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Abstract 
This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calo- 
gero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. 
By means of the truncated Painlev expansion, the (2 + 1)-dimensional 
KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear 
equation, through the trilinear-linear equation, we can obtain the explicit re-
presentation of exact solutions for the (2 + 1)-dimensional KdV-Calogero- 
Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact 
solutions by presenting their three-dimensional plots and the corresponding 
density plots. 
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1. Introduction 

Over the past few decades, the research of the nonlinear evolution equations 
(NLEEs) is flourishing because of the rich findings of these equations. NLEEs 
display many interesting nonlinear dynamic behaviors, such as plasma physics, 
optical systems, ocean, superfluids, hydrodynamics and other nonlinear fields [1] 
[2] [3] [4]. The solutions of NLEEs can provide much physical information and 
more insight into the physical aspects and then lead to further applications, so 
seeking exact solutions is an important problem in nonlinear science. In fact, 
there are a variety of powerful methods have been used to solve the NLEEs. For 
instance, the Darboux transformation [5], the Lie group method [6], the Hirota 
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bilinear method [7], the inverse scattering method [8] and other methods. Re-
cent study for constructing lump solution by taking the function f in its bilinear 
form as a positive quadratic function based on Hirota bilinear method was ob-
tained in [9]. Then, by using this method, more and more the lump solutions 
and the interaction solutions have been perfectly obtained in NLEEs equations 
[10]-[26]. 

In this paper, we focus on the following (2 + 1)-dimensional KdV-Calogero- 
Bogoyavlenkskii-Schiff (KdV-CBS) equation [27] [28] [29].  

( ) ( )14 4 2 2 6 0,t y x x y xxy x xxxu uu u u u uu uα β−− + ∂ + − + =           (1) 

which with two arbitrary constant α  and β , Equation (1) can be reduced to 
some other equations with physical meanings. If we setting 0, 0α β≠ = , Equa-
tion (1) is reduced to Calogero-Bogoyavlenskii-Schiff equation [30].  

( )14 4 2 0.t y x x y xxyu uu u u uα −− + ∂ + =                   (2) 

If setting { }0, 0α β= ≠ , Equation (1) is famous KdV equation  

( )4 6 0.t xxx xu u uuβ− + =                         (3) 

Let x yv u= , Equation (1) is transformed into the following system  

( ) ( )4 2 6 0,t y x xxy x xxxu uu u v u uu uα β− + + − + =             (4a) 

0.x yv u− =                             (4b) 

By applying Painlevé truncated extension, some types of explicit solutions (1) 
were studied in [31]. A direct bilinear Bäcklund transformation on the basis of 
quadrilinear representation was constructed in [32] [33]. Ref. [34] obtained so-
liton solutions, quasiperiodic wave solutions of the Equation (1) based on the 
Riemann-Bäcklunk method. Interaction solutions of Equation (1) were obtained 
under consistent Riccati expansion in [29]. 

The outline of this paper is as follows. In Section 2, we convert the original 
KdV-CBS equation to a trilinear equation by using the truncated Painlevé ex-
pansion. In Section 3, we derived exact solutions for the KdV-CBS equation by 
taking function f as a positive quadratic function; another kind of exact solutions 
were got by taking function f as a positive quadratic and an exponential function; 
by taking function f as two exponential terms and the quadratic function, we 
obtained three kinds of exact solutions respectively via different parameters. A 
short conclusion is included in the last section. 

