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Abstract 
One of the principal difficulties related to road safety management in Brazil is 
the lack of data on road projects, especially those on rural roads, which makes 
it difficult to use road safety studies and models from other countries as a 
reference. Updating road networks through the use of hyperspectral remote 
sensing images can be a good alternative. However, accurately recognizing and 
extracting hyperspectral images from roads has been recognized as a challeng-
ing task in the processing of hyperspectral data. In order to solve the afore-
mentioned challenges, Hyperion hyperspectral images were combined with 
the Optimum Forest Path (OPF) algorithm for supervised classification of rural 
roads and the effectiveness of the OPF and SVM classifiers when applied to 
these areas was compared. Both classifiers produced reasonable results, how-
ever, the OPF algorithm outperformed SVM. The higher classification accu-
racy obtained by the OPF was mainly attributed to the ability to better dis-
tinguish between regions of exposed soil and unpaved roads.  
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1. Introduction 

Traffic accidents in Brazil stand out in terms of magnitude, both in number of 
deaths and injuries as well as in their financial consequences for users and for 
society. According to the World Health Organization’s world ranking [1], 37,345 
traffic deaths were recorded in 2016 by the Ministry of Health’s Mortality In-
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formation System (SIM). The country remains far from the goal established by 
the United Nations (UN), which stipulates a 50% reduction in the number of 
victims over 10 years, beginning in 2011, and it ranks fifth among countries with 
the most traffic deaths, behind only India, China, the United States, and Russia. 
In 2016, 301,351 accidents were recorded, of which 169,163 occurred on federal 
highways inspected by the Federal Highway Police (PRF), representing approx-
imately 56% of the total number of accidents. Of these accidents that occurred 
on federal highways, 4% had fatalities, 37% had injuries, and 59% were accidents 
where only property damage occurred. Approximately 67% of fatal accidents 
occurred in rural areas [2]. Due to the growth in traffic accidents, the sectors re-
sponsible are increasingly being questioned with regard to road quality and 
safety. 

Although there are a variety of methods available to detect road safety prob-
lems, detailed analysis of road accidents remains one of the main indicators of 
network deficiencies. The decision-making process in road safety management 
depends on indicators that can objectively express the safety level of the compo-
nents of a given transportation network [2]. In this sense, researchers have sought 
to relate historical series of traffic accidents to the geometric and operational 
attributes of the road using statistical regression models called Accident Predic-
tion Models (MPA) or road safety performance functions. Although MPAs have 
been explored for more than two decades in countries such as Canada, the United 
States, England, and Sweden, in Brazil they are still in an incipient stage of de-
velopment. 

According to IPEA/ANTP [1], the particular characteristics of Brazilian traffic 
(pedestrians crossing outside of the crosswalk, only motorized vehicles stopping 
at traffic lights, lack of bicycle lanes, radars only reducing vehicle speed 100 me-
ters before and after, among others) make it difficult to use studies and data 
from other countries as a reference source. It is necessary to search for data that 
express the Brazilian reality and that allow studies to be based on these data. It is 
therefore necessary to collect traffic accident data that allow these studies to be 
carried out, generate diagnoses, and indicate alternative solutions to the prob-
lems detected. One of the main difficulties, within this context, is related to the 
scarcity of computerized databases on accidents [3]. What does exist may also 
have flaws in collection and consequently little data reliability. 

For many municipalities in Brazil, the only maps available showing their ter-
ritories are those provided by the Brazilian Institute of Geography and Statistics 
(IBGE). These are often complex, outdated, and little known, causing the local 
reality and the cartography to be far apart. 

When it comes to geometric road design, the problem is even greater. Around 
70% of Brazilian highways were built in the 1960s and their projects are either 
on paper or digitalized as PDF files. According to Augusto Nardes, auditor of the 
Federal Audit Court (TCU), in an interview with the Globo newspaper [4], lack 
of planning is one of the TCU’s biggest concerns and that this can be evidenced 
by the absence of necessary documentation (basic design, planning, and others) 
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in the execution of transportation projects. Another aggravating fact is that tra-
ditional methods for updating maps have not kept pace with the increase in the 
number of roads caused by the country’s socioeconomic growth in recent dec-
ades, either due to the difficulty of accessing some locations, the difficulty in 
finding specialized technical personnel or the high cost. 

Because the updating of cartographic information is not just a topic of tech-
nical interest, but, above all, of economic and social interest, cartographic up-
dating projects are being carried out with the use of geoprocessing and remote 
sensing techniques, beginning with Geographic Information Systems (GIS) and 
interpretation of satellite images, making data available in digital format. For 
Salbego et al. [5], the availability of information in digital format allows for the 
costs of the updating and replacement processes to be reduced, because products 
generated from GIS can be updated, edited, printed, and duplicated faster and 
more easily than those generated through traditional methods. 

For more than 80 years, aerial photographs have been an indispensable tool 
for the development of a variety of engineering projects, such as highways, gas 
pipelines, transmission lines, and many others in Brazil. The spatial resolution of 
these images has greatly increased in recent decades, enabling their use in the 
implementation of highway projects. The automatic or semi-automatic extraction 
of roads can be the most convenient way to overcome the problem of the lack of 
project documentation for road safety.  

Finding an efficient way to extract road networks automatically or semi-auto- 
matically is an important topic that has been discussed in many studies [6] [7] 
[8] [9] [10], in which different methods and algorithms have been used. Most 
studies agree that extracting roads from aerial images is a complicated task due 
to occlusion, shadows, and trees, as well as the different types of roads that ap-
pear in aerial images, and these conditions make it difficult to accurately extract 
roads [11] [12] [13] [14]. In addition, although many road extraction methods 
based on sensory images have been used in various studies, most of them were 
designed for urban or high-quality roads [15], while few are applicable to rural 
roads.  

Despite the great potential for information extraction, image classification 
techniques face some challenges, such as the large amount of data to be processed, 
which can reduce classifier efficiency. Traditional pattern recognition methods 
for multispectral classification of remotely-sensed images are based on standard 
statistical techniques such as maximum likelihood [16]. These methods do not 
produce satisfactory results for hyperspectral imaging because they have a li-
mited ability to resolve confusion between classes, especially classes with some 
spectral similarity. 

