
Advances in Pure Mathematics, 2020, 10, 21-38 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2020.101003  Jan. 16, 2020 21 Advances in Pure Mathematics 
 

 
 
 

Study of Second-Order Continuities of a 
Composite Surface 

Yukun Liu1, Yong Yue2 

1Department of Computer, School of Information Science and Engineering, Hebei University of Science and Technology, 
Shijiazhuang, China 
2Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China 

 
 
 

Abstract 
There are two classes of continuities, parametric continuities and geometric 
continuities, which are used to illuminate the smoothness of a composite sur-
face in surface construction and reconstruction in computer graphics (CG) 
and computer aided design (CAD). A parametric continuity is more stiff than 
its corresponding geometric continuity of the same order. This paper uncov-
ers the geometric properties of parametric and geometric continuities less 
than and equal to second order and presents the proofs for the corresponding 
propositions. These propositions can be applied to the existent or promising 
schemes of surface construction or reconstruction, which can provide a con-
vincing theory for researchers to establish their schemes in surface construc-
tion. Three examples are used in this paper to show the applications of these 
propositions. 
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1. Introduction 

It is known that there are a lot of applications of surface construction or recon-
struction in computer graphics (CG), computer aided design (CAD), computer 
aided geometric design (CAGD), and their succeeding applications, such as vi-
sualization in scientific computing (VISC), medical imagining technology 
(MIT), medical image reconstruction (MIR), manufacturing of ships, aircrafts 
and cars, digital special effect in film and television animation production, etc. 
[1] [2]. 
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The process of surface construction or reconstruction usually starts from 
sampling discrete points (vertices) on a target surface that is studied by re-
searchers. The results of surface construction and reconstruction in computer 
are often composite surfaces which are patches glued together. Researchers 
create their schemes to construct or reconstruct a composite surface via com-
puter technology to approximate the target surface. Then the constructed or re-
constructed surfaces can be applied to education, researches, and management 
in medicine, biology, geography, mechanics, electrical engineering, science, 
business, entertainment, and others. 

There are two classes of continuities characterized by many researchers to 
examine how smooth a composite surface is, these being called parametric con-
tinuities and geometric continuities [3] [4] [5] [6] [7]. Following the studies of 
the predecessors [3] [4] [5] [6] [7], this paper provides a further description on 
the continuities of rth order, 2r ≤ , and presents different mathematical features 
of these continuities. 

The required proofs are given along with the discussion, which can verify the 
study in this paper. The features presented in this paper can be directly applied 
to examining how smooth a surface can be constructed or reconstructed by an 
existent or promising scheme. It can save the time and effort for researchers to 
look for a convincing theory of surface continuities to make their new methods 
established. 

Related studies are given in Section 2. A system of surface construction has to 
be defined first in the context of algebraic topology and differential geometry in 
Section 3. After uni-parametric representations of continuities are given in Sec-
tion 4, bi-parametric formulae of geometric continuities are further presented in 
Section 5. In Section 6, properties of first-order continuities are discussed. In 
Section 7, properties of second-order continuities are further extended. In Sec-
tion 8, three examples are used to show how to apply the theory of this paper. 
Section 9 is results and conclusions. 

2. Related Studies 

In CG, CAD, CAGD and other applications of surface construction and recon-
struction, researchers work hard to construct composite surfaces as smooth as 
needed in their applications [3] [4] [5] [6] [7]. Some researchers have noticed 
that parametric continuities were usually too stiff to meet for a scheme of surface 
construction. For this reason, Barsky and DeRose [3] [4] devised the Beta-spline 
surfaces that meet the geometric continuities rather than parametric continui-
ties. According to the studies [3] [4] [5] [6] [7], parametric continuities can 
shrink the set of parameterizations by excluding ones that can generate geome-
trically smooth curves or surfaces. The reason for this is that the condition of 
parametric continuity of a given order is stricter than one of the geometric con-
tinuity of the same order, which will be discussed in this paper. 

Researchers in applications of surface construction and reconstruction usually 

https://doi.org/10.4236/apm.2020.101003


Y. K. Liu, Y. Yue 
 

 

DOI: 10.4236/apm.2020.101003 23 Advances in Pure Mathematics 
 

presented the schemes that could be used to construct a composite surface with 
the continuity of a given order without a mathematical proof to verify how 
smooth it is. To our knowledge, no others have done the further study on the 
geometric properties of these two classes of continuities of a composite surface 
and the related proofs. 

On the other hand, the existent theory of algebraic topology [8] has estab-
lished the mathematics foundation for the study of this paper, which can be used 
to present the definition of a system of surface construction in a mathematical 
way, which will be introduced in Section 3. In this system, our further discussion 
will progress to the geometric properties of these two classes of continuities. To 
support the further discussion in this paper, the theories of modern geometry [9] 
and differential geometry [10] [11] must be introduced. In this way, the study of 
this paper can bridge the gap between the surface construction and the related 
mathematics theories. 

With the above purpose and theories, this paper uncovers the geometric 
properties of these two classes of continuities of less than and equal to second 
order and presents the proofs for the corresponding propositions. These propo-
sitions can be applied to the existent or promising schemes of surface construc-
tion or reconstruction, which can provide a convincing theory for researchers to 
establish their schemes in surface construction and reconstruction. 

