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Abstract 
Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused 
by Borrelia anserins, a species of Borrelia bacteria. In this paper, we present a 
compartmental mathematical model of the disease for the bird population 
and Tick population. The disease steady-state and the conditions for reaching 
a stable disease-free steady state are determined. The analysis by Lyapunov 
method shows both local and global stability. Further investigation involves 
the introduction of controls to the model; the existence and uniqueness of 
optimal control are established. Finally, the effect of the controls is investi-
gated using numerical solutions. 
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1. Introduction 

Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused by 
Borrelia anserins, a species of Borrelia bacteria. It affects a variety of avian spe-
cies including chickens, turkeys, ducks, geese as well as game birds. Ticks are 
considered as the most important vector of disease-causing pathogens in domes-
tic and wild animals. In many countries, avian spirochaetosis has been reported 
to be one of the most severe diseases affecting poultry industry. In addition to 
the historical importance of avian spirochaetosis, the pathogenic agent is preva-
lent worldwide [1] [2]. 

The parasite is spread by a soft tick (Argas persicus) of the several species of 
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Argas ticks (fowl Tick family). The spirochete may be found in the blood of in-
fected birds during the beginning stages of the disease process. The ticks hide 
during the day in cracks and crevices, suck the fowls’ blood at night and intro-
duce the fever producing parasite Borrelia anserins. Ticks inoculate spirochetes 
by excretion of coxal fluid or by saliva when feeding on the birds [3]. The Ticks 
transmit the infection transovarially and through non-viraemic transmission [4]. 
Birds transmit the disease amongst themselves through infected faeces or by 
contacting with infected equipment [5]. Outbreak of the disease tends to occur 
during the peak tick activity, during warm, humid conditions. Clinically, the 
disease is expressed by drowsiness, anorxia, inappetence, greenish diarrhea, 
hyperthermia, paralysis of the legs and wings as well as sudden death of birds. 
Several antibiotics agents like penicillin, tetracycline and tylosin have been seen 
to be very effective in treating the infected birds [6]. Birds normally have protec-
tive immunity after recovering from natural infection. While many experimental 
and field studies of infectious disease spread and transmission, there is still a 
great need for more insight into the epidemiology of infectious disease, and de-
sign of control strategies. 

Mathematical modeling has become an important tool which can be used to 
guide the identification of critical intervention points aimed at minimizing dis-
ease-related mortality. Several mathematical studies have been made in the area 
of tick-borne disease with findings on potential management strategies [7], con-
trol effort for treatment of host and prevention of host-vector contact with mi-
nimal cost and side effect [8]. Other related models have placed more emphasis 
on non-viraemic transmission [9], relationship between vectors and their host 
and its correlation to tick-borne encephalitis infections in the region [10], 
tick-borne dynamics with conferred host immunity [11]. Majority of the models 
are based different classes of subsceptibles (S), Exposed (E), infectious (I), Re-
covered (R), leading to the deterministic SIR type model consisting of coupled 
ordinary differential equations [9] [12] or SEIR models [13]. Other models have 
used optimal control theory to obtain an optimal vaccination strategy using crit-
ical threshold values of vaccine coverage ratio, such models involve some mod-
ification of the deterministic model and inclusion of control parameters. 

Because of the relevance of the Avian Spirochaetosis disease, several papers as 
stated above have considered models for tick-fever infections. Apart from the 
use of compartmental deterministic models, some researchers have used solely 
computer simulations (see for instance [14]). The main emphasis of the papers 
reviewed above has been on the computation of the basic reproduction number, 
and consequently on the conditions for infection persistence. Due to the com-
plexity of most mathematical models, not much has been contributed in terms of 
control. Therefore, in this present study, we develop a mathematical modeling 
framework that incorporates demographic variability in a given population 
based on susceptibility, exposure and recovery. Specifically, we apply optimal 
control to the transmission dynamics of avian spirchaetosis disease in poultry 
birds. In addition to the model formulation, we address the question of existence 
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of steady states and stability of disease free equilibrium through the mathemati-
cal analysis and numerical solutions. Our goal is to determine optimal strategy 
model for the prevention and treatment of avian spirochoetosis in order to re-
duce incidence rate in poultry. To aid in the understanding of our key results, we 
have provided biological/epidemiological implications of each of our results.  

2. Statement of the Problem 
Formulation of Avian Spirochaetosis Model 

We assume there exists transovarial transmission among ticks (transmission 
from adult female tick to egg/larvae); there is non-viraemic transmission amongst 
the tick (that is, susceptible ticks can be infected through co-feeding with an in-
fected tick). We also assume that recovered birds develop permanent immunity 
to the disease and there is no recovery for infected ticks since ticks have a short 
life span. The table of the related variables is presented in Table 1 and the flow 
diagram in Figure 1. 

Using the model assumptions, we formulate the model that describes the 
transmission dynamics of Avian Spirochaetosis within a poultry population 
through the vector (Tick). We use the framework of a simple SEIR compart-
mental model, hence we consider the demography of different classes of the bird 
and tick populations. The total bird population is made up of four classes and is 
considered as 

B B BS E I R+ + +  

where at time t, the variable BS  denotes the susceptible birds, BE  represents 
the exposed birds, BT  is the infectious birds and R denotes the recovered birds. 

We consider the vector (Tick) population to be of three categories, such that 
the total vector population at time t, denoted by TN  is:  

T T T TN S E I= + +  

where ,T TS E  and TI  denote susceptible ticks, exposed ticks and the infec-
tious ticks respectively. 

Here, the demographic parameters are the birth rates and the natural death 
rates for the birds and the ticks respectively. The per capita birth rates are de-
noted by iτ  (where { }birds,ticki∈ ) and the natural death rates are denoted by 
d and δ  for the birds and ticks respectively. 

 
Table 1. List of variables. 

Variable Names 

SB Susceptible bird population 

EB Exposed bird population 

IB Infected bird population 

R Recovered bird population 

ST Susceptible tick population 

ET Exposed tick population 

IT Infected tick population 
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Figure 1. Flow diagram for the ODE model with classes , , , , , ,B B B T T TS E I S E I R . The solid 
lines denote transitions between classes and death rates in the model. The flow diagram 
describes the transmission dynamics of the disease in both populations. The susceptible 
bird population BS  increases by birth Bτ  and leaves the compartment either through 
natural death d, or transmission to the latently infected class BE  (which is either 
through bird to bird transmission 2β  or through tick to bird transmission 1β ). The la-
tently infected birds BE  leave the compartment through death (natural d or disease in-
duced death µ ) or by transmission to the infectious class Bα . The infectious bird pop-
ulation BI  moves to the recovery class R at the rate σ  and also reduces through death 
(natural d or disease induced death µ ). The recovery bird population R reduces only 
through natural death d.  