The methods based on machine learning algorithms (Machine Learning Algo-
rithms—MLA) have been applied to extract relevant information from hyper-
spectral data. The most popular approaches for hyperspectral image classifica-
tion, such as SVM and ANN, have a considerable time limitation for large data-
bases, especially in the training stage. To speed up SVMs to solve this problem, 
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some variations have been developed, such as LASVM and SVM without Kernel 
mapping. The former is limited to binary classification and the latter considera-
bly reduces the classification accuracy in cases of class overlap [17]. 

A new classifier that has been highlighted in the literature is a technique called 
Optimum-Path Forest (OPF). The OPF proposes to classify patterns using graph 
theory concepts [18] [19]. This approach emerged as a generalization of the Im-
age Foresting Transform (IFT) [17]. Due to its ease of use and efficiency during 
data training, it has been shown to be an interesting approach to classification 
problems [18]. As the technique is relatively recent in the literature and there are 
few studies on strategies to extract road segment information from hyperspectral 
images, this paper proposes to introduce the OPF algorithm to extract road 
geometric features from hyperspectral images and evaluate the effectiveness with 
a comparison between multi and hyperspectral images. The OPF classifier is not 
a substitute for deep networks, but can be used as a complement. The idea in this 
manuscript is not to act directly on feature extraction, as deep learning does, but 
on the classification stage, and the OPF can be used with the features learned by 
these networks. 

In this method, a geometric base of rural roads will initially be built from road 
segments extracted from the image. Then, techniques for grouping and recon-
structing missing segments from the road network will be used.  

2. Background 
2.1. Use of Remote Sensing Data to Identify Geometric Features of  

Roads 

When classifying roads with remote sensing data, identification of small objects 
and linear features is important, while a high spatial resolution is required for 
more accurate classification [20]. Generally, satellite images with submetric spa-
tial resolution are generated only available in a single panchromatic spectral 
range. Multispectral images generally have lower spatial resolution than pan-
chromatic bands. This may not be sufficient to accurately distinguish the roads 
present. 

Hyperspectral imaging systems are characterized by the division of the elec-
tromagnetic spectrum into a large number of bands (over 40) and are the result 
of technological advances in imaging. The narrow (typically 10 to 20 nm wide) 
and contiguous bands allow for the extraction of reflectance spectra at the pixel 
scale [21]. High spectral resolution allows for a more detailed analysis of land 
cover spectral signatures and human action than multispectral images [22]. The 
use of images to extract road features is not recent, however, separating land use 
classes such as roads and urban areas is not an easy task. The use of hyperspec-
tral images for highway projects is still incipient and the perspective is that geo-
metric characteristics of roads can be identified more simply with image spec-
troscopy. 

When extracting highway information from data generated by remote sens-
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ing, it is often more important to have high spatial resolution than high spectral 
resolution. However, for Taherzadeh et al. [23], hyperspectral remote sensing 
has great potential for application in the analysis of complex urban scenes. Low 
spatial resolution images make it difficult to identify roads. However, even for 
high spatial resolution sensors, if the materials present in the scene have a simi-
lar spectral response, they may be confused, depending on the number of bands 
used in the image acquisition process. In fact, the use of a hyperspectral sensor 
improves the chances of differentiation of these materials and their correct iden-
tification in the scene. The narrower the spectral bands, that is, the higher the 
spectral resolution of the sensor, the more detail about the spectral response of 
the targets can be extracted, making it possible to considerably reduce misclassi-
fication. 

The characteristics of the road system’s linear features in digital images are 
mainly linked to the spectral and geometric properties of the target, which di-
rectly influence the extraction processes. The pathways in a Remote Sensing im-
age, from the geometric and spectral point of view, can be considered as narrow 
and continuous ranges of high brightness intensity, bordered by low intensity 
regions [24]. Xi and Weng [24] further state that the brightness intensity does 
not vary greatly over short distances along roads, due to the fact that their spec-
tral properties are similar over short stretches. Geometrically, a pathway is 
usually composed of straight and curved segments, most commonly in the form 
of circular arcs. Eslami and Mohammadzadeh [25] describe rural or non-urban 
road sections of a digital image as having characteristics such as constant width, 
continuous curvature change, and homogeneous local distribution. 

In low-resolution images, roads appear mainly as lines that form a more or 
less dense network, and are directly related to the degree of anthropogenic oc-
cupation of the region [26]. In this type of image, the pathways are expressed as 
lines about 1 to 3 pixels wide and then modeled as lines in the extraction process 
[27]. In high resolution images, geometric features such as structure and shape 
play a crucial role in recognizing the road network. Road network extraction 
over hyperspectral images has great advantages over multispectral images in that 
it increases the ability to discriminate the materials that make up the road sur-
face from most other types of materials that make up the landscape. 

The main advantage of hyperspectral remote sensing in road studies is the 
ability to measure spectral features or identify unique absorption bands present 
in materials in this environment. The large number of contiguous bands allows 
for the extraction of information about the chemical and physical properties of 
materials [28]. A target that is difficult to identify by traditional multispectral 
sensors can therefore be discriminated by hyperspectral sensors depending on 
the spectral features present in the pixels. 

However, due to the spatial variability of spectral signatures, the extraction of 
hyperspectral image characteristics is widely recognized as one of the most chal-
lenging tasks in processing hyperspectral images [29] [30]. Many existing me-
thods use manual classification [19] [27] [28] [31] [32] [33], which involves the 
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experience of specialists. Gabor filters [34], adaptive filters [35], and Markov 
chains [36] are often adopted. In recent years, pattern recognition methods have 
caused widespread interest in remote sensing [37] [38] [39]. They are considered 
to have great potential for classifying hyperspectral images. From training sets, 
the pattern recognition methods can effectively describe the characteristics of the 
data. Automated information extraction from images attempts to reproduce how 
the brain can interpret features. One way to make image interpretation simpler 
is to separate groups of pixels with similar spectral characteristics, that is, to recog-
nize patterns. Pattern recognition involves techniques for assigning patterns to 
their respective classes automatically with minimal human interference. 