3. System of Surface Construction 

In order to follow the researches of predecessors mentioned above and save the 
extra effort in the existent proofs, we put our discussion in the context of the re-
lated theory that has been established. A system of surface construction or re-
construction is defined in algebraic topology firstly here. From the point of view 
of constructing a surface from a network of sampled vertices with the computer 
technology, surface reconstruction can be included in surface construction. 
Thus, we will substitute surface construction or reconstruction with surface con-
struction in the rest of this paper. 

This paper will develop its deduction on the basis of the existent theory of al-
gebraic topology, especially on the treatise of Massey [8]. Therefore, the defini-
tions here will start from this basis. It is also required to mention that this paper 
will focus on surfaces that are orientable and locally connected since these types 
of surfaces are ones usually studied in CG, CAD, CAGD, and their related ap-
plications. 

Definition 1. A segment f in a surface S is a continuous map of some closed 
interval into S. That is, :f I S→ . Since it is continuous, the closed interval can 
be set [ ]0,1I = . Two points, { },a b , the images of the end points of the interval 
I denote the end points of the segment, and the segment f is called to join its end 
points. The segment f is orientable so that a , the point from which the segment 
starts, is called initial point and b, the point which the segment reaches, is called 
terminal point. 
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Definition 2. A surface S is called segment-wise connected if any two points 
of S can be joined by a segment. A segment-wise connected surface is connected. 
The segment components of S are the maximal segment-wise connected subsets 
of S. A surface is locally segment-wise connected if each point has a basic family 
of segment-wise connected neighborhoods. A surface that is connected and lo-
cally segment-wise connected is segment-wise connected. 

Definition 3. Let S be a surface. S is also a topological space. Let M be a sys-
tem of surface construction. M is a pair { }ˆ,S ϕ , where Ŝ  is a constructed sur-
face and ˆ: S Sϕ →  a continuous map such that the following condition holds: 
Each point x S∈  has a segment-wise-connected open neighborhood K such 
that each segment component of ( )1 Kϕ−  is mapped topologically onto K by 
ϕ . ( )1 Kϕ−  is nonempty. The map ϕ  is also called a projection. Any open 
neighborhood K that meets the above condition is called a prime neighborhood. 

Definition 3 is analogous to the definition of the covering space in algebraic 
topology [8]. The purpose of doing so is to channel surface construction of CG, 
CAD, and CAGD into algebraic topology of which the established theory can be 
applied directly to this paper. It is also natural and proper because a surface is 
one class of topological spaces and a surface constructed by a method in CG, 
CAD, and CAGD can be corresponding to a covering space of a target surface 
that is studied in CG, CAD, and CAGD. That is, the covering space in algebraic 
topology is transferred into the system of surface construction in CG, CAD, and 
CAGD here. As a constructed surface is a composite surface, they are interchan-
geable in this paper. 

4. Parametric Continuities and Geometric Continuities 

In order to explore the geometric meanings and properties of smooth conditions 
between adjacent patches of a composite surface, it is necessary to define two 
different types of continuities, parametric continuities and geometric continui-
ties, which have been presented for years in CG, CAD, and CAGD [3] [4] [5] [6] 
[7], and are still used recently [12] [13]. Here, they are defined in the context of 
the system of surface construction. 

The local continuity of a patch is obvious if a set of algebraic formulae with 
definite continuities are used to express the patch. In CG, CAD and CAGD, re-
searchers usually discuss continuities on the boundaries between pairs of patches 
when they present their schemes of surface construction. The focus of this paper 
is put primarily on the boundaries between pairs of patches that are sewed to-
gether to form a composite surface. 

Let us move onto the definitions of parametric and geometric continuities. 
There exists a system of surface construction { }ˆ,S ϕ  (defined in Definition 

3). ϕ  consists of a set of polynomial formulae that interpolate and approximate 
a target surface S to connect the network of vertices N, which are sampled on the 
target surface S, and to construct each patch ˆ

ic S⊂ . Ŝ  is the constructed sur-
face of the system of surface construction. 
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There exist a pair of adjoining patches { },i jc c , ˆ
ic S⊂  and ˆ

jc S⊂ . In 
these two patches, there exist two uni-parametric curve segments, ( )ci il u c⊂  
and ( )cj jl w c⊂ , where the parameters [ ]0 1,u u u∈  and [ ]0 1,w w w∈ , respec-
tively. These two segments satisfy Definition 1 and meet at a common point 

( ) ( )1 0ci cjp l u l w= = . 
Definition 4. We say that the above two segments, ( )cil u  and ( )cjl w  meet 

with the nth-order parametric continuities ( nC ) if the following conditions are 
satisfied: 

( ) ( )
1 0

d d
d d

k k

ci cjk k
u w

l u l w
u w− +

=                    (1) 

where 1 0u w=  and 0, ,k n=  . Especially, the 0C  condition is 

( ) ( )1 0ci cjl u l w= . 

Definition 5 We say that the above two curve segments, cil  and cjl , meet 
with the nth-order geometric continuity ( nG ) if there exists an algebraic curve 

al  which meets both curves cil  and cjl  at p with contact of order n in the 
sense that the first n terms in the Taylor series expansions about the point p of 
the two given segments, cil  and cjl , and the algebraic curve al  all agree at p. 