2. Trilinear Equation 

Based on the Painlevé analysis proposed in Ref. [4], Equation (4a) and Equation 
(4b) possess a truncated Painlevé expansion as follows:  

1 2
0 2

1 2
0 2

,

,

u uu u
f f

v vv v
f f

= + +

= + +
                          (5) 
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with 0 1 0 1 2, , , , ,u u v v v f  being the function of ,x y  and t. We have  
2

2
1 2 2 0 12

2

0 2 2

, 2 , 2 , , 2 ,
2 4

23 32 ,
4 2

xxx xx
xy x y x xx

x x

y xx xy xxyt xx xxx

x x x xx x

f f
v f v f f u f u u f

f f
f f f ff f f

v
f f f ff f

λ

βλ β βλ
α α α α

= = − = − = − + =

−
= + − + + − −

       (6) 

the Equation (6) is from Ref. [35]. The function f satisfies the following trilinear 
equation,  

2 2 2

2 3 2 2

4 4 3

4 3 3 4 4 4 0.
xxxy x x xy xxxx x x xxx xy xxx x xx x xx xy

xx x y xy xx xx x xt x x x

f f f f f f ff f f f f f f f f

f f f f f f f f f f f

α αλ β α β α

λα α β α

+ + − − −

− + + − + =
 (7) 

By solving the Equation (5), we can get  
2

2

1 ,
2 4

xxx xx

x x

f f
u

f f
λ= − +                          (8a) 

2

2 2

23 32 .
4 2

y xx xy xxyt xx xxx

x x x xx x

f f f ff f f
v

f f f ff f
βλ β βλ
α α α α

−
= + − + + − −          (8b) 

Based on the idea in Ref. [9], the (2 + 1)-dimensional KdV-Calogero-Bogoy-av- 
lenkskii-Schiff equation has a set of rational solutions determined by  

( ) ( )
( ) ( )( )

2 2
1 2 3 4 5 6 7 8 9

1 2 3 4 1 2 3 4exp exp ,

f a x a y a t a a x a y a t a a

m k x k y k t k n k x k y k t k

= + + + + + + + +

+ + + + + − + + +
    (9) 

where , , ,1 9,1 4i ja k k i j≤ ≤ ≤ ≤  are real parameters to be determined. Substi-
tuting function (9) into trilinear Equation (7), we give five kinds of exact solu-
tions of Equation (4a) and Equation (4b) via function (9). 

3. Lumps and Interaction Solutions 

Case I 
Substitution function (9) into trilinear Equation (7), a set of constraining equ-

ations for the parameters can be obtained as following  

1 2 2 3 2 4 4

5
5 5 6 7 7 8 8 9 9

1 1 2 2 3 3 4 4

0, , , ,

, , , , ,

0, 0, , , , , ,

a a a a a a a
a

a a a a a a a a a

m n k k k k k k k k

λα
β
λ

β β λ λ

= = = =

= = − = = =

= = = = = = = =

        (10) 

where  

90, 0aλ ≠ >                             (11) 

to guarantee that the corresponding f is positive. By substituting Equation (10) 
into function (9), then we get the function f reads  

( )
2

2 5
2 2 4 5 7 8 9 .

a
f a y a t a a x y a t a a

β
λα

λ
 = + + + − + + + 
 

        (12) 

By means of Equation (8a) and Equation (8b), the solutions of (4a) and (4b) can 
be obtained  
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2
5

2
1

,
2
a

u
A

λ= +                            (13a) 

2
51 1
2

1 1 1

2 23 ,
aB Cv

A A A
βλβλ

α α
= − + − −                   (13b) 

where  
2 2

9

2 2 4

5
5 7 8

5
1 5 1 2 7 1 2

,
,

,

2 , 2 2 , 2 2 .

f g h a
g a y a t a

a
h a x y a t a

a
A a f B a f a g C a f g

λα
β
λ

β
αλ

λ

= + +

= + +

= − + +

= = + = −

        (14) 

The solutions of u via Equation (13a) which can be seen in Figure 1(a); Figure 
1(b) is the corresponding density plot. The solutions of v via Equation (13b) can 
be seen in Figure 1(c); Figure 1(d) is the corresponding density plot.  

