called undershooting, which is due to further overshooting. If we 
increase r further, for the value 2.1r =  we see that these damped oscillations 
follows by a 2-cycle pattern and they are diverging from the steady states. Simi-
larly, for 2.2r =  and 2.4r = , the oscillations follow a 2-cycle pattern. Finally, 
for 3.8r =  we can see the occurrence of unpredictable, irregular and chaotic 
oscillations. 
 

 
Figure 2. The mean phase difference and the mean amplitude difference for 
drive-response system (3.1)-(3.2) when 3r = . 
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Figure 3. Evolution of host population 1x  and its coupled 2x  in time with two 
different initial conditions for drive-response system (3.1)-(3.2) when 0.5s =  and 

10k = , drive system (red color) and response system (black color). 
 

In Figure 4 and for the case 0.95s = , we have almost the same dynamics as 
we had for 0.5s = . As we can see, for larger values of threshold s, we do not get 
completely synchronized cycles. 

Indeed, displayed dynamics in Figure 3 and Figure 4 are not special to the 
Ricker model, but are common features of discrete time population models. 

For Figure 5, we explain some general properties which have been shared 
between the drive-response system (3.1)-(3.2) in common. As we can see, with 
increasing r the value of carrying capacity k is increasing. However, for 2r ≈  
the branch corresponding to stable steady states bifurcates through pe-
riod-doubling bifurcation into a 2-cycle. As we increase r further, the interval 
over which we have a new period reduces, and as we know this smaller and 
smaller windows are called Feigenbaum cascade which after them the dynamics 
become aperiodic. As we expected, the bifurcation diagram of drive-response 
system (3.1)-(3.2) for greater values of s, shows the same types of dynamics for 
drive and response system, but not completely synchronized. 

The Poincare section and power spectrum of drive-response system (3.1)-(3.2) 
have been displayed in Figure 6 for the case 0.95s = , 3r =  and 10k = . Bas-
ically, the Poincare section can be constructed by sampling the phase portrait 
which helps to simplify the complicated dynamical systems. It is known that pe-
riodic behavior corresponds to a fixed point in Poincare section and any chaotic 
dynamics can be detected by set of distinct points in Poincare map. Moreover, 
the wideband chaotic signals and periodic signals can be easily distinguished 
from each other using the frequency spectra. Therefore, as we understood from 
bifurcation diagram, drive-response system (3.1)-(3.2) experiences the chaotic 
dynamics for 3r =  and as we expected for large values of s we can not establish 
a complete synchronization. 

4. Conclusion 

Synchronization in population dynamics can lead to arising complex dynamics 
and understanding the synchronization of oscillations is crucially important in  
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Figure 4. Evolution of host population 1x  and its coupled 2x  in time with two 
different initial conditions for drive-response system (3.1)-(3.2) when 0.95s =  and 

10k = , drive system (red color) and response system (black color). 

 

 
Figure 5. Bifurcation diagram of Ricker model and its coupled with the error between 
their attractors for 0.95s =  and 10k = , drive system (red color) and response system 
(black color). 
 

 
Figure 6. Poincare section and Spectrum for Ricker model and its coupled with 
corresponding error for 0.95s = , 3r =  and 10k = , drive system (red color) and 
response system (black color). 
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this area. In this study, we developed a new drive-response system by defining a 
convex continuous link function which maps the orbits of the drive system 
keeping the same qualitative properties such as stability and periodicity into the 
orbits of its coupled system. As has been shown by L. M. Pecora and T. L. Car-
roll, in 1990, two Lorenz systems with the property of sensitive dependence on 
the initial conditions could be synchronized starting from different initial states. 
We extended this result into discrete-time dynamical systems and we have 
shown that by using the concept of convex function, we can force the orbits of a 
discrete-time drive-response system starting from different initial conditions to 
get synchronized and we observed that this coupling method can be successful 
for drive-response system (3.1)-(.3.2) to get a complete synchronization when 
the synchronization threshold has smaller values, closer to zero. We also 
changed the values of synchronization threshold s in its range between (0,1) and 
we observed that the response system (3.2) for larger values of synchronization 
threshold s is not completely synchronized with its original drive system (3.1) 
and when we increased the values of synchronization threshold s, we also no-
ticed that the qualitative behaviors of both systems remain the same, even 
though, we do not get a complete synchronization between the solutions of drive 
and response system (3.1)-(3.2). In chaotic regime, for larger values of synchro-
nization threshold s, closer to one, we could not get a complete synchronization. 
But, for smaller synchronization threshold s, closer to zero, we have shown that 
two systems are in complete synchronization even though the dynamics is chao-
tic. 
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