If these two segments, cil  and cjl , join with the parametric continuities with 
respect to the natural arc length parameterization and with the assistance of the 
chain rule, cil  and cjl  meet the conditions of geometric continuities. That is, 
the condition of 0G  is written as, 

( ) ( )( ) ( )1 1 0ci cj cjl u l w u I w− − += = .                  (2) 

The condition of 1G  is written as 

( ) ( ) ( )
1 1 0

d d d
d d dci cj

u u w

l u w u l w
u u w− − +

  
=     
  

             (3) 

The condition of 2G  is written as 

( ) ( ) ( ) ( ) ( )
1 01 0 1

2
2 2 2

2 2 2

d d d d d
d dd d dci cj cj

u wu w u

l u w u l w w u l w
u wu w u− +− + −

     
   = +             

 (4) 

In CG, CAD, and CAGD, parametric continuities kC  are usually too stiff for 
researchers to find a set of parametric expressions that satisfy them in practical 
situations if 1k > . Therefore, geometric continuities kG  are applied to some 
schemes of surface constructions [3] [4] [5] [6] [7] [12]. 

Since patches of a composite surface are usually represented by bi-parametric 
algebraic expressions in CG, CAGD, and CAD, it is convenient to represent the 
geometric continuities with bi-parametric formulae. Bi-parametric formulae of 
geometric continuities will be presented in the next section. 

5. Bi-Parametric Formulae of Geometric Continuities 

Give two bi-parametric patches, { },i jc c , ( ) ˆ,ic u v S⊂  and ( ) ˆ,jc w t S⊂ , 
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where Ŝ  is a constructed surface. ( ),ic u v  and ( ),jc w t  are expressed by ra-
dius vectors in differential geometry. These two patches meet at a point, 

( ) ( ), ,i jp c u v c w t= =


   . According to Definition 5 and the study of Hoschek and 
Lasser [7], the condition of zeroth-order geometric continuity 0G  is as follows, 

( ) ( ) ( ) ( )( ), , , , ,i j jc u v c w t c w u v t u v= =


       ,              (5) 

where ( ),w w u v=   , and ( ),t t u v=


  . 
The condition of first-order geometric continuity 1G  is written as follows, 

( ) ( )11, ,i jc u v T c w t=


  

  ,                      (6) 

where ( )

( ),

,
i

i

i
u v

c
uc u v

c
v

∂ 
 ∂=  
∂ 

 ∂   

 

 , ( )

( ),

,
j

j

j
w t

c
wc w t

c
t

∂ 
 ∂=  
∂ 

 ∂  







  and 

( )

11

,u v

w t
u uT
w t
v v

∂ ∂ 
 ∂ ∂=  
∂ ∂ 
 ∂ ∂   

. 

The condition of second-order geometric continuity 2G  is written as fol-
lows, 

( ) ( ) ( )22 12, , ,i j jc u v T c w t T c w t= +
 

   

   ,                (7) 

where ( )

( )

2

2

2

2

2
,

,

i

i i

i

u v

c
u

c u v c
u v

c
v

 ∂
 ∂ 
 ∂

=  ∂ ∂ 
 ∂
 ∂   

 

 , ( )

( )

2

2

2

2

2
,

,

j

j j

j

w t

c
w

c w t c
w t

c
t

 ∂
 ∂ 
 ∂

=  ∂ ∂ 
 ∂
 ∂  







 , 

( )

2 2

22

2 2

,

2

2
u v

w w t t
u u u u

w w w t w t t tT
u v u v v u u v

w w t t
v v v v

 ∂ ∂ ∂ ∂      
       ∂ ∂ ∂ ∂       
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            = +           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            
 

∂ ∂ ∂ ∂              ∂ ∂ ∂ ∂         

 

and 

( )

2 2

2 2

2 2

12

2 2

2 2
,u v

w t
u u
w tT

u v u v
w t

v v

 ∂ ∂
 ∂ ∂ 
 ∂ ∂

=  ∂ ∂ ∂ ∂ 
 ∂ ∂
 ∂ ∂   

. 

Before discussing the properties of continuities, let us see how to represent the 
first and second derivatives in Equations ((3), (4), (6) and (7)) in the discrete 
way in CG, CAGD, and CAD in order to see which points in the neighborhood 
of an assessed point should be involved in computing with computer technology. 
In practice, these points are influenced by a concrete scheme of surface con-
struction [3] [4] [5] [6] [7]. 

It is necessary to notice that the first derivatives in Equations ((3), (4), (6) and 
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(7)) can be represented approximately with the ratio of the difference of corres-
ponding function values of two points to the parametric variation in CG, CAGD, 
and CAD. In this way, the first column of points on both sides in the neighbor-
hood of the assessed point p is involved in computing the first derivatives, 
shown in Figure 1. They are 1p  and 2p . 

In an analogous way, the second derivatives in Equations (4) and (7) can be 
represented approximately with the ratio of the difference of the corresponding 
first derivatives to the parametric variation. Thus, the first and second columns 
of points on both sides in the neighborhood of the assessed point are involved in 
computing the second derivatives. They are 1p , 2p , 3p  and 4p . Figure 1 
shows the first and second columns of points on both sides in the neighborhood 
of an assessed point p. 

We will explore the properties of first order continuities in Section 6 and the 
properties of second order continuities in Section 7, respectively. 