Case II 

1
1 1 2 3 3 4 4

5 6 6 7 6 8 8 9 9

1 2 2 3 2 4 4

, , , ,

0, , , , ,
, 0, , , ,

aa a a a a a a

a a a a a a a a a
m m k k k k k k k

β
α

αλ
αλ

= = − = =

= = = = =

= = = = =
             (15) 

which should satisfy the constraint conditions  

90, 0, 0,a mα ≠ > >                         (16) 

to ensure that the corresponding f is positive and well defined. By substituting 
Equation (15) into function (9), then the function f reads  

( )

( )

2
21

1 3 4 6 6 8

2 2 4 9exp .

af a x y a t a a y a t a

m k y k t k a

β
αλ

α
αλ

 = − + + + + + 
 
+ + + +

         (17) 

Using Equation (8a) and Equation (8b), the solutions for (4a) and (4b) can be 
obtained  

2
1

2 ,
4
au
g

λ= +                         (18a) 

2 3
2 2 1 1

2 2
1

33 ,
16

A B a av
a g g g
αλ β ββλ

α α λ α
= − + + −               (18b) 

where  

 

( )

( )

( )

2 2
9

1
1 3 4

6 6 8

2 3 6 2

1
2 6 2

2 2 4

exp ,

,

,
2 2 exp ,

2 2 exp ,

,

f g h m a
ag a x y a t a

h a y a t a
A a g a h k m

a gB a h k m

k y k t k

ξ
β
α
αλ

αλ αλ ξ
β

ξ
α

ξ αλ

= + + +

= − + +

= + +

= + +

= − + +

= + +

               (19) 
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Figure 1. Profiles of the solution u via Equation (13a) and profiles of the solution v via 
Equation (13b) with 2 1a = , 4 1a = , 5 1a = , 7 1a = , 8 0a = , 9 0.5a = , 1β = , 1α = , 

2λ = , 0t = . (a) and (c) are the corresponding 3-dimensional plots; (b) and (d) are the 
corresponding density plots. 
 
The solutions of u via Equation (18a) can be seen in Figure 2(a); Figure 2(b) is 
the corresponding density plot. The solutions of v via Equation (18b) can be 
seen in Figure 2(c); Figure 2(d) is the corresponding density plot. 

Case III  

1 1 2 2 3 3 4 4 5

2
6 6 7 6 8 8 9 9

1

1 2 2 3 2 4 4

, , , , 0,

, , , , , ,

0, , , , , , ,

a a a a a a a a a
aa a a a a a a a
a

k k k k k k k m m n n

α
αλ α α β

αλ λ λ

= = = = =

= = = = = =

= = = = = = =

         (20) 

where  

1 90, 0, 0, 0.a a m n≠ > > >                      (21) 

to ensure that the corresponding f is positive and well defined. By substituting 
Equation (20) into function (9),  

( ) ( )
( ) ( )( )

2 2
1 2 3 4 6 6 8 9

2 2 4 2 2 4exp exp ,

f a x a y a t a a x a t a a

m k y k t k n k y k t k

αλ

αλ αλ

= + + + + + + +

+ + + + − + +
      (22) 

where , ,1 9,1 4i ja k i j≤ ≤ ≤ ≤  are all real parameters to be determined. Then 
we get the solutions of the Equation (4a) and Equation (4b)  
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Figure 2. Profiles of the solution u via Equation (18a) and the solution v via Equation 
(18b) with 1 0.5a = , 3 2a = , 4 1a = , 5 0a = , 6 0a = , 9 0.5a = , 8 1a = , 0β = , 1α = , 

1λ = , 1m = , 1 0k = , 2 1k = , 4 1k = , 1t = . (a) and (c) are the corresponding 3-dime- 
nsional plots; (b) and (d) are the corresponding density plots. 
 