The classification algorithm needs training to classify an image based on cat-
egories of interest. This training defines whether the process is supervised or 
unsupervised. When there is already prior knowledge of the area and it is possi-
ble to identify points as samples, the classification is called supervised. Unsuper-
vised is when the definition of the most frequent groups in the image is done 
automatically by the computer, analyzing the distribution of the digital values. 
Supervised classifiers can be either parametric or nonparametric. Parametric 
supervision presupposes a knowledge of the statistics of the data, while nonpa-
rametric does not require an a priori statistical distribution. 

When unsure of the Gaussian distribution of data, nonparametric algorithms 
are most often recommended for classification, such as SVM (Support Vector 
Machine) and Decision Tree classifiers, which are supervised rather than para-
metric. Although widely used to classify images from remote sensors, they re-
quire a lot of computational effort to achieve acceptable accuracy rates in a test 
suite. They often become unfeasible in situations that require constant data re-
training and especially in applications with large data volumes. 

Detailed studies of deep learning models for processing remote sensing data 
have been carried out. Chen et al. [29] propose a classification strategy based on 
deep belief networks (DBN). The multilayer DBN model is designed to learn the 
characteristics of the hyperspectral data, and the characteristics learned are then 
classified by logistical regression. Ding et al. [40] propose a method for classify-
ing hyperspectral images based on convolutional neural networks (CNN), where 
convolutional nuclei can be automatically learned from the data through group-
ing. Wu et al. [41] propose a convolutional recurrent neural network (CRNN) 
for classifying hyperspectral data. Convolutional layers are used to extract locally 
invariant resources, which are then fed with some recurring layers to further ex-
tract contextual information between different spectral bands. Li et al. [42] pro-
pose a CNN-based pixel pair extraction structure for classifying hyperspectral 
images. A pixel pair model is designed to exploit the similarity between pixels 
and ensure a sufficient amount of data for CNN. 

Some set learning methods based on the support vector machine [20] [31] 
[43] have achieved good classification performance with hyperspectral imaging 
systems. However, one of the biggest difficulties lies in estimating the parameters 
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of a statistical classifier from a generally limited number of training samples. In 
the classification process, the accuracy typically increases as additional informa-
tion, i.e., new spectral bands, is added. The accuracy of the classifier reaches a 
maximum at a certain point, where the introduction of additional bands causes 
it to decrease. This is the well-known Hughes phenomenon, resulting from the 
uncertainty in the estimated values for the classifier parameters, an effect caused 
by a small number of training samples compared to the dimensionality of the 
data. 

Gao et al. [44] used Random Multi-Graphs (RMG), which are a graph-based 
set method that uses systematically-constructed trees created from random-
ly-selected subsets of resources. In other words, the trees are built in randomly 
chosen subspaces. Inspired by this randomness, the performance of the hyper-
spectral image classification can be improved to mitigate the well-known Hughes 
phenomenon. However, graph-based set learning methods have rarely been con-
sidered for hyperspectral image classification. 

Although there are many studies and methods for extracting roads based on 
remotely-sensed images [45]-[50], most were designed for urban roads or high- 
quality images, making few of them applicable to rural roads [15]. In their study, 
Jian et al. highlight three problems related to rural roads. First, the variability of 
materials used for pavement (asphalt, cement, gravel, stone, etc.) that have dif-
ferent spectral signatures can be a problem when the above methods are applied. 
Second, rural roads are generally narrow, and some road segments can be com-
pletely obscured by shadows from clouds, buildings, or other elements of the 
network. Third, rural roads have more curves than urban roads. It is difficult for 
existing methods to extract complete roads. Another problem with rural roads, 
specifically in Northeast Brazil, is the predominantly caatinga vegetation. In pe-
riods of drought, these plants can be easily confused with exposed soil and un-
paved roads. 

This study makes use of the graph-based machine learning model, which was 
rarely considered for classification of hyperspectral images. In particular, this 
method introduces OPF in hyperspectral classification for use in geometric de-
sign of roads. 

2.2. OPF Classifiers 

An optimal path forest classifier (OPF) was presented by Papa et al. [19], with 
two proposed variants: unsupervised and supervised, which are subdivided into 
full graph OPF and nearest k-neighbor graphs (k-NN), the most widely-used 
graphs. This model has produced good results when applied to other problems 
[17] [18] [51]. For this classifier, a forest is created where the nodes are descrip-
tors. A complete adjacency relationship is considered for these nodes, and a dis-
tance function is used to define the relationships between the nodes. Within the 
forest, trees are classified in such a way that each tree is associated with a class. 
The same class can be represented by more than one tree.  
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This form of constructing the classifier allows non-linearly separable classes to 
be represented, with spatially dispersed samples [51]. Every supervised classifier 
is built from an initial training phase, in which a set of samples representative of 
each class to be characterized is provided. Subsequently, the classifier must be 
able to determine to which class a new sample presented belongs. In the case of 
the OPF classifier, the set of training samples is modeled using a labeled graph in 
which each sample is represented by a vertex. These vertices are organized into a 
forest, that is, a set of trees. Each tree in the forest contains only vertices of the 
same class, and for the same class there may be several trees. In this way, each 
class is characterized by a set of trees within the built forest. 

To generate the set of representative trees for each class, this method applies a 
process of maximizing the connectivity map between samples of the same class. 
In this process, each vertex receives a value characterizing the cost of its connec-
tivity to its group. This value is associated with the lowest cost path of that vertex 
with some prototype vertex of its tree. The prototype vertices are those within 
the tree that are closest to the vertices of another class. 

To classify a new sample, the vertex having the lowest connectivity cost with 
the new sample is sought from within the entire forest. The class of that vertex is 
assigned to the new sample. 

The OPF presented results similar to SVM and better than neural networks 
and Bayesian classifiers. The biggest difference is the execution time, which can 
be faster depending on the size of the database [52] [53].  