6. Properties of First-Order Continuities 

Remark 1. Let us see Equations (1) and (3) in Section 3, and compare the 
conditions of first-order parametric continuity 1C  and first-order geometric 
continuity 

1G  of two uni-parametric curves. Since the difference between them  

is the derivative argument, ( )
1

d
d u

w u
u −

, this argument expands the identity of  

derivative vectors of the same orientation and scale into the equivalence of de-
rivative vectors of only the same orientation in three-dimensional space 3R . 
The scale difference can be complemented by an extra transformation or map-
ping, or it can be held for two adjoining patches to have distinguishing appear-
ances when crossing their boundary. 

The idea of Remark 1 can be further expanded into bi-parametric curve seg-
ments in two adjoining patches of a surface with two more conditions so that the 
patches are locally 1C  and the surface is globally 1G . Before expanding  

 

 
Figure 1. Schematic representation of the neighborhood of the assessed point p, a com-
mon point of two adjoining patches, ic  and jc . The part left to the thick curve belongs 

to ic , and the part right to the thick curve belongs to jc . Points 1p  and 2p  are at the 

first column in the neighborhood of the assessed point p while points 3p  and 4p  are 
at the second column. 
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Remark 1 into the bi-parametric curve segments, let us see the bi-parametric 
curves in a different way. 

There exists a patch ˆ
jc S⊂ , where jc  is locally 1C  and Ŝ  is globally 1G . 

In the patch jc , let us take a bi-parametric curve segment, ( ),cj jl w t c⊂ , in the 
way of Remark 2. 

Remark 2. If we choose two different natural (arc) parameters along two dif-
ferent directions as two parameters of w and t, respectively, two families of 
curves are corresponding to the network of two coordinates, w and t. 

Let wε  and tε  be assigned values in two sets of graduations, wE  and tE , 
respectively. That is, w wEε ∈  and t tEε ∈ . If wε  is given a definite value in 
the set wE , ( ),cj wl w tε=  represent a family of curves, that is, a family of t 
coordinate segments. If tε  is given a definite value in the set tE , ( ),cj tl w t ε=  
represent a family of w coordinate segments. A coordinate network of t and w is 
built up with ( ),cj wl w tε=  and ( ),cj tl w t ε= , which is shown in Figure 1. In 
the coordinate network, any one of these segments, ( ). ,cj t wl w tε=  and  

( ). ,cj w tl w t ε= , can be seen as a uni-parametric curve and Remark 1 can be ap-
plied to them. 

Since each of parameters, w and t, is a natural (arc) parameter, 

( ) ( )
( ). ,

, , d
w

cj w t cj w cj t t
l w t l w t l

ε
ε δ ε= + − = →   

and 
( )( ). ,

d d
w

cj t t
l t

ε
→  if 0tδ → . 

and 

( ) ( )
( ). ,

, , d
t

cj w t cj t cj w w
l w t l w t l

ε
δ ε ε+ = − = →   

and 
( )( ). ,

d d
t

cj w w
l w

ε
→  if 0wδ → . 

As cjl  is expressed as radius vector, 

( ) ( )
.

, ,

d
d

w w

cj t cj
t t

l l
t tε ε

∂
=
∂

, and 
( ) ( )

.
, ,

d
d

t t

cj w cj
w w

l l
w wε ε

∂
=
∂

, 

where 
( ),w

cj
t

l
t ε

∂
∂

 and 
( ), t

cj
w

l
w ε

∂
∂

 are the corresponding partial derivative vec-

tors of the radius vector cjl . 

If the Ŝ  is globally 1C , with Equation (1), we can find a bi-parametric 
curve, ( ) ˆ,ci il u v c S⊂ ⊂ , which meets ( ) ˆ,cj jl w t c S⊂ ⊂  at the common point 

( ) ( ), ,ci cjp l u v l w t= =


   , and satisfies the following identities, 

ci cj
p p

l l
u w
∂ ∂

=
∂ ∂

,                       (8) 

and ci cj
p p

l l
v t
∂ ∂

=
∂ ∂

.                     (9) 

We should notice that ic  also has the coordinate network of two corres-

ponding coordinates, u and v, and 
( ),u

ci
v

l
v ε

∂
∂

 and 
( ), v

ci
u

l
u ε

∂
∂

 are the corres-
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ponding partial derivative vectors. 
In other words, the coordinate network of jc  can be extended to its neigh-

boring patches. That is, for any of .cj tl  and .cj wl , there exists a corresponding 
coordinate segment in its neighboring patches. Any of these coordinate seg-
ments can be the image of a segment f defined in Definition 1, which is conti-
nuous. 

As a result of the above deduction, the Ŝ  of the globally 1C  appears to be a 
globally smooth surface rather than a composite surface with the visibly chang-
ing when crossing the boundaries of patches. Neighboring patches of Ŝ  have 
the consistently changing in the geometric sense. 

Now let us back to Remark 1 and expand it into bi-parametric curve segments 
in two adjoining patches of a surface. 

Remark 3. The idea of Remark 1 can be expanded into bi-parametric curve 
segments in two adjoining patches of a composite surface with two conditions 
and an adjusted result. The two conditions are that the patches are locally 1C  
and the composite surface is globally 1G . The adjusted result is that the coordi-
nate derivative vectors can twist and/or scale when crossing the boundary be-
tween a pair of adjoining patches. That is Proposition 1 as follows. 