 
For the disease transmission within the bird population, a susceptible bird 

becomes infected through mass action after interacting with infected vector or 
with an infected bird; where 1β  is the rate at which birds get infected by the 
bite of an infected tick, 2β  denotes the rate at which birds get infected through 
ingested faeces. Thus the infected term is density dependent [15] and is de-
scribed as  

1 2T BI Iβ β+  

We consider that birds are first exposed to infections through infected birds 
and infected vectors; hence the exposed birds increase at the same rate by which 
the susceptible birds get infected. The exposed birds either become infectious or 
die naturally at the rate d or as a result of the disease at the rate µ . The rate at 
which an exposed bird progresses to become infectious is denoted by Bα , hence 
the exposed bird population decreases by the term described as  

( )B Bd Eα +  

The recovered class grows as infected birds get recovered at the rate σ . The 
recovered birds can die naturally but not by the disease, this follows our assump-
tion that the recovered birds develop permanent immunity to the diseases. 

The disease transmission among the vector population follows a dynamics 
similar to that of birds, except that the vectors do not recover from the infection. 
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The parameter 3β  is the rate at which a tick bites a bird and gets infected, θ  
is the rate of non-viraemic transmission between cofeeding ticks, λ  is the rate 
at which adult infected tick reproduces. Thus, vector infection term is described 
as  

3 B T TI I Iβ θ λ+ +  

we consider that the vectors are first exposed to the disease through biting an 
infected bird, cofeeding with infected ticks and through birth (by an infected 
tick). The exposed vector class increases at the same rate by which susceptible 
ticks get infected. The rate at which an exposed tick progresses to become in-
fected is denoted by Tα , hence the exposed tick population decreases by the 
term described as  

Tα δ+  

From the above descriptions, we construct a system of ordinary differential 
equations for the dynamics of the disease in the birds and ticks population as 
follows:  

( )1 2
d ,
d

B
B B T B B B

S N I I S dS
t

τ β β= − + −  

( ) ( )1 2
d ,
d

B
T B B B B

E I I S d E
t

β β α= + − +  

( )d ,
d

B
B B B

I E d I
t

α σ µ= − + +                   (1) 

d ,
d B
R I dR
t

σ= −  

( )3
d
d

T
T T B T T T T

S N I I I S S
t

τ β θ λ δ= − + + −  

( ) ( )3
d ,
d

T
B T T T T T

E I I I S E
t

β θ λ α δ= + + − +  

d .
d

T
T T T

I E I
t

α δ= −  

which satisfies the condition  

0, 0B B B T T TS E I R S E I+ + + > + + > . 

3. Analysis of the Model  

Theorem 1. All feasible solutions of the model (1) are uniformly bounded in a 
proper subset. 

B Tφ φ φ= ×   

where ( ), , , : B
B B B B BS E I R N

d
τ

φ  = ≤ 
 

 and ( ), , : T
T T T T TS E I N τ
φ

δ
 = ≤ 
 

.  

Proof of Theorem 3.1. We assume the associated parameters of the model (1) are 
non-negative for all time 0t > . To show that all feasible solutions are uniformly 
bounded in a proper subset, we consider the bird and tick populations respectively 
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i.e. B B B BN S E I R= + + +  and T T T TN S E I= + + . Let ( ) 4, , ,B B BS E I R +∈  
and ( ) 3, ,T T TS E I +∈  be any solution with non-negative initial conditions. By 
differential inequality, it follows that,  

( )

( )

limsup

limsup

B
Bt

T
Tt

S t
d

S t

τ

τ
δ

→∞

→∞

≤

≤
                       (2) 

where B B BNτ τ=  and T T TNτ τ= . 
Taking the time derivative of BN  and TN  along a solution path of the 

model (1) gives,  

 

d
d

d
d

B
B B B B

T
T T

N dN I
t

N N
t

τ µ

τ δ

= − −

= −
                     (3) 

Then, 

d
d

d
d

B
B B

T
T T

N dN
t

N N
t

τ

τ δ

≤ −

≤ −
                        (4) 

and  

 
( )

( )

0 0 e

0 0 e

dtB
B B

tT
T T

N dN
d

N N δ

τ

τ
δ

δ

−

−

≤ ≤ +

≤ ≤ −
                    (5) 

where ( )0BN  and ( )0TN  are the initial values of the respective variables in 
each population. Thus as t →∞ , then  

0 and 0B T
B TN N

d
τ τ

δ
≤ ≤ ≤ ≤  

These show that BN  and TN  are bounded and all feasible solutions of BS , 

BE , BI , R , TS , TE  and TI  starting in the regions Bφ  and Tφ  will either 
approach, enter or stay in the region where. 

( ) ( ), , , : and , , :B T
B B B B B B T T T TS E I R N S E I N

d
τ τ

φ φ
δ

   = ≤ = ≤   
   

     

Therefore BN  and TN  are bounded and all the possible solutions of the 
model (1) approach or stay in region 0B B tφ φ φ= × ∀ ≥ . Thus φ  is positively 
invariant and the existence, uniqueness and continuity results also hold for the 
model (1) in φ . The Avian spirochaetosis model (1) is therefore well-posed 
mathematically.  

Biological Interpretation: Epidemiologically, this theorem proves that the 
total population of the bird cannot be greater than the fraction of per captia 
birth rates relative to the natural death rate; this is also true for the tick popula-
tion, hence the model is epidemiologically well-posed by theorem 1. 
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3.1. Existence of Steady States  

The system is in a steady state if, d d d d d dd 0
d d d d d d d

B B B T T TS E I S E IR
t t t t t t t
= = = = = = = . 

The system (1) has two steady states (or equilibrium points), one of which is 

disease free equilibrium 0 ,0,0,0, ,0,0B TB TN NE
d

τ τ
δ

 =  
 

 and the other is en-

demic equilibrium ( )* 0 0 0 00, , ,0,0, ,E B B T TE E I E I= , where  

 

( )

( )( )
( )

( )( )

0
0

0 0
0 1

2

0 0 0 0
30

0 0 0
3

0

B
B

B

B T B
B

B B

T T B T T
T

B T T T

T T
T

d I
E

I SI
d d

N I I I
E

I I I

EI

σ µ
α

α β
α σ µ α β

τ β θ λ

β θ λ δ δ α

α
δ

+ +
=

=
+ + + −

+ +
=

+ + + −

=

                (6) 

given that 0 0 0 0B TS R S= = = .  

