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Abstract 
Medicinal Organometallic Chemistry keeps contributing to drug discovery 
efforts including the development of diagnostic compounds. Despite the li-
miting issues of metal-based molecules, e.g., such as toxicity, there are drugs 
approved for clinical use and several others are under clinical and pre-clinical 
development. Indeed, several research groups continue working on organo-
metallic compounds with potential therapeutic applications. For arguably his-
torical reasons, chemoinformatic methods in drug discovery have been ap-
plied thus far mostly to organic compounds. Typically, metal-based molecules 
are excluded from compound data sets for analysis. Indeed, most software 
and algorithms for drug discovery applications are focused and parametrized 
for organic molecules. However, considering the emerging field of material 
informatics, the objective of this Commentary we emphasize the need to de-
velop cheminformatic applications to further develop metallodrugs. For in-
stance, one of the starting points would be developing a compound database 
of organometallic molecules annotated with biological activity. It is con-
cluded that chemoinformatic methods can boost the research area of Medi-
cinal Organometallic Chemistry. 
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1. Introduction 

Organometallic and inorganic compounds attract a large interest because of 
their broad range of biological activities [1]. Metal-containing compounds in clin-
ical use and under clinical development as well as relevant in diagnostic applica-

How to cite this paper: Medina-Franco, 
J.L., Cruz-Lemus, Y. and Percastre-Cruz, Y. 
(2020) Chemoinformatic Resources for Or-
ganometallic Drug Discovery. Computation-
al Molecular Bioscience, 10, 1-11. 
https://doi.org/10.4236/cmb.2020.101001 
 
Received: January 13, 2020 
Accepted: February 10, 2020 
Published: February 13, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/cmb
https://doi.org/10.4236/cmb.2020.101001
https://www.scirp.org/
https://orcid.org/0000-0003-4940-1107
https://doi.org/10.4236/cmb.2020.101001
http://creativecommons.org/licenses/by/4.0/


J. L. Medina-Franco et al. 
 

 

DOI: 10.4236/cmb.2020.101001 2 Computational Molecular Bioscience 
 

tions have been discussed extensively in the literature. Indeed, metallodrugs and 
some inorganic molecules offer large benefits as diagnostic tools [2] and are as-
sociated with the field of metalloimaging. Metallodrugs have diverse mechan-
isms of action [3] and therapeutic applications of which one of the more ex-
plored are anti-cancer followed by antibacterial activity. Another important point 
is the therapeutic application that covers not only human but also veterinary 
consumption which expands the field of application and the opportunities for 
success.  

Organometallic compounds also are attractive because they can explore novel 
molecular targets not addressed by the currently available chemical space (de-
fined mostly by organic compounds). Similarly, emerging molecular targets such 
as epigenetic could be conveniently addressed by novel compounds located out-
side the traditional drug-like space. In addition, metallodrugs offer distinct fea-
tures that could be useful for complex diseases best addressed by multi-target 
approaches [4]. 

Despite the fact organometallic compounds have general concerns such as tox-
icity and cost (particularly considering a “large” production), organometallic drugs 
have attractive and distinct structural features with the ability to augment the 
relevant medicinal chemical space, ideally balancing novelty with relevance [5]. 
One of the distinct structural features of organometallic drugs is molecular com-
plexity that is well-known to have a major impact on drug discovery [6]. 

While molecular docking of metal-complexes and other modeling approaches 
are commonly conducted to explore compound-target interactions [7] [8], che-
moinformatic studies addressing aspects such as chemical diversity, visual re-
presentation of the chemical space, and similarity searching, to name a few, have 
been done on a more limited basis. However, they represent major areas of op-
portunity. Chemoinformatics arises from the combination of scientific and 
technological tools with the 3D understanding and manipulation of the chemi-
stry applied to therapeutic research. Although it has been applied to a larger ex-
tent to organic compounds, it is proposed that using these tools in organometal-
lic chemistry can provide good outcomes and generate significant advances in 
therapeutics. 