Using CBERS-2B CCD satellite imagery covering a sedimentation area of the 
Pedras river in the city of Itatinga, Sao Paulo, Brazil, Souza, Lotufo and Rittner 
[31] compared the OPF classifier with the ANN-MLP, BC, and SVM classifiers. 
Although the results were similar to SVM, OPF was 65 times faster, especially 
relevant for large data volumes. Freitas et al. [32] estimated rainfall in agricul-
tural areas using GOES satellite weather images, and compared OPF classifiers 
with SVM, ANN-MLP, and K-NN, with OPF demonstrating a superior runtime. 
OPF recognized collapsed areas from GeoEye-MS satellite imagery, yielding re-
sults similar to cutting-edge techniques [33]. Papa et al. [54], proposed a method 
combining the OPF classifier with three optimization algorithms (PSO, HS, and 
GSA) to mitigate the problem of reducing hyperspectral image data through 
band selection. The combination of OPF with HS and GSA has produced prom-
ising results. Macedo et al., [43] used the combination of Hyperion hyperspectral 
imagery with the Optimum Forest Path (OPF) algorithm for supervised classifi-
cation of areas affected by desertification and compared the efficacy of the OPF 
and SVM classifiers when applied to these areas. Validation of the land cover 
thematic maps was performed based on confusion matrix analysis using the 
same set of validation points for consistency. Both classifiers produced reasona-
ble results, however, the OPF algorithm outperformed SVM. The higher classi-
fication accuracy obtained by OPF was attributed principally to the ability to 
differentiate better between degraded areas (DA, DOC, and DP) and preserved 
areas (PGP and PDP). 
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3. Materials and Methods 
3.1. Study Area 

The scope of the analysis was the BR 232 Highway between km 141 and 356, la-
titudes 8˚02'30''S and 8˚39'27''S and longitudes 36˚11'56''W and 37˚48'57''W 
(Figure 1). This 255km stretch of rural highway passes through the municipali-
ties of São Caetano, Pesqueira, Arcoverde, Cruzeiro do Nordeste, and Custódia, 
in northeastern Brazil. The principal economy of the region, commerce and ser-
vices, is experiencing and economic crisis worse than the rest of Brazil. The 
Gross Domestic Product (GDP) of the northeast region, over the past year, grew 
at a rate only half that of Brazil’s average. In 2018, the northeastern GDP grew 
only 0.6%, while Brazil’s rose 1.1%. With a real average monthly worker income 
of US 385.00$, Northeast Brazil still relies heavily on the federal public sector for 
investments in infrastructure and road safety [4]. 

The choice of areas was influenced by the availability of data for some road 
sections obtained from the DNIT road base and the Open Street Map (OSM) 
cartographic base. The diversity of the geometry (straight stretches and curves)  
 

 
Figure 1. BR 232 Highway, between km 141 and 356. 
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of the features of interest (road network) made it possible to test the proposed 
methodology for different situations. The most recent images available that cov-
er the areas of interest having good radiometric quality and/or being free of 
cloud cover were used. 

3.2. Proposed Method 

Figure 2 shows the architecture of the proposed approach. In the area to be 
processed, a Gaussian filter will be used to soften the original image and remove 
noise to improve the image quality. The edge detection algorithm will be used to 
detect high gradient regions within the image. The edge image will be generated 
and candidate road segments will be identified. Based on geometric knowledge, 
the adjacent candidate road segments will be linked together. For road segments 
missing because of image quality, occlusion, or other reasons, inference methods 
will be used and, finally, the complete road vectors will be extracted. The fol-
lowing sections describe the main modules of the architecture. 

3.3. Data Pre-Processing Landsat 8 

The digital image processing was carried out using satellite images from the 
TM/Landsat 8 sensor of orbits/points 215/66. The image used in the study was 
obtained free of charge through the database of the National Institute for Space 
Research (INPE), with a spatial resolution of 30 meters and six spectral bands in 
the reflected spectrum, from visible to shortwave infrared, dated from March 
2015. 
 

 
Figure 2. Proposed method. 
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At first, a study area was delimited using six bands (b1, b2, b3, b4, b5, b7, b8, 
and b9) from the TM/Landsat 8 sensor image, in which RGB (Red, Green, Blue) 
color compositions were created using different combinations of bands. These 
compositions made it possible to choose the best way to establish an interpreta-
tive analysis of the coloration of the study area, exposing different colors for dif-
ferent spectral behaviors of the targets within the image. The composition used 
to obtain the signatures was RB4 G (0.65 * [B3] + 0.35 * [B5]) B (0.85 * [B3] − 
0.15 * [B5]), as it proved to be the most suitable for the study. This combination 
of bands is good for discerning variations in a landscape that does not contain 
an abundance of vegetation. The combination of geology bands has an impor-
tant application for finding geological resources. This includes roads, degraded 
areas, and caatinga-type vegetation. 

3.4. Data Pre-Processing Hyperion 

The hyperspectral image used in the experiments was a section of the scene 
216/65, supplied by the USGS, which covers a semiarid region of the state of 
Pernambuco between latitudes 8˚02'30''S and 8˚39'27''S and longitudes 36˚11'56''W 
and 37˚48'57''W, acquired by the Hyperion sensor. Hyperion has 242 10 nm-wide 
bands with 30m spatial resolution and covers a range from 400 to 2500 nm of 
the electromagnetic spectrum. 

The bands sensitive to water absorption (bands 121 - 130, 166 - 180, and 233 - 
242) and the uncalibrated bands (233 - 242) were removed by default, using the 
Erdas Imagine image processing software. After the analysis of the remaining 
207 bands, the bands with many negative reflectance values were removed (1 - 12 
and 58 - 76). The resulting image composed of 159 spectral bands was converted 
to ASCII format, resulting in a matrix of 159 columns and 75,452 instances. 

3.5. Extraction of Road Geometric Features 

The semiautomatic methodology developed for the extraction of the road net-
work from images using the OPF supervised classifier is presented below. 

3.5.1. Removal of Noise 
To improve image quality, a Gaussian filter was adopted in order to identify a 
function to normalize the levels for each color. It is therefore necessary to de-
termine the mean values and standard deviation for each color. The result of the 
processing of a given image with the Gaussian filter applied can be accompanied 
with the generation of a graph of the Gaussian distributions, in which each curve 
represents the RGB colors. According to [55], linear smoothing filters use a linear 
function capable of blurring and reducing noise in the image. This pre-processing 
is important to perform the extraction of larger objects. Noise can vary in bright-
ness because of failures in the capture phase, failures in the transmission phase, 
or even because of steps performed in the pre-processing. The use of these linear 
smoothing filters calculates values for each pixel in the image by averaging the 
intensity levels of its neighbors, which are defined by a mask of size m × n. 
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3.5.2. Roadway Detection 
The detection of road elements requires, in addition to the satellite image itself 
(in RGB format), a mask where the streets, unpaved roads, and other places of 
interest are represented. Elements such as trees can interfere with the identifica-
tion of objects of interest and, therefore, the first step of the method is to identify 
and subsequently remove them, so that the region of importance is reduced. For 
this purpose, the image is converted to the HSV (hue, saturation, and value) 
color spectrum. The purpose of this step is to improve accuracy when working 
with a color image. 