Proposition 1. If patches of a composite surface Ŝ  are locally 1C  and Ŝ  
is globally 1G , the coordinate derivative vectors of bi-parametric curve seg-
ments in adjoining patches can twist and/or scale when crossing the boundary 
between a pair of adjoining patches. 

The simplified proof is as follows. The idea will be extended gradually in the 
deduction of Remark 4 and Remark 5. 

Proof. There exist a pair of adjoining patches { },i jc c , ˆ
ic S⊂  and ˆ

jc S⊂ . 
In these two patches, let us take two bi-parametric curve segments, ( ),ci il u v c⊂  
and ( ),cj jl w t c⊂  such that they meet at a common point ( ) ( ), ,ci cjp l u v l w t= =



    
and satisfy the 1G  condition, Equation (6), at the point p. In the differential 
geometric convention and theory of manifolds, cil  or cjl  can be represented 
by the radius vector of any point along them, respectively. 

Since patches are locally 1C , we can choose u and v to be two natural para-
meters along two different arc orientations in ic , and choose w and t to be two 
natural parameters along two different arc orientations of jc . 

In the analysis of Remark 2, we know that in jc  the coordinate network of t 
and w is composed of ( ),cj wl w tε=  and ( ),cj tl w t ε= . In ic , the coordinate 
network of v and u is made up of ( ),ci ul u vε=  and ( ),ci vl u v ε= , where uε  
and vε  be assigned values in two sets of graduations, uE  and vE , respective-
ly. The corresponding partial derivative vectors are as follows, 

( ),w

cj
t

l
t ε

∂
∂

 and 
( ), t

cj
w

l
w ε

∂
∂

 of cjl , and 
( ),u

ci
v

l
v ε

∂
∂

 and 
( ), v

ci
u

l
u ε

∂
∂

 of cil . 

Since cil  and cjl  meet at the common point ( ) ( ), ,ci cjp l u v l w t= =


    and 
Ŝ  is globally 1G , cil  and cjl  are two adjoining segments of one curve 

ˆ
ci jl S− ⊂ , which is 1G . 
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Equation (6) is satisfied at the common point p when crossing two patches, 

ic  and jc . Let us individually rewrite each of two formulae in Equation (6) as 
follows, 

ci cj cj
p p

w tl l l
u u w u t
∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ 

,               (10) 

and ci cj cj
p p

w tl l l
v v w v t
∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ 

.               (11) 

Let us examine the geometric meanings of Equations (6), (10) and (11). 
cjl
w

∂

∂
, cjl

t
∂

∂
, cil

u
∂
∂

 and cil
v

∂
∂

 are partial derivative vectors and have their own 

directions in 3R . w
u
∂
∂

, t
u
∂
∂

, w
v

∂
∂

 and t
v
∂
∂

 are parameters that can be 

changed with varied sizes of patches. Equation (10) represents that the vector 

cil
u

∂
∂

 is the linear combination of two vectors, cjl
w

∂

∂
 and cjl

t
∂

∂
, rather than the 

identity of cjl
w

∂

∂
 in Equation (8), at the common point p. Similarly, Equation 

(11) represents that cil
v

∂
∂

 is the linear combination of cjl
w

∂

∂
 and cjl

t
∂

∂
, rather 

than the identity of cjl
t

∂

∂
 in Equation (9), at the common point p. 

In other words, with globally 1G , the pair of partial derivative vectors of each 
coordinate network hold the linear relationships with the corresponding partial 
derivative vectors of its neighboring patches. 

Let us see carefully the matrix 11T  of Equation (6). With the theories of mod-
ern geometry and transformation group [9], if the square matrix 11T  is full 
rank, 11T  can perform twisting or scaling on a vector by left multiplying the 
vector. 

Therefore, unlike a surface of the globally 1C , when a coordinate curve seg-
ment in a patch of Ŝ  is extended to the corresponding coordinate curve seg-
ment in its neighboring patch, it may twist or scale. 

These observations are just what is said in Proposition 1. That is, parameters, 

p

w
u
∂
∂

, 
p

w
v

∂
∂

, 
p

t
u
∂
∂

, and 
p

t
v
∂
∂

, help expand the identity of partial derivative  

vectors of the same orientation and scale under the globally 1C  condition into 
the equivalence of partial derivative vectors with twisting and/or scaling under 
the globally 1G  condition in three-dimensional space 3R . The latter situation 
results in the fact that the corresponding partial derivative vectors may twist or 
scale when crossing the boundary between a pair of neighboring patches. 