The main goal of this Commentary is to highlight major areas where, in the 
author’s opinion, chemoinformatic methods used to explore organic-based mo-
lecules can be extended to address the needs of the organometallic-based drug 
discovery. After this short Introduction, several areas of opportunity or applica-
tion are discussed. They are not arranged in strict order of priority. 

2. Areas of Application 

Chemoinformatic methods are broadly used across several stages of the drug 
discovery process [9]. For historical reasons these approaches, boosted by the 
needs of pharmaceutical companies, have been developed and applied to organic 
compounds. Unlike organic compounds, organometallic compounds have had 
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much less therapeutic applications, which is even more noticeable when it comes 
to the application of chemoinformatics for its development. In fact, in several me-
thods and chemoinformatic protocols metal-based compounds are excluded from 
the analysis. The practice of filtering out compounds is typically done when work-
ing with medium-to-large chemical databases for analysis of chemical diversity 
or to develop predictive models, to name a few examples. However, as mentioned 
earlier, these types of practices have had little or no application in organometal-
lic molecules. One reason to remove metal-based compounds is its overall low 
frequency in most major chemical databases used in drug discovery currently 
available. A second and perhaps more strong reason to exclude metal-containing 
molecules is the lack of appropriate parameters to address the presence of metal 
atoms in the chemical structures. 

In this section of the Commentary we outline several areas where chemoin-
formatic methods commonly used in current drug discovery can be applied to 
study organometallic compounds. 

2.1. Database of Organometallic Compounds for Drug Discovery 

Perhaps one of the most relevant and straightforward applications of chemin-
formatics to study organometallic compounds is related to compound databases. 
Indeed, compound databases play a significant role in drug discovery [10]. Ei-
ther public, in-house (mostly private), virtual, and on-demand [11], are key re-
positories to store, organize, and mine chemical and biological information. Major 
compound databases used in drug discovery have been reviewed extensively else-
where [12]. Despite the fact these large compound databases include some or-
ganometallic molecules, the vast majority are small organic molecules and the 
few organometallic molecules that are included do not have information that is 
useful for the development of other new molecules, but they are limited to 
common parameters. In fact, as commented in the Introduction, while characte-
rizing the chemical diversity of such databases, a common practice is filtering 
out metal-containing molecules. 

To the best of our knowledge, there are no large compound databases that 
store and organize the information of organometallic molecules annotated with 
biological activity. Therefore, building, curating and maintaining a database of 
this kind is a major area of opportunity to integrate informatics methods to or-
ganometallic drug discovery. To address this need, a proof-of-principle database 
is D-InoDB [13]. This database with still a limited number of compounds so far, 
contains information of molecules approved for clinical use and under clinical 
development. 

Compounds databases with organometallic compounds can be further devel-
oped in a web-based application (vide infra). Similar to other databases of organic 
compounds, a database of organometallic compounds annotated with biological 
activity can facilitate a large number of analysis such as structure-property (ac-
tivity) relationships—QSP(A)R—including activity landscape modeling [14], data 
mining, and virtual screening, to name a few. The compound database can be 
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made publicly accessible and be like ChEMBL and or PubChem [15]. With such 
a database, accessibility to organometallic compounds would increase, promot-
ing progress in research and proposing new studies. 

2.2. Molecular Representation 

A cornerstone in chemoinformatics is molecular representation [16]. The ap-
propriate description of the molecules is the most important first step towards 
virtual any qualitative or quantitative analysis. This can be clearly seen in studies 
such as QSP(A)R where the selection of the descriptors is key to obtain a predic-
tive model. In some instances, “simple” 2D descriptors can be enough to obtain 
a useful and predictive model. In other instances, more accurate descriptors are 
required to capture the molecular shape and 3D information for explaining 
and/or predicting biological activity or assessing metal-binding sites in proteins 
[17]. 