2
1

2 ,
4
au
g

λ= +                            (23a) 

3
3 32 1 2

2
1 3 3

3
2 ,

B Ca a av
a A A

λαλ
α
−

= − + +                     (23b) 

with  

( ) ( )

( ) ( )
( ) ( )

2 2
9

1 2 3 4

6 6 8

2 2 4

3 1 3 2 6 2 2

3 3 6 2 2

exp exp ,
,

,
,

2 , 2 2 exp exp

2 2 exp exp

f h g a m n
g a x a y a t a
h a x a t a

k y k t k
A a g C a g a h mk nk

B a g a h mk nk

ξ ξ

αλ
ξ αλ

ξ ξ

αλ αλ ξ αλ ξ

= + + + + −

= + + +

= + +

= + +

= = + + − −

= + + −

         (24) 

The exact solutions for Equation (23a) and Equation (23b) can be seen in Figure 
3(a) and Figure 3(c), Figure 3(b) and Figure 3(d) are the corresponding den-
sity plots. 

Case IV  
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Figure 3. Profiles of the solution u via Equation (23a) and v via Equation (23b) with 

1 1a = , 2 1a = , 3 2a = , 4 2a = , 5 0a = , 6 1a = , 8 1a = , 9 1a = , 1 0k = , 2 1k = , 

4 1k = , 1m = , 1n = , 1α = , 1λ = , 0t = . (a) and (c) are the corresponding 3-dime- 
nsional plots; (b) and (d) are the corresponding density plots. 
 

1 7 1 8 61
1 1 2 3 4 5

6 6

6 6 7 8 8 9 9

1 2 2 3 2 4 4

, , , , ,

, 7, , , , ,
, , 0, , , ,

a a a a aaa a a a a a
a a

a a a a a a a a m m n n
k k k k k k k

αβ
α α α β

α α β β αλ λ λ

= = − = − = − = −

= = = = = =

= = = = = = =

       (25) 

where  

6 90, 0, 0, 0.a a m nαβ ≠ > > >                    (26) 

to guarantee that the corresponding f is positive and well defined. We substitute 
Equation (25) into Equation (9), hence, reinstall function f as the following for-
mula:  

( )

( ) ( )( )

2
21 7 1 81

1 5 6 7 8 9
6 6

2 2 4 2 2 4exp exp ,

a a a aaf a x y t a x a y a t a a
a a

m k y k t k n k y k t k

β
α α α

αλ αλ

 
= − − − + + + + + 
 
+ + + + − + +

    (27) 

where , ,1 9,1 4i ja k i j≤ ≤ ≤ ≤  are all real parameters to be determined. Then, 
we get  

2
4
2
4

,
Du
A

λ= +                          (28a) 
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( )4 4 44 4
2

4 4 4

3 42 2
,

4
D D EC Bv

A A A
β αλβλ

α α α
+

= − + + +            (28b) 

where  

( ) ( )2 2
9

1 7 1 81
1

6 6

5 6 7 8

2 2 4

exp exp ,

,

,
,

f h g a
a a a aah a x y t

a a
g a x a y a t a

k y k t k

α ξ β ξ
β
α α α

ξ αλ

= + + + − +

= − − −

= + + +

= + +

 

( )

( ) ( )( )

( ) ( )( )

( )

4 1 5

1
4 6 2

1 7
4 7 2

6

2 2
4 1 5

2
1

4 5 6

2 ,

2 2 exp exp ,

2 2 exp exp ,

2 ,

2 .

A a h a g
aB h a g k m n

a a
C h a g k m n

a

D a a

aE a a

β
ξ ξ

α

αλ ξ ξ
α

β
α

= +

= − + + − −

= − + + − −

= +

 
= − 

 

   (29) 

The exact solution for Equation (28b) can be seen in Figure 4(a), Figure 4(b) 
Figure 4(c) the corresponding density plots with the different time.  
 

 
Figure 4. Profiles of the solution v via Equation (28b) with 1 1a = , 4 0a = , 5 2a = , 

6 4a = , 8 0a = , 9 1a = , 1α = , 1β = , 1 1k = , 2 1.5k = , 3 2k = , 4 0k = . (a) 3-dime- 
nsional plot with the time t = 0; (b) (c) (b) the corresponding density plot with the dif-
ferent time. 

https://doi.org/10.4236/jamp.2020.82015


Y. Li, T. Chaolu 
 

 

DOI: 10.4236/jamp.2020.82015 205 Journal of Applied Mathematics and Physics 
 

Case V. 