Therefore, Proposition 1 has been proved.                            ☐ 
Now, let us take the natural parameter x as the arc of cjl  in jc  at the point p 

and consider the coordinate network mentioned in Remark 2. Since jc  is lo-
cally 1C , we can write the following formula, 
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d d d
d d d

cj cj cjl l lw t
x w x t x

∂ ∂
= ⋅ + ⋅
∂ ∂

.                   (12) 

From Equation (12) and 
d
d

cjl
x

 is a unity vector, the square of the differential 

arc length can be written as 

2 2

2 2

d d d d d d

d 2 d d d

cj cj cj cj
cj

cj cj cj cj cj cj

l l l l
x l w t w t

w t w t

l l l l l l
w w t t

w w w t t t

∂ ∂ ∂ ∂   
= = + • +   ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ ∂     
= • + ⋅ • + •     ∂ ∂ ∂ ∂ ∂ ∂     

     (13) 

where cjl  is the radius vector and cj cjl l
w t

∂ ∂ 
• ∂ ∂ 

 is the dot product of two par-

tial derivative vectors, cjl
w

∂

∂
 and cjl

t
∂

∂
. Equation (13) is also known as the first 

fundamental form. 
Remark 4. With the theory of the first fundamental form of a surface, a sur-

face with the globally 1C  continuity holds the differential arc length. That is, 
both the orientation and size of differential arc are constant. In other words, if 
we expect to join two patches together with the differential arc length being in-
variant, these two patches must keep the orientation and size of the differential 
arc constant when crossing the boundary between them. From the analysis of 
Remark 3 and Equation (13), 2 2d dci cjp p

l l=  for joining ic  and jc  with the 
1C  continuity. 
This case is also called distance-preserving. The differential arc lengths, angles 

and areas are invariant when connecting patches together to construct a compo-
site surface if these patches keep the first fundamental forms invariant. The 
composite surface is 1C . 

What about only holding the orientation of the differential arc when crossing 
the boundary between two adjoining patches? The answer to this question is in 
the following Remark 5. 

Remark 5. If only the differential arc orientation is held, one of two adjoining 
patches, ic  and jc , has to be changed its own dimensions by being mapped or 
transformed into the other’s. Or, they keep the difference of their dimensions 
and each of them holds its own distinct geometric details. With the theory of 
differential geometry [10], the condition of holding only differential arc orienta-
tion also means that 

d : d d : dw t u v=                        (14) 

at the point ( ) ( ), ,ci cjp l u v l w t= =


   . In this situation, we will give the Proposi-
tion 2 and prove that this condition is equivalent to two conditions of Remark 3, 
i.e. locally 1C  and globally 1G . 

This case is also referred to as angle-preserving. 
Proposition 2. The condition of angle-preserving is equivalent to the condi-

tions that patches of a composite surface Ŝ  are locally 1C  and the surface Ŝ  
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is globally 1G . 
The angle-preserving case may not be as obvious as the distance-preserving 

one in Remark 4. The simplified proof is given as follows. 
Proof. From the definition of angle-preserving in the theory of differential 

geometry, it results in the fact that the sufficient and necessary conditions of an-
gle-preserving are to hold the same ratio of the first fundamental forms. That is, 
given two first fundamental forms of the two joined patches, ic  and jc , which 
have been defined in Equation (13), they can be written as follows, 

2 2 2d d 2 d d dci ci ci ci ciI l E u F u v G v= = + + ,              (15) 

and 2 2 2d d 2 d d dcj cj cj cj cjI l E w F w t G t= = + +               (16) 

where ci ci
ci

l l
E

u u
∂ ∂

= •
∂ ∂

, ci ci
ci

l l
F

u v
∂ ∂

= •
∂ ∂

, ci ci
ci

l l
G

v v
∂ ∂

= •
∂ ∂

, cj cj
cj

l l
E

w w
∂ ∂

= •
∂ ∂

, 

cj cj
cj

l l
F

w t
∂ ∂

= •
∂ ∂

, and cj cj
cj

l l
G

t t
∂ ∂

= •
∂ ∂

. And 2 2d dci cj ci cjI I l l c= =  at the common  

point p, where c is a constant. With Equation (6), the 1G  condition, replace u 
and v with w and t, respectively, in Equation (15). And using Equation (14), the 
following equation can be led. 

ci ci ci

cj cj cjp p p

E F G
E F G

= = .                     (17) 

Equation (17) is just the sufficient and necessary conditions for angle-pre- 
serving.                                                          ☐ 

We have discussed the case that the patches of a composite surface are locally 
1C  and the composite surface is globally 1G . Now let us take that idea a step 

further and think about the situations of 2C  and 2G  in the next section. 

7. Properties of Second-Order Continuities 

According to the theory of differential geometry [10] [11], if Ŝ  is globally 2C , 
the second fundamental form of any curve ˆ

cj jl c S⊂ ⊂  is written as follows, 
2 2d 2 d d dcj cj cj cjII L w M w t N t= + + ,                (18) 

where 
2

2
cj

cj

l
L

w
∂

= •
∂

n , 
2

cj
cj

l
M

w t
∂

= •
∂ ∂

n , 
2

2
cj

cj

l
N

t
∂

= •
∂

n , and n  is the unit 

normal vector at the point ( ),cjp l w t=


 . The geometric meaning of the second  

fundamental form is the degree of a point deviating from the tangent plant of Ŝ  
at the point p when it is flowing along cjl . We call it the bending rate in this 
paper. 