The accuracy and speed of the calculation to compute 1D, 2D or 3D descrip-
tors are one of the most sensitive points considering that as the overall accuracy 
of the descriptors increases, the calculation speed decreases. This is particularly 
relevant for metal-based molecules while selecting the descriptors to be com-
puted. Therefore, it is essential to keep in mind the application of the description 
to optimize resources. While there are several methods based on quantum me-
chanics to describe accurately metal-based compounds, such methods are still 
not suited to manage efficiently large amounts of structures. In addition, the ex-
isting (including calculated) information and descriptors on these molecules is 
not uniform and is not available for use. 

Molecular Fingerprints 
In cheminformatics, molecular fingerprints are common representations of or-
ganic compounds and several different types have been developed. In general, 
such fingerprints are computed very rapidly and are appropriate to analyze even 
thousands or millions of compounds efficiently. In turn, such representations 
are the basis to perform several analyses such as similarity searching, diversity, 
and clustering analysis (including qualitative, quantitative and visual analysis). 

A general approach to generate appropriate molecular fingerprints for orga-
nometallic compounds is developing a typical (dictionary or topological) finger-
print for the organic portion of the molecule and then adding a fingerprint de-
veloped for the metal portion. A bottleneck of this approach is the speed of the 
calculations to compute the metal portion. A workaround to address this issue 
can be to generate large compound databases with the values pre-calculated for 
different metals. 

2.3. Diversity Analysis 

In drug discovery, common practice and useful chemoinformatic analysis is the 
quantification of the molecular diversity of compound databases [18]. For in-
stance, to identify novel hits it is generally desirable to screen compound data-
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bases with large structural diversity. The working hypothesis is that testing sev-
eral different scaffolds with varied side chains will increase the probability to 
identify one or more promising compounds. That is why it is necessary to design 
libraries that have a chemical space with relevance and with tools that help to 
maximize the possibility of identifying leads molecules, responding to the detec-
tion demands of structurally diverse compounds. 

To address the need for generating diverse libraries, organic chemists have 
developed “diversity-oriented-libraries” [19]. Another approach is the “libra-
ries-from-libraries” [20]. In lead optimization, in contrast, a general approach is 
screening compound data sets with lower molecular diversity e.g., high structur-
al similarity to the active, lead molecule. In other words, in lead optimization it 
is more common to explore focused regions in chemical space. Examples of data 
sets aimed to address this need are the “focused” and “targeted” libraries. For all 
these cases, i.e., to select diverse or focused and less diverse libraries, experi-
mental chemists (medicinal, organic or inorganic) can readily identify and select 
compounds that meet the desired criteria of diversity. However, when dealing 
with medium-to-large compound databases it becomes more difficult to assess 
molecular diversity in an accurate manner. This is clear when purchasing data 
sets available from third parties (commercial vendors, for instance). Therefore, 
diversity analysis is standard practice when analyzing organic small molecules. 
The methods available for this type of molecules can be readily extended to ana-
lyze the diversity of organometallic compounds. To this end, the development of 
molecular fingerprints appropriate for organometallic molecules (vide supra) 
can be the basis to measure the diversity. Such molecular fingerprint representa-
tions or other appropriate representation based on continuous values can be used 
as the basis to apply diversity metrics such as the Tanimoto coefficient, Eucli-
dean distance or other diversity metrics available [16]. It would remain to assess 
the most suitable fingerprint representations and diversity metrics tuned for or-
ganometallic compounds. 

2.4. Chemical Space 

The concept of chemical space [21] is also quite relevant in drug discovery for 
several purposes. Although there is not a single, correct definition, one concept 
is a multi-dimensional space for set (ideally all chemical possible) compounds 
[22]. The concept of chemical space is the basis to perform studies that include 
but are not limited to QSP(A)R studies (e.g., it is used as a matrix that contains 
the descriptors and biological activity); diversity analysis; clustering and visual 
assessment of diversity; comparative studies assessing the similarity or differences 
among compound data sets. A suitable chemical space can be used as a standard 
for profiling most structural sets of interest [23]. 