In the filtering algorithm, where road identification is performed, the bright-
ness value (V) (which varies between 0 and 1, with 0 meaning black and 1 
meaning white) is assigned a certain threshold. Then, all pixels that have a value 
below the chosen threshold are assigned a value of 0. To improve and enhance 
the image, the saturation (S) was set to a value of 50%.  

After the road identification process, other undesirable elements that can 
corrupt the data analysis are eliminated. Elements that represent buildings can 
be confused with traffic routes and for that reason they should also be removed. 
To do this, the image mask (mentioned at the beginning of the section) is re-
quired. The algorithm that performs this step consists of assigning the value 0 
(black) to the spaces corresponding to the building elements in the analyzed 
image, based on the mask. 

3.5.3. Edge Detection 
After the initial pre-processing steps, the image is submitted to an edge detection 
algorithm. This step consists of looking for sudden variations (discontinuities) of 
color intensity, as this helps the objects and their characteristics (area, geometric 
shape) to be easily identified. In this study, it was decided to use the Sobel edge 
detection algorithm, as it has advantages over its competitors in the scope pro-
posed by this study, giving more weight to the points close to the center pixel, 
which allows it to obtain more prominent edges. 

3.6. Reconstruction of Segments Missing from the Road Network 

Through the classification process based on defined rules, it was possible to de-
lineate the most relevant sections of the road network present in the scenes under 
study [56]. However, due to occlusions from elements such as trees and build-
ings, there were still separate and non-continuous road sections after the initial 
stages. Some features of interest were not completely extracted and other fea-
tures that were not of interest (noise) were detected. This is due to the limita-
tions imposed by the images under study. Routines based on morphological op-
erators were therefore introduced, which allowed non-extracted linear features 
of interest to be obtained, as well as preprocessing, filtering, and further refine-
ment of solutions. All routines were developed in ArcGis software.  

To recover the lost features of interest in the classification, a morphological 
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reconstruction operation was used, which consists of applying successive dila-
tions to a marker image until it fits into a second mask image. As a marker im-
age, the binary image produced from the results of object-based classification 
was used, where elements belonging to the roads are represented by the value 
one (1) and background elements by the value zero (0). This was initially used to 
enhance the roads, using a full mask structuring element of size 3 × 3. This op-
eration can be considered as a high-pass filter, which in addition to extracting 
high frequency information, also performs image smoothing [57]. After that, a 
thresholding operation was performed on the filtered image to separate the hig-
hlighted features of interest. The most appropriate threshold was determined by 
using the histogram of the filtered image. 

3.7. Refining the Features of Interest and Obtaining the Road  
Network 

The extracted features, according to the procedures described above, are linear 
segments in the form of polygons that represent the stretches of the road net-
work. To obtain the paths in the form of simple lines, representative of the mid-
dle axes of the segments, it was at first necessary to apply operations to connect 
small disconnected sections and eliminate gaps as well as objects still present in 
the scene that are not part of the roads. Initially, the small discontinuous sec-
tions were connected using a dilation operation. Subsequently, the gaps were 
eliminated using the morphological closure operation. The area opening opera-
tion was the next step, applied to remove objects smaller than a certain number 
of pixels that are not part of the roadways. In all of these operations, a 3 × 3 full 
mask-shaped structuring element was used. To obtain the road network in the 
form of lines, the morphological thinning operation was applied until conver-
gence, that is, each road segment is represented by a single line, with a width of 
one pixel. 

The semi-automatic vectorization procedure was used for all of the highways 
present in the images. Layout was performed in the ArcGIS environment, setting 
the screen scale to 1:6000 in order to standardize target interpretation and obtain 
homogeneous and detailed reference line vectors. In this process, it was sought 
to delineate the center line of the roads. 

3.8. Comparison between Classification Algorithms 

To quantify the errors generated by the different classification techniques used 
in this study, error or confusion matrices were constructed, which allow for the 
data from the validation samples and the classification results to be compared. 
Among the most widely-used methods for assessing the reliability of a classifica-
tion is the Kappa index, which is an accuracy measurement technique that can 
be used to determine whether one error matrix is significantly different from 
another. This index is based on the difference between the overall accuracy (in-
dicated by the matrix diagonal) and the producer and consumer risk accuracy, 
which is indicated by the sum of the rows and columns of the confusion matrix. 
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Reliability is the main limitation in classifications from satellite images, gener-
ally with less than 90% accuracy [58]. Among the factors that interfere with ac-
curacy are the mixing pixels, the overlap between reflectance data from different 
targets in space, the low representativeness of the training samples, and the clas-
sifier’s own ability to deal with inconsistencies in the process [59]. 

4. Results 
4.1. Experiments 

The road classification process was performed using Erdas Imagine. As an initial 
step of this process, the objects were obtained through image segmentation. For 
image segmentation, a scale level of 40 was used, which implies discarding 40% 
of the lowest values of the gradient image, allowing only the most well-defined 
edges to be preserved. For grouping similar adjacent objects, three (3) spectral 
bands from the images were considered. The mask used was of size 3 × 3. The 
values used in the scale and merge parameters mentioned above were defined 
after performing various tests on both images under study, choosing those that 
best made it possible to individualize the objects of interest in the two scenes. 

The procedure for image classification used the following steps: color compo-
sition of the image (Figure 3), training areas and extraction of signatures 
(Figure 4), creation of the spectral curve graph, labeled map, segmentation, and 
final classification map. 
 

 
Figure 3. Composite bands RB4G (0.65 * [B3] + 0.35 * [B5]) B (0.85 * [B3] − 0.15 * [B5]). 
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Figure 4. Training areas, extraction of signatures, and segmentation. 