Remark 6. With the theory of the second fundamental forms of a surface, a 
surface with the globally 2C  holds the bending rate of any arc at any given 
point of Ŝ . Here, the bending rate of an arc represents the degree of the arc 
bending. In other words, the arc’s changing rate keeps invariant when a point 
moving along any curve from a given point of Ŝ . 
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When considering the curve ci jl −  formed by connecting cil  and cjl  to-
gether at the common point ( ) ( ), ,ci cjp l u v l w t= =



    and two adjoining patches 

ic  and jc , where ci il c⊂  and cj jl c⊂ , we can represent Remark 6 as follows, 

ci cjp p
II II= .                        (19) 

In Equation (19), ci pII  is the second fundamental form at the point of 

( ),cip l u v=    on the side of ic , which is 2 2d 2 d d dci ci ci ciII L u M u v N v= + + , 

where 
2

2
ci

ci
l

L
u

∂
= •
∂

n , 
2

ci
ci

l
M

u v
∂

= •
∂ ∂

n  and 
2

2
ci

ci
l

N
v

∂
= •
∂

n . cj p
II  is the second 

fundamental form at the point of p on the side of jc , which is  

2 2d 2 d d dcj cj cj cjII L w M w t N t= + + , where 
2

2
cj

cj

l
L

w
∂

= •
∂

n , 
2

cj
cj

l
M

w t
∂

= •
∂ ∂

n , and 

2

2
cj

cj

l
N

t
∂

= •
∂

n . 

With the condition of Equation (19), both the orientation and size of the 
bending rate are held. In other words, if we expect to join two patches together 
with the bending rate invariant, these two patches must hold the orientation and 
size of the bending rate when crossing the boundary between them. 

This case is called bending-rate-preserving in this paper. That is, the bending 
rate is kept when a point flowing crossing the boundary between two adjoining 
patches. In other words, the bending rate is invariant at a common point of two 
connected patches of a composite surface if the connected patches keep the 
second fundamental forms invariant at the common point. The composite sur-
face is globally 2C . 

It may be too stiff for researchers to construct a composite surface to hold the 
globally 2C  continuity. 

Alternatively, what about only holding the bending orientation of the natural 
arc when crossing the boundary between two adjoining patches? The answer to 
this question is in the following Remark 7. We will check a composite surface 
that is locally 2C  and globally 2G . 

Remark 7. If only the bending orientation is kept, one of two patches, ic  and 

jc , has to change the dimensions of its bending rate by mapping or transform-
ing it into the other’s. Or, they keep the difference of these dimensions and each 
of them holds its own changing rate. 

In this paper, this case is called normal-section-curvature-preserving (in short 
NSC-preserving). Later in this section, we will give the reason for naming this 
term in this way. Let us study in details the condition of the NSC-preserving. 

Proposition 3. Let ic  and jc  be a pair of adjoining patches of the compo-
site surface Ŝ . The condition of which Ŝ  is NSC-preserving is equivalent to 
the conditions that patches of the composite surface Ŝ  are locally 2C  and the 
composite surface Ŝ  is globally 2G . That is, Equations (5), (6), and (7) are sa-
tisfied for any pair of ic  and jc  in Ŝ . 

Proof. It does not lose the generality to form ci jl −  by connecting two seg-

https://doi.org/10.4236/apm.2020.101003


Y. K. Liu, Y. Yue 
 

 

DOI: 10.4236/apm.2020.101003 34 Advances in Pure Mathematics 
 

ments cil  and cjl  that can map into a straight line in the tangent plane of Ŝ  
at the point ( ) ( ), ,ci cjp l u v l w t= =



   . With this aim, we can try to find ci jl −  by 
choosing ci il c⊂  and cj jl c⊂  in such a way that each of them can map onto a 
segment of the same line of the tangent plane on one side of the point p. This 
type of segments exist on both sides of the boundary between ic  and jc  since 
the locally 2C  of ic  and jc , and globally 2G  of Ŝ . 

With the theory of the first and second fundamental forms of a surface, the 
condition that an adjoining pair of ic  and jc  of Ŝ  is NSC-preserving can be 
written as follows, 

cjci

ci cjp p

IIII
I I

= ,                        (20) 

where 
2 2

2 2

d 2 d d d
d 2 d d d

ci ci ci ci

ci ci ci cip p

II L u M u v N v
I E u F u v G v

+ +
=

+ +
, and 

2 2

2 2

d 2 d d d
d 2 d d d

cj cj cj cj

cj cj cj cjp p

II L w M w t N t
I E w F w t G t

+ +
=

+ +
. 

In the proof of the angle-preserving in Remark 4 of Section 6, we have proved 

that the globally 1G  continuity has the identities, d d
d dp p

u w
v t

=  and  

ci ci ci

cj cj cjp p p

E F G
E F G

= =  (Equations (14) and (17)). Therefore, it is required here 

only to prove the next identities, 

ci ci ci

cj cj cjp p p

L M N
L M N

= = .                    (21) 

Equation (21) can be rewritten as follows, 
2 2 2

2 2

2 2 2

2 2

ci ci ci

cj cj cj

p p p

l l l
u vu v

l l l
w tw t

     ∂ ∂ ∂
• • •     ∂ ∂∂ ∂     = =

     ∂ ∂ ∂
• • •          ∂ ∂∂ ∂     

n n n

n n n

.            (22) 

We right-dot-multiply each formula of matrix Equation (7) by n . Note that 
the normal vector n  is perpendicular to any tangent vector at the point p and 
their dot products are zero. Thus, we can get the following formulae, 

2 2

2 2

2

2

ci cj cj cjp

p

ci cj cj cjp
p

ci cj cj cjp

w w t tL L M N
u u u u

w w w t w t t tM L M N
u v u v v u u v

w w t tN L M N
v v v v

 ∂ ∂ ∂ ∂     = + ⋅ +      ∂ ∂ ∂ ∂       

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      = ⋅ + ⋅ + ⋅ + ⋅      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

 ∂ ∂ ∂ ∂     = + ⋅ +     ∂ ∂ ∂ ∂      p














   (23) 
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By considering d : d d : du v w t=  at the common point p, Equations (21) or 
(22) can be got. 