3.2. Local Stability of the Equilibrium States  

In this section, we investigate the local stability of both the disease free equili-
brium and the endemic equilibrium points. 

Theorem 2. The disease-free equilibrium of the model (1) is locally asymp-
totically stable if Bd τ≥  and Tδ τ≥ .  

Proof. Linearizing the system (1), we have the Jacobian matrix evaluated at the 
disease free equilibrium 0E  as 

( )

( )

0

1
2

1
2

0 0

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

B B
B B B

B B
B

BE

T

T

a
d d

b d
d d
dJ

d
c e
f

τ β τ
τ τ β τ

τ β τ
α β

α σ µ
σ

δ α
α δ

− − 
 
 − − 
 

− + +=  
 −
 
 
 − +  − 

   (7) 

where 0 0
1 2B T Ba I I dτ β β= − − − , 0 0

1 2T Bb I Iβ β= + , 0 0 0
3T B T Tc I I Iτ β θ λ δ= − − − − , 

0 0
T T Te S Sτ θ λ= − −  and 0 0 0

3 B T Tf I I Iβ θ λ= + + .  
Computing the eigenvalues of the Jacobian matrtix by 

0EJ Iλ− , we found 
the eigenvalues: a, ( )B dα− + , ( )dσ µ− + + , d− , c, ( )Tα δ− + , δ− . Hence, 
the disease free equilibrium is asymptotically stable only if  

0B B Ba d d dτ τ τ= − < ⇒ < ⇒ >  

and  
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0T T Tc τ δ τ δ δ τ= − < ⇒ < ⇒ >  

Thus, for the disease-free steady state to be stable, d and δ  should satisfy: 

Bd τ>  and Tδ τ> , in other words, the natural death rate of birds d will be 
greater than the per capita birth rate of bird Bτ  and the death rate of tick δ  
will be greater than the per capita birth rate of tick Tτ .                     

Biological interpretation: By the above theorem, we point out that when the 
natural death rates of birds and ticks respectively exceeds their respective per ca-
pita birth rates, then the species (birds and ticks alike) will become extinct, with 
this situation, the species are not viable and as such a disease free equilibrium 
occurs. 

Theorem 3. The endemic equilibrium is locally asymptotically stable if  
( )0

1

B
T

T

d
E

δ τ
β α

−
>  and if 0 T

T
T

E τ δδ
α θ λ
  − >   +  

. 

Proof. Evaluating the Jacobian at the endemic equilibrium *
EE , we have 

( )

( )

*

0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

B B B

B

B

E

T

T

T

a
b d

d
J d

c
f

τ τ τ
α
α σ µ

σ
τ

δ α
α δ

′ 
 − − 
 − + +
 

= − 
 ′
 

′ − + 
 − 

 

where  

( ) ( )

1 1

2
1

, ,

,

B T T T T

B T T T T

B E d Ea b

E E
c f

τ

τ

δ α δ β α
δ δ

δ θ λ α δ θ λ β α
δ δ

− −′ ′= =

− + − +
′ ′= = −

 

So, from the characteristic equation 0J Iλ− = , we have the eigenvalues  

( ) ( ) ( ), , , , , ,B Ta d d d cα δ µ δ α δ′ ′− + − + − − − + −  

For the stabilit y of the endemic equilibrium, we require that 0a′ <  and 0c′ < , 
thus: 

1 0B T TE dδτ β α δ
δ

− −
<                         (8) 

and 

( )
0T T TE dδτ θ λ α δ

δ
− + −

<                      (9) 

From (8) we have that, 

( ) ( ) ( )0 0
1

1

0 B
B T T T

T

d
d E E

δ τ
δ τ β α

β α
− − − < ⇒ >   

From (9) we have that, 
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( ) ( )
( )

2 00 T T
T T T T

T T

E E
τ δ δ τ δδδτ θ λ α δ
θ λ α α θ λ

−   − − + − < ⇒ > =   + +  
.      

Biological interpretation: The endemic steady state is stable if the exposed 
tick population TE  at time t exceeds.  

1) The ratio of bird surviving rate (defined by the birds demographic rate dif-
ference( B dτ − )) and the disease infection (defined by the tick biting rate 1β ), 
influenced by the tick death δ  and the rate of disease progression Tα . 

2) The ratio of tick surviving rates (defined by the tick demographic rate dif-
ference ( Tτ δ− ) and the total rates of ticks getting infected; influenced by the 
tick death δ  and the rate of disease progression Tα .  

With the above conditions satisfied, the disease will persist at both birds and 
tick population. 

This means that when the above two conditions are satisfied, the endemic 
steady state will be stable, which means that the disease will persist at both pop-
ulations (that is birds and ticks). 

3.3. Global Stability of the Equilibrium States  

Using the Next-generation matrix method, the Jacobian matrix at the disease-free 
equilibrium can be expressed as the difference of a non-negative matrix F and a 
diagonal non-negative matrix FV which contains the elements related to the loss 
of infections. The matrix F corresponds to the infectivity function of an infected 
population and 1V −  is a diagonal matrix indicating the loss of an infected pop-
ulation. By the work of [16], we can define the basic reproduction number 0R  
for avian Spirochaetosis disease as the spectral radius of the matrix 1FV − , and is 
given as  

( ) ( ) ( )( )
1

2 2
0

1 4
2 B T B T B T TBR R R R R R R R = + + + − +  

 

with  

 

( )( )
( )

( )

( )( )( )

2

2

2 1
2

B B
B

B

T T
T

T

B B T T
TB

T B

R
d d d

R

R
d d d

β τ α
α µ σ

τ α θ λ
δ α δ

β τ α β τ α
δ α δ α µ σ

=
+ + +

+
=

+

=
+ + + +

 

The basic reproduction number 0R  reflects the infection transmitted from 
bird to bird ( BR ) through infected faces, tick to tick ( TR ) through non-viraemic 
and vertical transmission, tick to bird and bird to tick ( TBR ) either by feeding on 
infected bird or biting a susceptible bird. 

Theorem 4. The disease free equilibrium is globally asymptotically stable if 

0 1R < .  
Proof. A comparison theorem will be used for the proof. Let B TS S S= = . 