 

In the images Hyperion and LandSat 8 (Figure 5 and Figure 6), 10 classes of 
land covering for better area discrimination were identified: 1) Water—W, 2) 
Exposed Soil—ES, 3) Dry Dense Caatinga—DDC, 4) Green Dense Caatinga—GDC, 
5) Urban Area—UA, 6) Paved Road Asphalt—PRA, 7) Paved Road Concrete—PRC, 
8) Unpaved Road—UR, 9) Clouds—C and 10) Shadows—S. 

Samples from the 10 classes of soil covering, in proportion to the areas identi-
fied in the image, were used to generate three training sets. The first set was se-
lected based on the location of points collected in the field with a GPS, identify-
ing 8 classes. No field information was collected for the Clouds and Shadows 
classes. The second set was based on visual interpretation of the scene seeking 
similarity between the pixels. It was chosen based on multispectral images from 
the LANDSAT 8 OLI sensor, obtained at orbits/points 215/66, previously classi-
fied. The third set of samples was obtained through a spectral library without 
performing image classification. 

The training sets were divided into two new disjoint sets for training and test-
ing with 50% of the total samples in each one, 50% used to train the classifiers 
and 50% used to evaluate their precision (Table 1). 

Three main experiments were performed. The first was to evaluate the effec-
tiveness of OPF for classifying hyperspectral images with original hyperdimensional 
characteristics. In the second, a quantitative and qualitative comparison of OPF 
precision for data classification was made using multispectral images (Landsat 8) 
and hyperspectral images (Hyperion). In the third, a comparison is made be-
tween the OPF and SVM classification methods for hyperspectral images from 
the Hyperion sensor. For the OPF classifier, library C or LibOPF [54] was used, 
which is a design for optimal path forest classifiers. The same training set was 
used for the SVM classification. 

To compare the results obtained between the classifications of both sensors 
and classifiers, the confusion matrix was generated in Erdas Imagine software 
and the kappa coefficient was calculated according to literature [58]. 
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Figure 5. Hyperspectral Image classified using OPF algorithm (10 classes). 

 

 
Figure 6. Hyperspectral Image classified using SVM algorithm (10 classes). 
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Table 1. The training and testing samples for hyperion imagery data in northeast Brazil. 

Class Name 
Samples 

Dataset 1 Dataset 2 Dataset 3 

Water—W 42 49 74 

Exposed Soil—ES 54 196 356 

Green Dense Caatinga—GDC 574 984 2370 

Dry Dense Caatinga—DDC 138 786 1440 

Urban Area—UA 574 984 2370 

Paved Road Asphalt—PRA 76 1318 2278 

Paved Road Concrete—PRC 206 192 374 

Unpaved Road—UR 147 220 214 

Clouds—C 30 7 10 

Shadows—S 1020 2054 2752 

4.2. Supervised Classification 

At first, the classes described above were grouped and five classes were consi-
dered for image classification and comparison between hyperspectral and mul-
tispectral images using the OPF classifier: 1) Water—W, 2) Exposed Soil—ES 
(Exposed Soil + Unpaved Highway), 3) Vegetation—V (Dry Dense Caatinga + 
Green Dense Caatinga), 4) Urban Area—UA and, 5) Road—R (Paved Road As-
phalt). The classes of Paved Road Concrete, Clouds, and Shadows were not con-
sidered. This decision was based on the fact that the multispectral images do not 
present good separability between the constituent materials of the road (asphalt, 
concrete, gravel, etc.) [15]. Despite being a simpler experiment, it meets the 
needs of the Brazilian Northeast where most rural highways are asphalt. 

In both classifications, misclassification between urban area and highways 
occurred. Although Hyperion's classification accuracy was statistically superior 
to Landsat and both commission errors and omission errors were lower for all 
classes studied, it can be said that the quality of both classifications was similar 
(Figure 7 and Figure 8). Although the OLI sensor collects approximately 75 
times less data than the Hyperion sensor [60], the positioning and width of the 
spectral bands are sufficient to classify highways. 

Subsequently, the image classification for the Hyperion sensor was performed, 
considering the 10 classes described above using the OPF classifier (Figure 5). 
All experiments were repeated using the SVM classifier (Figure 6) in order to 
compare the results. 

Although low resolution satellite images are available for easy access, free of 
charge and on a large number of platforms, their use presents a real processing 
difficulty because they have a large amount of undesirable noise and imperfec-
tions that hinder feature extraction analysis. Pattern recognition is essential for 
remote sensing. However, in situations where the database is very large, the cost 
of training a classification algorithm may be unsatisfactory and time consuming.  
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Figure 7. Hyperspectral Image classified using OPF algorithm (5 classes). 

 

 
Figure 8. Multispectral Image classified using OPF algorithm (5 classes). 

 
In this paper, multispectral images (Landsat 8) and hyperspectral images (Hyper-
ion) were classified using the OPF classifier. Experimental results showed that the 
OPF obtained similar recognition rates. The study was a pioneer in the use of the 
OPF classifier to extract geometric road network features from hyperspectral im-
ages. These images store large volumes of data that ultimately reduce the efficiency 
of traditional classifiers such as SVM. OPF also had a longer execution time, but 
was 48 times faster than the classifiers tested in the training and testing stage. In 
the classification of the full image, OPF was about 180 times faster than other clas-
sifiers cited in the literature. Due to the greater amount of spectral information pro-
vided by the Hyperion sensor, the classification accuracy for this sensor's image was 
higher than that of the Landsat 8 sensor. The results were good with regard to 
both land use and land cover separation where spectral differences predominate 
when compared to classes in which the spectral signatures are very similar. The 
OPF for multispectral images also presented greater distinctions between regions 
of the studied areas (Urban Area and Roads). There was some small confusion 
between these areas, but this did not impact the final result of the classification.  

The quality of land use and land cover classification obtained from the OLI 
sensor image was similar to that obtained from the Hyperion sensor. Having a 
higher level of spectral detail in hyperspectral images provides better capability 
to see the unseen and distinguish between urban areas and roads because of the 
high spectral resolution. 
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4.3. Separability of the Classes 

Using the data from the six reflective bands of the OLI sensor, the accuracy in 
discriminating the five classes of interest in the studied scene was 96.5% with a 
Kappa value equal to 0.88. 