6 1
1 2 2 3 2 4 4 5

2

1
6 6 7 7 8 8 9 9

2

7 2
1 1 2 1 3 4 4

6

0, , , ,

, , , , , ,

, , , , , .

a k
a a a a a a a a

k
ka a a a a a a a

k
a k

k k k k k k k m m n n
a

αλ

β
α β β

= = = = =

= = = = = − =

= = = = = =

            (30) 

with  

2 6 90, 0, 0, 0.k a a m n≠ > > >                     (31) 

to guarantee that the corresponding f is positive and well defined. We substitute 
Equation (30) into Equation (9), then function f reads  

( )
2

2 6 1
2 2 4 6 7 8

2

7 2
9 1 2 4

6

7 2
1 2 4

6

exp

exp ,

a k
f a y a t a x a y a t a

k

a k
a m k x k y t k

a

a k
n k x k y t k

a

αλ
 

= + + + + + + 
 

 
+ + + + + 

 
  

+ − + + +     

         (32) 

where , ,1 9,1 4i ja k i j≤ ≤ ≤ ≤  are all real parameters to be determined. Then, 
the rational solution of system (4a) and (4a) can be got again.  

( ) ( )( )3
1 5

2
5 5

2
5 5 5 5 5 5 5

2 2
5 5 5 55 5

exp exp
,

2 4

33 2 2 , ,
24

k m n D
u

A A

B C D D E F G
v

A A A AA A

ξ ξ
λ

β ββλ λ
α αα

− −
= − +

= − + + + + − −

      (33) 

and where  

( ) ( )

( )

2 2
9

2 2 4

6 1
6 7 8

2

7 2
1 2 4

6

6 1
5 1 1 1

2

exp exp ,
,

,

,

2 exp( ) exp ,

f g h m n a
g a y a t a

a k
h x a y a t a

k
a k

k x k y t k
a

a k
A k h mk nk

k

ξ ξ
αλ

ξ

ξ ξ

= + + + − +

= + +

= + + +

= + + +

= + + − −

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

7 2
5 2 7

6

5 2 6 2

2 2
26 1

5 12
2

6 1
5 1 2 6

2
2

5 1 2

2 2 exp exp ,

2 2 exp exp ,

2 exp exp ,

exp exp 2 ,

exp exp .

a k
B a g a h m n

a

C a g a h k m n

a k
D k m n

k
a k

E k k m n a
k

F k k m n

αλ ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

= + + + −

= + + + −

= + + −

= + − +

= + −

      (34) 
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Figure 5. Profiles of the solution u and v via Equation (33) with 2 1a = , 4 1a = , 6 1a = , 

7 1a = , 8 2a = , 9 1a = , 1 1k = , 2 1k = , 4 1k = , 1m = , 1n = , 1λ = , 1β = , 0t = . (a) 
and (c) are the 3-dimensional plots; (b) and (d) are the corresponding density plots. 
 
The exact solutions for Equation (33) can be seen in Figure 5(a) and Figure 5(c), 
Figure 5(b) and Figure 5(d) are the corresponding density plots.  

4. Conclusion 

In this paper, by using the truncated Painlev expansion, the (2 + 1)-dimensional 
KdV-CBS equation can be changed to a trilinear Equation (7), and by means of 
symbolic computations, we presented five types of exact solutions ((13a), (13b), 
(18a), (18b), (23a), (23b), (28a), (28b), (33)) to the (2 + 1)-dimensional KdV-CBS 
equation. Three-dimensional plots and the corresponding density plots of these 
exact solutions are given respectively in Figure 1 and Figure 5. This work shows 
the power of the methods, the exact solutions of some nonlinear equations can 
be obtained by using this means. It is expected that our results can enrich the 
exact solutions of the nonlinear equations.  
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