The equations for the infected components of the model (1) can be written as  
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( ) ( )

( )

( ) ( )

1 2

3

d
d

d
d

d
d

d
d

B
T B B B

B
B B B

T
B T T T T T

T
T T T

E I I S d E
t

I E d I
t

E I S I I S E
t

I E I
t

β β α

α σ µ

β θ λ δ α

α δ

= + − +

= − + +

= + + − +

= −

 

These equations can be simplified as follows  

 ( )

d
d

d
d

d
d

d
d

B

B BB

B B

T TT

T T

T

E
t

E EI
I It S F V
E EE

t I I
I
t

 
 
               = −                
  
 

                  (10) 

( )

B B B B

B B B B

T T T T

T T T T

E E E E
I I I I

S F F F V
E E E E
I I I I

       
       
       = − + −
       
       
       

             (11) 

( ) ( ) ( )1

B B B

B B B

T T T

T T T

E E E
I I I

F V S F F V
E E E
I I I

     
     
     = − − − ≤ −
     
     
     

           (12) 

From the proof of the local asymptotic stability, the disease free equilibrium is 
locally asymptotically stable when all the eigenvalues of the Jacobian matrix have 
negative real parts or equivalently when ( )1 1FVρ − < . This is equivalent to the 
statement that all eigenvalues of F V−  have negative real parts when 0 1R < . 
Therefore the linearized differential inequality is stable whenever 0 1R < . Con-
sequently, by the comparison theorem, we have  

( ) ( ), , , 0,0,0,0 asB B T TE I E I t→ →∞ . 

Substituting 0B B T TE I E I= = = =  in the model gives 

( ), , ,0, asB T
B TS R S t

d
τ τ

δ
 → →∞ 
 

 

Therefore,  

( ), , , , , 0,0,0, ,0,0 asB T
B B B T T TS E I S E I t

d
τ τ

δ
 → →∞ 
 

 

and hence, the disease free equilibrium is globally asymptotically stable whenev-
er 0 1R < .                                                         

Epidemiological implication: By the above result, the Avian Spirochaetosis dis-
ease can be eliminated from the population if the basic reproduction number can be 
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brought down to and maintained at a value less than unity. Therefore, the condi-
tion 0 1R <  is a necessary and sufficient condition for the disease elimination. 

3.4. Global Stability of the Endemic Equilibrium  

Theorem 5. The endemic equilibrium is globally asymptotically stable if 0 1R > .  
Proof. We consider the non-linear Lyaponuv function of Goh-Voltera type for 

the system  

* * * *
* *

* * * *
* *

* * * *
* *

ln ln

ln ln

ln ln

B B
B B B B B B

B B

B T
B B B T T T

B T

T T
T T T T T T

T T

S EL S S S E E E
S E

I SA I I I S S S
I S

E IE E E B I I I
E I

= − − + − −

 
+ − − − − 

 
 

+ − − + − − 
 

          (13) 

with Lyaponuv derivative given as  
* * *

* * *

B B B
B B B B B B

B B B

B T T
B B T T T T

B T T

S E IL S S E E A I I
S E I

S E IS S E E B I I
S E I

     
= − + − + −     
     
     

+ − + − + −     
     

     

     

 

where 
* *

2 3B TS S
A

d
β β

σ
 +

=  
+ 

 and 
( )* *

1 B TS S
B

β θ λ
δ

 + +
=   
 

 

( )

( )

( )( )

( )( )

( )( ) ( )( )

1 2

*

1 2

1 2

*

1 2

*

B T B B B B

B
B T B B B B

B

T B B B B B

B
T B B B B B

B

B
B B B B B B B

B

L I S I S dS

S I S I S dS
S

I S I S d E

E I S I S d E
E

IA E d I E I d I
I

τ β β

τ β β

β β α

β β α

α σ µ α σ µ


= − − −



− − − − 




+ + − +



− + − + 



+ − + + − − − +



 

( )( )

( )( )

( ) ( )( )

( ) ( )( )

( ) ( )

3

*

3

3

*

3

*

T B T T T T

B
T B T T T T

B

B T T T T T

T
B T T T T T

T

T
T T T T T T

T

I S S I S

S I S S I S
S

I S S I E

E I S S I E
E

IB E I E I
I

τ β θ λ δ

τ β θ λ δ

β θ λ δ α

β θ λ δ α

α δ α δ


+ − − + −



− − − + − 




+ + + − +



− + + − + 


 

+ − − − 
 

                (14) 

 
DOI: 10.4236/jamp.2020.82022 280 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.4236/jamp.2020.82022


J. I. Uwakwe et al. 
 

At steady states  

( )

( )

* * * * *
1 2

* * * * *
3

*

*

*

*

B T B B B B

T B T T T T

B B

B

T T

T

I S I S dS

I S S I S

Ed
I

E
I

τ β β

τ β θ λ δ

α
σ

α
δ

= + +

= + + −

+ =

=

 

Substituting the values of Bτ  and Tτ  at steady states gives 

( )

( )

( )( )

( )( )

( )( ) ( )( )

* * * * *
1 2 1 2

*
* * * * *

1 2 1 2

1 2

*

1 2

*

T B B B B T B B B B

B
T B B B B T B B B B

B

T B B B B B

B
T B B B B B

B

B
B B B B B B B

B

L I S I S dS I S I S dS

S I S I S dS I S I S dS
S

I S I S d E

E I S I S d E
E

IA E d I E I d I
I

β β β β

β β β β

β β α

β β α

α σ µ α σ µ


= + + − − −



− + + − − − 




+ + − +



− + − + 



+ − + + − − − +



 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )

* * * * *
3 3

*
* * * * *

3 3

3

*

3

*

B T T T T B T T T T

B
B T T T T B T T T T

B

B T T T T T

T
B T T T T T

T

T
T T T T T T

T

I S S I S I S S I S

S I S S I S I S S I S
S

I S S I E

E I S S I E
E

IB E I E I
I

β θ λ δ β θ λ δ

β θ λ δ β θ λ δ

β θ λ δ α

β θ λ δ α

α δ α δ


+ + + − − − + −



− + + − − − + − 




+ + + − +



− + + − + 



 
+ − − − 

 

(15) 

Simplifying, we have 

( ) ( )

( )