Regarding the discrimination of classes of interest using the first eight bands 
of Hyperion, the classification accuracy was 97.9% and the Kappa value was 0.93. 
The separability of the classes obtained by OPF-Hyperspectral showed a level of 
accuracy better than OPF-multispectral. Specifically, for the classes related to Roads 
(R), the OPF-Multispectral obtained 92.78% accuracy, while the OPF-Hyperspectral 
reached 99.75% accuracy for these classes (Figure 9). 

In the classification of multispectral data (Table 2), the smallest commission 
errors (pixels from other classes that were assigned to the reference class) and 
omission errors (pixels belonging to a reference class that were assigned to other 
classes) were observed for water (W), 1.34% and 2.88%, respectively, giving it 
the best performance of the classifier. Although 91.27% of the pixels belonging 
to the urban area class and 91.80% of the exposed soil class were correctly classi-
fied, the largest commission errors were observed for these classes. This indi-
cates that 32.28% of the pixels that were classified as urban area and 31.42% of 
those that were classified as exposed soil belong, in fact, to other classes. 

In the classification of hyperspectral data (Table 3), the best classification was 
also found for water (W), but with lower commission and omission errors (1.02% 
and 1.16%, respectively). 

In the classification of hyperspectral data considering the 10 classes of interest, 
the classification accuracy was 97.9% and the Kappa value was 0.93. Table 4 and 
Table 5 show the confusion matrix obtained for the classification of variables 
using the OPF and SVM classifiers, respectively. 
 

 
Figure 9. OPF-Hyperspectral × OPF-Multispectral separability. 
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Table 2. Confusion matrix for land use classes obtained from Landsat 8 images. 

Reference (%) Commission Omission 

Class R W V UA ES (%) (%) 

R 86.35 1.37 4.68 1.39 6.32 10.33 13.65 

W 1.04 97.16 1.74 0.35 0.21 1.34 2.88 

V 12.73 0.41 86.21 0.00 0.00 17.27 9.79 

UA 1.18 0.00 0.00 91.27 2.47 32.28 8.38 

ES 6.50 1.54 0.27 4.51 91.80 31.42 6.19 

Pixels 3283 1930 2326 432 797   

 
Table 3. Confusion matrix for land use classes obtained from Hyperion images. 

Reference (%) Commission Omission 

Class R W V UA ES (%) (%) 

R 89.00 0.2 9.14 1.74 4.12 9.63 11.78 

W 0.21 98.82 0.46 0.00 0.41 1.02 1.16 

V 10.51 0.10 94.40 0.00 0.00 13.70 9.45 

UA 1.18 0.00 0.00 93.01 0.41 23.77 6.99 

ES 1.04 0.57 0.00 0.69 95.06 1.55 5.13 

Pixels 3283 1930 2326 432 797   

 
Table 4. Confusion matrix for land use 10 classes obtained from Hyperion images (OPF). 

Class W ES DDC GDC UA PRA PRC UR C S 

W 98.0 0 0 0 0 0 0 0 0 0.12 

ES 0 65.22 2.38 0 0 0 0 19.88 2.32 0 

DDC 0 7.11 80.0 1.66 0 0 0 6.31 0 0 

GDC 0 0 0 90.0 0 0 0 0 0 0 

UA 0 0.98 0 0 88.90 0.28 4.74 1.65 1.63 0 

PRA 0 0 6.13 0 0 94.70 3.67 0 0 0.11 

PRC 0 0 0 0 0.67 0.34 70.00 0 0 0 

UR 0 14.34 0 0 1.12 0.11 1.22 58.35 0.36 0 

C 0 0 5.97 0 0 0 0 0 90.43 0 

S 0 0 0 0 0 0 0 0 0 94.0 

Pixels 0.85 0.75 0.62 0.72 0.64 0.81 1.00 0.87 0.48 0.32 

Ca 0 2.45 4.00 0.15 22.44 5.27 3.37 26.32 0.12 3.11 

Ob 0.12 15.29 5.88 4.72 20.13 1.13 15.21 0 0.41 1.12 

a. Commission b. Omission. 
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Table 5. Confusion matrix for land use 10 classes obtained from Hyperion images (SVM). 

Class W ES DDC GDC UA PRA PRC UR C S 

W 100.00 0 0 0 0 0 0 0 0 1.27 

ES 0 75.33 4.32 0 0 0 0 22.44 1.32 0 

DDC 0 5.12 81.1 1.74 0 0 0 5.20 0 0 

GDC 0 0 0 92.0 0 0 0 0 0 0 

UA 0 0 1.13 0 86.01 0.12 7.12 0 1.54 0 

PRA 0 0 0 0 0 97.01 0.73 0 0 0 

PRC 0 0 0 0 0 0.37 73.04 0 0 0 

UR 0 12.01 6.44 0 0 0 0 63.22 0 0 

C 0 0 0 0 0 0 0 0 91.3 0 

S 0 0 0 0 0 0 0 0 0 92.0 

Pixels 0.85 0.75 0.62 0.72 0.64 0.81 1.00 0.87 0.48 0.32 

Ca 0 0 5.00 0 20.44 4.76 2.34 23.48 0 2.17 

Ob 0 15 5.00 5.01 21.20 0 13.12 0 0 0 

a. Commission b. Omission. 

 

Classes W, PRA, C, and S were correctly classified, meaning that the classifiers 
were able to discriminate these classes. Among the road classes, separability was 
adequate for PRA (paved road asphalt), however for UR and ES, the spectral con-
fusion was evident. The spectral similarity of the two classes most likely favored 
confusion in the classification. The same occurred for the UA and PRC classes. 

It can be seen in Table 4 and Table 5 above that, of the 10 classes, three had a 
performance below 80% (ES 75%, UR 63%, and PRC 73%), three were between 
80% and 90% (DDC 81%, GDC 92% and UA 86%), and four classes obtained an 
overall accuracy index greater than 90% (PRA 97%, C 91%, S 92% and W 100%). 

4.4. Image Spectroscopy 

These results show that hyperspectral images perform better than multispectral 
images on roads with very subtle spectral differences, such as lane discrimina-
tion and exposed soil. The highways class has a spectral signature similar to the 
urban spectral signature, but despite the similarity in the intensity of the absorp-
tion characteristics, they have different spectral curves with regard to the mag-
nitude of reflectance (Figure 10). Imaging spectroscopy shows the ability of 
hyperspectral sensors to intercept electromagnetic energy in very narrow wave-
length ranges and detect small absorption characteristics. 