Since the chemical space depends on chemical representation, there are no 
“unique” or “invariant” chemical spaces. Despite the large dependence of the 
chemical space with structural representation, quantitative and qualitative anal-

https://doi.org/10.4236/cmb.2020.101001


J. L. Medina-Franco et al. 
 

 

DOI: 10.4236/cmb.2020.101001 6 Computational Molecular Bioscience 
 

ysis of the chemical space of organic molecules is now relatively straightforward 
to study. Indeed, it is fairly common to find visual representation of the chemi-
cal space of compound data sets from different sources such as synthetic mole-
cules (e.g., from diverse designs), natural products (e.g., from different geo-
graphical sources or natural origin) [24] [25]. This is largely in part due to there 
are “standard” representations and descriptors available for organic compounds. 
However, there is no visual representation of the chemical space comparing bio-
active organic vs. organometallic compounds. This is due to largely in part, the 
lack of appropriate molecular descriptors suited to represent a large number of 
organometallic molecules in an efficient manner. As commented above, finger-
print representations of organometallic molecules will boost the qualitative and 
quantitative analysis of its chemical space. 

2.5. QSP(A)R, Machine Learning, and AI 

QSP(A)R and more recently machine learning and other artificial intelligence 
(AI) methods are being used heavily in drug discovery [26] [27]. In retrospective 
studies, one of the main interests of QSP(A)R models is to explain the biological 
activity at the molecular level or provide a rational basis of activity through the 
association of quantitative descriptors with a biological endpoint. The QSP (A) R 
studies are necessary to handle the information obtained from the detection me-
thods already used. In machine learning and artificial intelligence, retrospective 
studies aim to learn as much as possible of the data to then predict the activity of 
new molecules. The prediction of biological activity is also one of the major 
goals of QSP(A)R studies. While QSPR methods are conducted regularly for or-
ganometallic and inorganic compounds to explain or predict properties such as 
chemical reactivity and other properties of interest in material science [28], the 
methods have not been largely used to predict biological activity. This is another 
major area of opportunity forchemoinformatics. A starting point to develop such 
methods can be the assembly, curation and maintenance of compound databases 
of organometallic molecules such as D-InoDB discussed above. A database like 
that containing information of organometallic molecules annotated with biolog-
ical activity can be the starting point to do SAR or structure-multiple activity re-
lationships (SmART) [29]. 

2.6. Virtual Screening 

In silico also called virtual screening of compound databases has been a very 
useful approach to identify hit compounds [30]. Compound databases from dif-
ferent sources such as synthetic libraries, natural product data sets [31], and 
even virtual libraries (where compounds are cherry-picked for synthesis and ex-
perimental testing) are screened regularly. To this end, two general approaches 
structure-based and ligand-based methods are employed. As discussed in detail 
elsewhere, the method of choice will depend on the experimental information 
available for the system e.g. if the 3D structure of the molecular target is known 
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or not. Examples of virtual screening techniques include but are not limited to 
docking, pharmacophore-based screening, similarity searching, and combinations 
of the above. In the latter cases, also named cascade or sequential approaches, 
fast (but less accurate) methods are applied first to rapidly filter large amounts of 
compounds followed by more accurate but slower methods to select molecules 
for experimental testing. At the end of the process factors such as availability of 
the physical samples are considered (e.g., commercial availability and cost, for 
instance, if the compounds are commercially available). 

Similarity Searching 
One of the ligand-based techniques frequently used in virtual screening is simi-
larity searching. The rationale of these approaches is that similar compounds have 
similar activity (if there are no activity cliffs [27], that is, molecules with similar 
chemical structure but very different and unexpected large activity difference). 
In this case, the chemical structures of all the molecules in a compound library 
are compared systematically with the chemical structure of one or several active 
molecules that are used as reference or queries. Two key components to perform 
similarity searching are the molecular representation and a similarity measure 
[16]. For molecular representation is common to employ a molecular fingerprint 
because they are quite fast to compute (vide supra).Thus, applying chemoinfor-
matics tools as a whole such as virtual screening, the use of fingerprints and the 
search for molecular similarity, we can expect to find a result that, although not 
definitive, gives an overview or a guide to what is being sought. 