*
* * * * * * *

1 2 1 2 1

* *
* * * * * *

2 1 2 1

* *
*

2 1 2

* * *
2 3

B
T B B B B T B B B B T B

B

B B
B B B B T B B B B T B

B B

B B
B B B B T B B B B B

B B

B T B
B B B

B

SL I S I S dS I S I S dS I S
S

S SI S dS S I S S I dS I S
S S

E EI S d E I S I S d E
E E

S S IE d I
d I

β β β β β

β β β β

β α β β α

β β
α σ µ

σ

= + + − − − −

− − + + + +

+ − + − − + +

 +
+ − + + −    + 



( ) ( )

*

* * * * * *
3 3

B B B

B B T T T T B T

E I

d I I S S I S I S

α σ

µ β θ λ δ β

+

+ + + + + − −
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( ) ( )

( ) ( )

( ) ( ) ( )

* * *
* * * * *

3

* * *

3 3

* *
*

3

* * *
*1 ( )

B B B
T T T B T T T T

B B B

B B B
B T T T T B T T T

B B B

T T
T T B T T T T T

T T

B T T
T T T T T T

T

S S SS I S I S S I S
S S S

S S SI S S I S I S S I
S S S

E EE I S S I E
E E

S S IE I E I
I

θ λ δ β θ λ δ

β θ λ δ β θ λ

δ α β θ λ δ α

β θ λ
α δ α δ

δ

− + − − − + +

+ + + + + + +

− + − − + + +

   + +
+ − − +   
   

  (16) 

Collecting terms with * * * * * * * *
1 2 3, , , ,B T B T B B T BdS S S I S I S Iδ β β β  and ( ) * *

T TS Iθ λ+  gives, 
* *

* *
* *

* * *
* *

1 * * *

* * *
* *

2 * * *

* * *
* *

3 * * *

2 2

3

3

3

B B T T
B T

B TB T

B B B T T B
B T

B B B T T B

B B B B B B
B B

B B B B B B

T B T T B T
T B

T B T T B T

S S S SL dS S
S SS S

S S E I I ES I
S S E I I E

S S I E I ES I
S S I E I E

S I S E I ES I
S I S E I E

δ

β

β

β

θ

   
= − − + − −   

   
 

+ − − − 
 
 

+ − − − 
 
 

+ − − − 
 

+ +



( )
* * *

* *
* * *3 T T T T T T

T T
T T T T T T

S S I E I ES I
S S I E I E

λ
 
− − − 

 

             (17) 

Finally since the arithmetic mean exceeds the geometric mean, it follows that,  
*

*
*2 0B B

B
BB

S SdS
SS

 
− − ≤ 

 
, 

*
*

*2 0T T
T

TT

S SS
SS

δ
 
− − ≤ 

 
, 

* * *
* *

1 * * *3 0B B B T T B
B T

B B B T T B

S S E I I ES I
S S E I I E

β
 
− − − ≤ 

 
, 

* * *
* *

2 * * *3 0B B B B B B
B B

B B B B B B

S S I E I ES I
S S I E I E

β
 
− − − ≤ 

 
, 

* * *
* *

3 * * *3 0T B T T B T
T B

T B T T B T

S I S E I ES I
S I S E I E

β
 
− − − ≤ 

 
 

Since all the model parameters are non-negative, it follows that 0L ≤  for 

0 1R > . Thus, L is a Lyaponuv function for the system of model (1). Furthermore, 
we note that 0L =  holds only at *

EE . By Lasalles invariant principle, every so-
lution to the system (1), with the initial conditions in Ω , approaches *

EE  as 
t →∞  if 0 1R > . Hence, the endemic equilibrium *

EE  is globally asymptoti-
cally stable in Ω  if 0 1R > .                                          

Epidemiological implication: Avian Spirochaetosis will establish itself (be 
endemic) in the poultry whenever 0 1R > . 
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4. Control Theoretic Approach for the Proposed Model  

To reduce associated forces of infection, we introduced the controls ( )1u t , 
( )2u t , and ( )3u t  into the proposed model 1). The control ( )1u t  represents 

the effort to reduce the number of latently infected birds such as through 
bio-security measures which involve regular dispose of bird’s faeces and general 
poultry sanitation. The control variable ( )2u t  represents the use of antibiotics 
such as penicillin to minimize the number of infectious birds. The control varia-
ble ( )3u t  represents the level of insecticide such as Permerthrin used for tick 
control, administered at tick breeding sites to eliminate specific breeding areas. 
The control model is given as follows:  

( ) ( )1 1 2 2
d 1 1 ,
d

B
B B T B B B B

S N u I S u I S dS
t

τ β β= − − − − −  

( ) ( )1 1 2 2
d 1 1 ,
d

B
T B B B B B B

E u I S u I S E dE
t

β β α= − + − − −  

( )d ,
d

B
B B B B

I E I
t

α α µ= − +  

2
d ,
d B
R u I dR
t
= −                         (18) 

( ) ( )3 3
d 1 ,
d

T
T T B T T T

S N u I I I S
t

τ β θ λ δ= − − + + +  

( ) ( )3
d ,
d

T
B T T T T T

E I I I S E
t

β θ λ δ α= + + − −  

d ,
d

T
T T T

I E I
t

α δ= −  

with initial conditions: 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 00 , 0 , 0 , 0 , 0 , 0B B B B B B T T T TS S E E I I R R S S I I= = = = = = . (19) 

The control variables are introduced in effort to reduce 1) the number of la-
tently infected birds 2) cost of treatment of infected birds and 3) cost of elimi-
nating tick. The description, values and sources of the model parameters are 
summarized in Table 2. The purpose of our optimal control approach is to mi-
nimize the exposed and infectious birds population, the total number of tick 
population and the cost of implementing the control using possible minimal 
control variables ( )iu t , for 1,2,3i = . 

Now, we construct the objective function:  

( ) ( )2 2 2
1 2 3 1 2 3 1 1 2 2 3 30

1, , d
2

T
B B TJ u u u C E C I C N D u D u D u t = + + + + + 

 ∫  (20) 

Subject to the state system (18) and initial conditions (19). The quantities 

1 2 3 1 2 3, , , , ,C C C D D D  are positive weight constants. The terms 1 2,B BC E C I  and 

3 TC N  denote the cost associated with reducing the exposed, infectious and the 
total tick population respectively. Also 2 2

1 1 2 2,D u D u  and 2
3 3D u  represent the cost 

associated with the control measures. The purpose is then to find an optimal 
control triplet * * *

1 2 3, ,u u u  which satisfy.  
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Table 2. Parameters values used in the numerical computations. 