4.5. Results for Extraction of Road Segments 

Figure 11 and Figure 12 show the result of the edge detection for the images 
from the Hyperion sensor and from the LandSat 8 sensor for the study area. The 
left side shows the original image, while the right side shows the result of the 
edge detection. 

 

DOI: 10.4236/jgis.2020.121002 35 Journal of Geographic Information System 
 

https://doi.org/10.4236/jgis.2020.121002


M. Macedo et al. 
 

 
Figure 10. Spectral signature for the Urban Area (UA), Exposed Soil (ES), and Roads (R) 
classes. 
 

 
Figure 11. Edge detection for the Hyperion sensor image for the study area. 
 

 
Figure 12. Edge detection for the Landsat 8 sensor image for the study area. 
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It can be seen that the algorithms accurately detected all of the obvious gra-
dient changes in the image, however, the linear features are not so evident be-
cause of the low spatial resolution. Roads are identified more accurately in 
straight sections. Especially in Figure 12, where there are two types of roads, a 
concrete road and an asphalt road, the results of edge detection for both are 
good. However, on curved sections or near intersections, there are still a small 
number of incorrect features. It can be seen that the result is fragmented and few 
of the roads extracted are complete. This is probably because the spectral infor-
mation limited to a single pixel cannot reflect the characteristics of rural roads. 
These results are best when the training samples are replaced by the spectral 
signatures of the targets. Another point that is highlighted is that the roads ex-
tracted incorrectly are mainly those with vegetation shadows or intersections, 
which lead to inaccurate inferences or interconnection of road segments. In 
general, OPF performed better in the extraction of roads with different materials 
and those having major changes in curvature. 

Despite performance well in the identification of roads, the result from the 
classification alone is not sufficient to construct road bases that support the 
models of road safety, which need the geometric design for correct identification 
of straight and curved sections, as well as the radius of those curves. To com-
plement this classification, the extraction process based on the inference of geo-
metric characteristics is necessary [15]. A small test area (red rectangle) was se-
lected to better show the results (Figure 13). 

Figure 14 shows the result of the image segmentation (left) and the linear 
features extracted through OPF classification (right). Figure 15 is the result of 
linking candidate segments and inference of missing road segments. 
 

 
Figure 13. Selection of a test area (red rectangle). 
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Figure 14. Image segmentation (left) and linear features extracted using OPF classifica-
tion (right). 

 

 
Figure 15. Linking candidate segments and inference of missing road segments. 

4.6. Comparison of Results 

The results were evaluated using real field information, provided by Embrapa 
Soils—UEP Recife. The experiments were performed 10 times for each set and 
achieved high accuracy, with Kappa index values ranging from 0.6712 to 0.7857, 
and Global Accuracy ranging from 90.07% to 91.52%. The results show that OPF 
in multispectral images was approximately 96.92% accurate, being superior to 
hyperspectral images. The OPF showed good performance when working with 
large data volumes. SVM for multispectral images was approximately 96.92% 
and lower for hyperspectral images. Table 6 shows the accuracy and execution 
time. 

When the comparison performed was related to the performance of the data 
sets, it was demonstrated that, for all levels of detail, the ratings obtained using 
data from hyperspectral images showed significantly better results than the rat-
ings obtained using data from multispectral images for both classifiers. However, 
for hyperspectral images, the OPF classifier was superior. The execution time for 
the OPF classifier was on average 11 times faster than for SVM.  

This result shows that the accurate characterization of targets present in the 
urban environment requires a high spatial resolution, however, the combination 
of this important feature with the high spectral resolution can lead to more de-
tailed and accurate results. 
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Table 6. Mean accuracy and mean total execution time for supervised classifiers 

Method Accuracy rate (%) Time (s) 

OPF 96.92 ± 0.47 

OPF 97.00 ± 0.70 

SVM 94.92 ± 7.70 

SVM 93.12 ± 8.32 

5. Conclusions 

Brazil ranks fifth in traffic accident deaths, according to the United Nations. To 
reduce this number, effective road safety management actions are necessary. This 
management depends on many factors associated with accidents and the places 
where they occur. For this, the geometric road base is indispensable. However, 
most Brazilian municipalities do not have maps. This reality is even worse in the 
Brazilian Northeast and in rural areas, due to the difficulty of access and the high 
cost of mapping by traditional methods or using high resolution satellite images. 
Although high resolution spatial images are commonly used worldwide for road 
extraction, they are not feasible due to the high cost of acquisition. Multi- and 
hyperspectral images show satisfactory results, mainly due to the asphalt compo-
sition of most of the principal roads. However, hyperspectral images, are better 
for distinguishing various constituent materials (concrete, asphalt, exposed soil, 
etc.) due to their high spectral resolution. This lack of information regarding 
road design can therefore be solved with the use of hyperspectral images. The 
goal of hyperspectral remote sensing in road studies is the ability to measure 
spectral features or identify unique absorption bands present in materials in the 
environment. The large number of contiguous bands allows for the extraction of 
information about the chemical and physical properties of materials. A target 
that is difficult to identify by traditional multispectral sensors can therefore be 
discriminated by hyperspectral sensors depending on the spectral features present 
in the pixels. 

The results show that the OPF classifier obtained a better performance using 
hyperspectral images with an average hit rate of 97.90%. The use of satellite im-
agery can be an alternative in collecting information for accident databases. 

In general, the classification of images alone does not meet the needs of road 
safety models, where it is important to reconstruct and accurately identify the 
elements of the road network (straight segments, curved segments, radius of 
curves, etc.) for later association with accident data (location, type of accident, 
climatic conditions, among others). Therefore, geoprocessing techniques are 
necessary to properly elaborate these bases. The methodology proposed in this 
study for identifying and extracting roads from low-resolution satellite images 
using digital processing and pattern recognition produced results with a good 
level of accuracy. The worst results were found on unpaved roads and exposed 
soil. Other geoprocessing techniques, such as reducing the excessive number of 
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vertices, reconstructing curved elements, and smoothing segments can be added 
to improve the geometric quality of the road base. Additional work could also be 
carried out to examine the possibility of applying the proposed method using 
neural networks to classify road networks. 
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