Thus far, similarity searching has not been reported for organometallic com-
pounds, but it can be easily performed once an efficient molecular representa-
tion is developed. To this end, molecular fingerprints suited for organometallic 
molecules can boost the application of this technique to identify novel hit com-
pounds. In addition to molecular fingerprints, other molecular representations 
can be employed. 

2.7. ADME/Tox Profile 

Absorption, distribution, metabolism, excretion, and toxicity (ADMETox) are 
key properties in drug development that characterize the evolution of a drug 
candidate within the body. Several lead compounds and clinical candidates fail 
due to inappropriate ADMETox characteristics. The reliable prediction in silico 
of these properties for small organic compounds remains an active area of re-
search [32]. This is particularly true for organometallic compounds that are usual-
ly excluded from the studies due to their both challenging behavior and not so 
attractive applications (vide supra). However, there is a significant amount of 
ADMETox data reported in the literature that could be used to develop predic-
tive models in the same or similar manner they are generated and optimized for 
small organic molecules. Thus, the predictive models can be further used to pre-
dict the properties of compounds in external data sets considering, of course, 
that they fall in the applicability domain of the structures used to generate the 
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models. Based on these models, programs or servers can be generated that allow 
predictions of the toxicity of new compounds.Predictive and validated models to 
predict the ADMETox profile of organometallic compounds can be stored and 
used through webservers, similar to the tools currently available to predict the 
properties of organic small molecules (vide infra). 

2.8. Webservers 

A broad number of chemoinformatic resources and methods are now available 
to the scientific community through webservers. A considerable number of such 
servers are publicly accessible [33] [34]. Chemoinformatic servers focused on 
organic small molecules include, but are not limited to, the generation and anal-
ysis of molecular descriptors, visual representation of the chemical space, diver-
sity analysis, and servers to predict the ADMETox profile of compound data 
sets. Other servers are dedicated to hosting compounds and predictive models. 
As discussed above, the servers are focused on organic molecules such that a com-
mon preparation or curation step to analyze compound data sets is to remove 
compounds containing metals. Therefore, we consider that a significant are of op-
portunity to advance Medicinal Organometallic Chemistry is to develop, main-
tain and update web-severs able to manage and deal with organometallic mole-
cules. Such servers can be used for hosting maintaining and mining compound 
databases, calculation of descriptors including molecular fingerprints, and the 
prediction of properties—including ADMETox—using validated QSP(A)R mod-
els, to name a few. 

3. Conclusion 

Organometallic- and inorganic-based compounds are promising resources to 
address novel and emerging molecular targets. Similarity, metal-based medicinal 
agents can represent new alternatives to tackle difficult targets poorly addressed 
by the current traditional chemical space typically defined by small organic mole-
cules. In addition, organometallic-based compounds can be part of multi-target 
approaches used in combination with other biologics or organic small-molecules. 
While molecular modeling and docking of metal-complexes compounds are 
performed regularly to explore compound-target interactions, chemoinformatic 
approaches aimed to organize and manage the information of organometallic 
compound databases annotated with biological activity are still limited. Similarly, 
chemoinformatic approaches to study systematically the chemical diversity, vis-
ual representation of the chemical space, similarity searching, and SAR involving 
organometallic compounds are not fully developed. One of the key starting points 
to extend the cheminformatics to organometallic compounds is developing ap-
propriate and efficient molecular representations to describe, as accurately as possi-
ble, the structure of the compounds. Such representations will largely depend on 
the intended purpose of the analysis, for instance, data mining, exploration of the 
chemical space, diversity analysis, molecular interactions drug/compound-molecular 
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targets, and SAR, to name a few. To this end, developing appropriate fingerprints 
can be a key component to treat organometallic compounds with chemoinfor-
matic methods. We believe that the tools and practices of chemoinformatics can 
board the challenges presented by current trends in drug discovery and design, 
however, there is a need to expand the traditional search field to obtain new and 
better results that with the application of other disciplines, a common objective 
is achieved, such as the development and discovery of drugs. We expect that this 
Commentary contributes to further develop the fields of Medicinal Organome-
tallic and Inorganic Chemistry. 
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