Parameter Description Value Source 

BN  Size of total bird population 50 Assumed 

TN  Size of total tick population 100 Assumed 

( )0BS  Susceptible bird population at time t 100 Assumed 

( )0TS  Susceptible tick population at time t 100 Assumed 

( )0BE  Exposed bird population at time t 80 Assumed 

( )0TE  Exposed tick population at time t 80 Assumed 

( )0BI  Infectious bird population at time t 80 Assumed 

( )0TI  Infectious tick population at time t 80 Assumed 

( )0R  Recovered birds at time t 60 Assumed 

λ  The rate an infected adult female tick reproduces 3.68 × 10−4 [7] 

1β  The rate at which a tick bites and infects a bird 2 × 10−4 [7] 

2β  The rate at which birds are infected through ingested faeces 0.05 [7] 

3β  The rate a tick bites a bird and become infected 1.95 × 10−3 [7] 

θ  
The rate of non-viraemic transmission between co-feeding 
ticks 

3.9 × 10−7 Assumed 

Bα  Rate of progression from exposed to infectious class among 
the bird 

0.182 [17] 

Tα  
Rate of progression from exposed to infectious class among 
the tick 

0.182 [17] 

d Natural death rate of birds 0.087 [7] 

µ  Disease induced death rate of birds 0.2 [7] 

σ  Rate of recovery for birds 1.25 [7] 

δ  Death rate of tick 0.083 [7] 

1u  Effort to reduce the number of exposed birds 0.02 Assumed 

2u  Measures the rate of treatment of the infected birds 0.01 Assumed 

3u  Effective tick control measure 0.05 Assumed 

Bτ  Per capita birth rate of bird 8.33 [7] 

Tτ  Per capita birth rate of tick 0.167 [7] 

 

( )
( )

( )
1 2 3

1 2 3 1 2 3, ,
, , min , ,

u u u U
J u u u J u u u

∈
=                  (21) 

where,  

( ) ( ) ( ) ( ){ }1 2 3, , | : 0 ,0 , 1, 2,3;i i iU u u u u t u t m t T i u t= ≤ ≤ ≤ ≤ =  

is measurable. 

4.1. Existence of Optimal Control  

Theorem 6. Consider the objective function of (21) with ( )1 2 3, ,u u u U∈  Sub-
ject to the control system of (18), there exist ( )*

1 2 3, ,U u u u U= ∈  such that  

( )
( ) ( )

1 2 3

* * *
1 2 3 1 2 3, ,

min , , , ,
u u u U

J u u u J u u u
∈

= . 
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Proof. The existence of the optimal control can be obtained using a result by 
Fleming and Rishal [18] and used in Nordin et al. [19]. Checking the following 
conditions.  

1) From (18), it follows that the set of controls and corresponding state va-
riables are non-empty.  

2) The control set ( ) [ ]{ }: are measurable,0 , 0,iU u u u t m t T= ≤ ≤ ∈  is con-
vex and closed by definition.  

3) The right hand side of the state system (18) is bounded above by a sum of 
bounded control and state, and can be written as a linear function of u with 
coefficients depending on time and state.  

4) The integrand of the objective functional  

( )2 2 2
1 2 3 1 1 2 2 3 3

1
2B B TC E C I C N D u D u D u+ + + + +  is convex on U. There exist  

1 2, 0r r >  and 1π >  satisfying  

( ) 222 22 2 2
1 2 3 1 1 2 2 3 3 1 1 2 3 2B B TC E C I C N D u D u D u r u u u r

π
+ + + + + ≥ + + −  

since the state variables are bounded. Hence we can conclude that there exists an 
optimal control, which completes the existence of an optimal control.         

4.2. Characterization of Optimal Control  

Pontryagins maximum principle is used to derive the necessary conditions for 
the optimal control triplet. We shall now characterize the optimal control triplet 

* * *
1 2 3, ,u u u , which accomplishes the set objectives and the corresponding states 
( )* * * * * * *, , , , , ,B B B T T TS E I R S E I  using the pontryagins maximum principle. The Ha-
miltonian is defined as follows; 

( )
( ) ( )

( ) ( )
[ ]

2 2 2
1 2 3 1 1 2 2 3 3

1 1 1 1 2

2 1 1 2 2

3

1
2

1 1

1 1

B B T

B B T B B B B

T B B B B B B

B B B B B

H C E C I C N D u D u D u

N u B I S u B I S dS

u B I S u B I S E dE

E I dI

λ τ

λ α

λ α µ

= + + + + +

+ − − − − −  
+ − + − − −  
+ − −

 

( )
[ ]
[ ] [ ]

5 3 3

6 3

7 1 4 2

1T T B T T T T T T

B T T T T T T T T

T T T T B

N u B I S I S S I S

B I S I S S I E E

E I u I u I dR

λ τ θ λ δ

λ θ λ δ α

λ α δ λ

 + − − − − − 
+ + + + −

+ − − + −

       (22) 

Theorem 7. There exist an optimal control * * *
1 2 3, ,u u u  and the corresponding 

state solutions ( )* * * * * * *, , , , , ,B B B B T T TS E I R S E I  of the system (1), that minimizes 
( )1 2 3, ,J u u u  over U. Furthermore, there exist adjoint functions iλ , for 
1, 2,3, 4,5,6,7i =  such that; 

( ) ( )
( ) ( )

[ ] [ ]
( ) ( ) [ ]

[ ] [ ] [ ]

1 1 1 1 1 2

2 1 1 1 2

2 1 1 3

3 2 1 1 2 2 1 2 3 3

4 2 5 3 6 3

1 1

1 1

1 1

B T B B

T B

B B

B B

T T

u B I u B I dS

u B I u B I

C d

C u B S u B S d u

u B S B S

λ λ τ

λ

λ λ α λ α

λ λ λ λ µ

λ λ λ

′ = + − + − +  
− − + −  

′ = − + −

′ = − + − − − + + +      
− + −
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( ) [ ]
( ) [ ] [ ]

( ) ( )
( ) [ ]

4 4

5 3 5 3 3 6 3

6 3 5 3 6 7

7 3 1 1 1 2 1 1

5 3 6 7

1

1

1 1

1

B T T T B T T

T T T

B B

T T T T T

d

C B I I I u B I I I

C u

C u B S u B S

u S S S S

λ λ

λ λ θ λ δ τ λ θ λ

λ λ τ λ α δ λ α

λ λ λ

λ τ θ λ λ θ λ δ δλ

′ =

′  = − + + + + − − − − − 
′  = − − − + + − 
′ = − − − − −      

 − − − − − + + + 

 (23) 

with the transversality condition of ( ) 0, 1,2,3,4,5,6,7i T iλ = = . The optimality 
controls are given by 

( )( )

( )

1 2 2 1*
1 1

1

3 4*
2 2

2

* 5
3 3

3

max 0,min ,

max 0,min ,

max 0,min ,

T B B B

B

T T

B I S B I S
u m

D

I
u m

D

N
u m

D

λ λ

λ λ

λ τ

 + −  =   
   
  − =       
   =   
   

          (24) 

Proof. The form of the adjoint functions and tranversality condition are stan-
dard results from pontryagins maximum principle. The Hamiltonian is differen-
tiated with respect to the states , , , , , ,B B B B T T TS E I R S E I  respectively, which re-
sults in the following adjoint functions.  

( ) ( ) ( )1 2 3, , ,
B B B

H H Ht t t
S E I

λ λ λ∂ ∂ ∂′ ′ ′= − = − = −
∂ ∂ ∂

 

( ) ( ) ( ) ( )4 5 6 7, , ,
B T T T

H H H Ht t t t
R S E I

λ λ λ λ∂ ∂ ∂ ∂′ ′ ′ ′= − = − = − = −
∂ ∂ ∂ ∂

 

with ( ) 0, 1,2,3,4,5,6,7i T iλ = =  The characterization of the optimal control is 
obtained by solving the equations  

( ) [ ] ( )

( ) ( )

( )

1 1 1 1 2 2 1 1 2
1

2 2 4 3
2

3 3 5
3

1 0

0

0

T B B B T B B B

B

T T

H D u t B I S B I S B I S u B I S
u
H D u t I
u
H D u t N
u

λ λ

λ λ

λ τ

∂
= + + − + − =  ∂

∂
= + − =

∂
∂

= − =
∂

 

Solving for each of the optimal control we have,  

[ ]( )

( )

1 2 2 1*
1

1

3 4*
2

2

* 5
3

3

T B B B

B

T T

B I S B I S
u

D
I

u
D
N

u
D

λ λ

λ λ

λ τ

+ −
=

−
=

=

 

Therefore, the optimal control * * *
1 2 3, ,u u u  exists and is characterized by the 

following:  
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( )( )

( )

1 2 2 1*
1 1

1

3 4*
2 2

2

* 5
3 3

3

max 0,min ,

max 0,min ,

max 0,min ,

T B B B

B

T T

B I S B I S
u m

D

I
u m

D

N
u m

D

λ λ

λ λ

λ τ

 + −  =   
   
  − =       
   =   
   

        (25) 

This implies that the optimal effort necessary to reduce avian Spirochaetosis 
disease is  

[ ]( )

( )

1 2 2 1*
1

1

3 4*
2

2

* 5
3

3

T B B B

B

T T

B I S B I S
u

D
I

u
D
N

u
D

λ λ

λ λ

λ τ

+ −
=

−
=

=

.                (26) 

  

5. Numerical Computation  

The objective of our numerical computation will be to better understand the 
dynamics involved in the Avian Spirochaetosis infection and the effect of control 
measures inclusion. Considering the estimated value of parameters in Table 2, 
computation is done with MATLAB and the results are presented and discussed. 
We plot the population densities for the susceptible birds and Ticks ( BS  & TS ), 
exposed birds and Ticks ( BE  & TE ), and infectious birds and Ticks ( BI  & 

TI ). 
From the results presented in Figure 2, it is clear that the susceptible popula-

tion of birds grew faster than the infected population when the basic reproduc-
tion number is less than unity ( 0 1R < ). The birds and tick infected class reduced 
so much, this simply verifies that disease-free equilibrium existed if 0 1R < . 

To find the stability of the non-trivial equilibrium, we chose initial values as 
( ) ( )* * * * * *, , , , , , 100,80,60,40,150,80,100B B B T T TS E I R S E I = . From Figure 3, we ob-
serve that the disease-free state did not exist if ( 0 1R > ) and the equilibrium 
moved towards endemic state. Hence, the disease will establish itself in the poul-
try if 0 1R >  regardless of the initial size of the infected birds introduced into 
the poultry. From the existence and stability analysis of the system, the tick bit-
ing rate 1β , the disease progression rate Tα  and the tick death rate δ  seem 
to be important parameters. 

In Figure 4, we investigated the impact of the control parameters on the 
model. From the result presented, we observed that the effort to reduce the 
number of exposed birds ( 1u ) and the effective tick control measure ( 3u ) have a 
corresponding impact on the system and do not lead to a disease free situation, 
albeit the treatment of the infected birds ( 2u ) was more effective and so lead to a 
disease free situation. In other words, any effort applied in reducing the number  
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Figure 2. Population densities of the model variables for 0 1R <  for disease-free state (all parameters are in Table 2). 

 

 
Figure 3. Population densities of the model variables for 0 1R >  (other parameters are as in Table 2). 

 
of exposed birds, or any control measures applied on the ticks will not effectively 
eliminate the disease unless the inclusion of treatment of infected birds. 

In Figure 5, we varied the rate of treatment of infected birds ( 2u ). From the 
result presented, we observed that increasing the rate of treating the infected 
birds was more effective as this increased the population of susceptible birds and 
reduce the population of infected birds. On the part of the ticks, the infected 
ticks died off and the susceptible ticks were reduced close to zero. 
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Figure 4. Behavior of the model system with optimal control schedule of the control therapy. 

 

 
Figure 5. Behavior of the model system when the rate of treatment of infected birds 2u  was varied. 

6. Discussion  

The disease spirochaetosis spreads from vector (tick) to birds, and the infection 
continues as long as there are infected birds, for as long as infected birds exists, 
any tick feeding on the infected birds becomes infected. Epidemiologically, the 
total population of the bird cannot be greater than the fraction of per captia 
birth rates relative to the natural death rate; this is also true for the tick popula-
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tion. For this reason, to control the spread of the disease, we are left with options 
such as controlling the population of infected birds or infected ticks. Applying a 
suitable drug treatment to the infected birds and spraying insecticide to kill the 
vector perform significant function for controlling the disease spread. We inves-
tigated the dynamics in the absence of control measures and so observed that 
disease free situation existed for 0 1R < . From the theory and the numerical so-
lutions, we point out that when the natural death rates of birds and ticks respec-
tively exceeds their respective per capita birth rates, then the species (birds and 
ticks alike) will become extinct, with this situation, the species are not viable and 
as such a disease free equilibrium occurs. On the other hand, if 0 1R > , the dis-
ease free state losses its stability and the system tended towards endemic situa-
tion. The endemic steady state is stable if the exposed tick population at time t 
exceeds 1) the ratio of bird surviving rate and the disease infection influenced by 
the tick death and the rate of disease progression. 2) the ratio of tick surviving 
rates and the total rates of ticks getting infected; influenced by the tick death and 
the rate of disease progression. With these two conditions satisfied, the disease 
will persist at both birds and tick population leading to an endemic situation. 

Our study presents a good detail of the optimal control of the transmission 
dynamics of Avian Spirochaetosis through mathematical modeling. Our results 
demonstrate strong effects of controls in managing tick infections. From the re-
sult presented in Figure 4 and Figure 5 we observe that on the long run, 1) the 
population of infected tick dies out completely while between the periods less 
than 30 days the populations of the infected birds become evenly distributed, 2) 
the rate at which the infected birds become recovered is on a high increase (data 
not shown), and 3) the exposed tick dies out while that of the bird population 
increases within a short period and then remains constant. These results mesh 
well with [1], thus confirming the viability of the disease transmission. 

In summary, both the analytical and numerical results agree with the follow-
ing implications: 1) varying the control 1u  keeps the exposed bird population 
constant, this implies that the number of birds exposed to the disease stops in-
creasing hence reducing the possibility of the disease infecting other susceptible 
birds. This result can be seen as similar to the result gotten by [7], in the case of 
British game birds, where management strategies were seen as one of the major 
control measures in eliminating the disease. This can also be related to other 
human diseases like measles and flus, where a decrease in the rate of exposure of 
the uninfected individual to the disease will reduce the number of infected indi-
viduals and incidence rate of the disease, 1) by investigating the effect of treating 
infected birds, the result shows that an increased effort to reduce the number of 
birds latently infected will in turn reduce the rate of infection drastically, this can 
be seen as a local fact as this result cannot be applicable to human diseases like 
Ebola, as treating people who are already infected with Ebola will not reduce the 
rate of infection drastically, 2) also checking the effect of the treatment measure 
on the infected population reveals that increase in treatment rate increase sus-
ceptible bird population, this is evident in malaria infestation, where an individ-

 
DOI: 10.4236/jamp.2020.82022 290 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.4236/jamp.2020.82022


J. I. Uwakwe et al. 
 

ual who is treated of malaria is not immune and therefore is also susceptible for 
further malaria infestation. This is in contrary to what is obtainable in chicken 
pox infection, where an infected individual develops permanent immunity to the 
disease, and hence cannot become susceptible to the disease after treatment. 

The effectiveness of the treatment strategy influences the system to move to-
wards the infection-free state. The results obtained from analytical and numeri-
cal solutions showed that the control strategies were very effective if applied at 
the right rates. The proposed optimal control can eradicate and prevent further 
transmission of the disease through the vector. Although total eradication of 
spirochaetosis seems complicated in a realistic environment, if our findings can 
be applied to an infected zone, then a pioneering insight can be achieved against 
spirochaetosis in a global perspective. 

7. Conclusions and Future Work  

In this study, we present a compartmental epidemiological mathematical model 
of avian spirochaetosis disease which involves the Bird and Tick populations. 
The bird population is made up of four compartments which are the susceptible 
class, the exposed class, the infective class and the recovered class, while the tick 
population is made up of the susceptible class, the exposed class and the infective 
class. The model was analyzed using method from dynamical systems and op-
timal control theory. The disease-free equilibrium existed and was established to 
be locally stable if the: 1) natural death rate of birds is greater than the per capita 
birth rate of birds, and 2) death rate of tick is greater than the per capita death 
rate of the tick. The endemic equilibrium was also determined and established to 
be stable if the exposed tick population at time t, if the biting rates of ticks, the 
disease progressions and the death rates are in their right proportions. 

The global stability of the disease-free and endemic equilibrium was estab-
lished using the Lyaponuv function. The disease-free equilibrium is asymptoti-
cally stable if 0 1R <  and the Endemic equilibrium is stable if 0 1R > . Intro-
ducing the controls which represent the effort of reducing the number of latently 
infected birds ( 1u ), the control as a result of treatment ( 2u ) and the Tick elimi-
nation control ( 3u ), the system became a system of ordinary differential equa-
tions with controls, 1 2 3, ,u u u . The control model was analyzed using Pontrya-
gins maximum principle to derive the necessary conditions for the optimal con-
trol. The optimal effort necessary to reduce the transmission rate of Avian Spi-
rochaetosis in the poultry was determined in the analysis. 

From the theorems and numerical solutions, we can conclude that the infec-
tion of Avian Spirochaetosis can be reduced when the control measures are ap-
plied, more especially the treatment of infected birds by the use of antibiotics 
such as penicillin. Other control measures such as through bio-security meas-
ures and the use of insecticide such as Permerthrin for tick control will also con-
tribute globally to the eradication of the outbreak of Avian Spirochaetosis dis-
ease epidemic. 
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Thus, we can conclude that the disease can be controlled by treating the in-
fected birds. The change of the behavioral structure of the system dynamics will 
depend on the biting rate and the transmission possibility of the ticks. So, if we 
are able to kill the ticks by spraying insecticide, then biting rate and transmission 
will automatically be reduced and then the disease can be partly controlled, 
pending if the infected birds are isolated from uninfected ones. The inclusion of 
latent and recovered categories in the model equation system is necessary since 
it may change the dynamics of the disease. However, the life cycle of the parasite 
and its incubation is not short enough to be neglected. Therefore, we did con-
sider the latent status in our model, thus, the progression from susceptible to in-
fected classes passes through a latent stage. 

In the formulated, analyzed and numerically simulated compartmental ma-
thematical model of the disease for the bird and tick population, we have inves-
tigated the effect of the controls on the model, we have also assumed homoge-
neous mixing and host heterogeneity of the birds. Theoretical models are im-
portant to understand the dynamics during the early stages of the infection 
process when therapeutic interventions may be more effective. To further ad-
vance theoretical modeling investigations, this study extends by considering the 
effect of birds demography in a stochastic model. 
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