Thus, the proof is finished.                                        ☐ 
With the first and second fundamental forms, another useful geometrical 

property of Ŝ  can be written as follows, 

coscj cj cj cjk II Iθ = .                     (24) 

where cjk  is the curvature of the curve cjl  at the point p, and cjθ  is the in-
cluded angle between n  and the principal normal vector cjβ  of the curve cjl  
at the point p. 

Let P  be the tangent plane of Ŝ  at the point p. Let ci jl −



 be the normal 
section that is tangent to ci jl −  at the point p and kn  be the curvature of ci jl −



. 
With Equations (20) and (24), we can have the following equations, 

cos cosci ci cj cjk k kθ θ= =n ,                   (25) 

where cik  (or cjk ) is the curvature of cil  (or cjl ), and ciθ  (or cjθ ) is the an-
gle between the normal vector n  and ciβ  (or cjβ ). ciβ  (or cjβ ) is principal 
normal vector of cil  (or cjl ) at the point p, respectively. 

Equation (25) gives the reason why we have the term, NSC-preserving (nor-
mal-section-curvature-preserving) for the case that the bending orientation is 
kept. 

In the next section, we will give some examples of composite surfaces with de-
finite continuities. 

8. Application Examples of Surface Continuities 

We use three examples to show how to apply the theory in Sections 6 and 7. 
Example 1. The study of Lávička et al. [12] presents a scheme of smooth sur-

face interpolation using patches with rational offsets. Their scheme is the Hermit 
interpolation with polynomial Pythagorean normal vectors. The surfaces con-
structed with their method have rational offsets at given points in a rectangular 
grid, which can give local geometrical details. Their method can produce local 
patches with piecewise rational 1C  and the composite surface with global 1G . 
Their method is a simple functional algorithm for computing composite surfaces 
without the need for any subsequent re-parameterizing or trimming of the pa-
rameter domain. In their paper [12], we can see that patches with Pythago-
rean-normal-vector method interpolating the same boundary data may bring 
out a smooth composite surface by a suitable choice of the tangent vectors or 
produce a ridge look with the specific choice (shown in Figure 8 in their paper 
[12]). For the situation of locally 1C  in patches and globally 1G  in the compo-
site surface, Remark 3 and Remark 5 have given a detailed explanation. 

Example 2. In the study of Shen et al. [13], they address a method that con-
verts multiple NURBS (non-uniform rational B-splines) patches to a single un-
trimmed NURBS-compatible subdivision surface in order to avoid a gap be-
tween a pair of adjacent NURBS patches, which are usually trimmed and stitched 
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by the standard CAD tools. In their method, they adopt quadrangle patches and 
bivariate parameterization (i.e. bi-parametric). 

First of all, a gap between a pair of adjacent NURBS patches is resulted from 
breaking the 0C  continuity condition when crossing the boundary between 
these two patches. In other words, the NURBS patches are trimmed without 
globally holding the 0C  continuity. 

In the procedure of Shen et al. [13], a coarse quadrilateral mesh is created first 
from the trimmed bi-cubic NURBS patches. Then, this coarse mesh is refined to 
form a non-uniform subdivision mesh that is maintained to retain the boundary 
geometry property of each NURBS patch through boundary curve spacing and 
surface fitting. In mathematics sense, the method maps a collection of trimmed 
bi-cubic NURBS patches into a single subdivision surface of the non-uniform 
subdivision mesh. 

A single subdivision surface with the global 1C  can be produced by merging 
the subdivision patches (see Figure 12 in their study [13]). Even better, some of 
their converted model can maintain inter-patch continuity up to the 2C  con-
tinuity (see Figures 1 and 17 in their study [13]). 

As mentioned in their paper, in some cases, pre-processing and inter-fitting 
are necessary to satisfy the smoothness requirements. That is, they pre-process 
the coarse mesh of NURBS and trim it into the subdivision mesh; and then fit 
the subdivision surface with tight tolerance and fairness functions to approx-
imate the collection of NURBS patches. The former brings out a new knot mesh 
that replaces the original NURBS one. The latter produces a new subdivision 
surface that substitutes the collection of NURBS patches to represent a target 
surface in a visibly smooth way. 

The authors indicated that since the process of trimming for 1C  and 2C  
might change the model edge curve, they regarded the maintenance of smooth-
ness as more important than exactly fitting the edge curve, and their models of 

1C  (see Figure 12 in their study [13]) and 2C  (see Figures 1 and 17 in their 
study [13]) were obtained in this way. 

Example 3. The study of Liu [14] presented the Progressive and Mixing Algo-
rithm (PAMA) which can give the inter-patch 0C  continuity for a ridge look-
ing, or the inter-patch 1G  continuity for a smooth look in different cases. 
PAMA adopts bi-parameterization and quadrangle patches. With the Beta- 
splines [3] [4] [15] which have applied geometric continuities to curve and sur-
face construction, PAMA was created for surface construction and edition with 
human-computer interaction. Without the cost of trimming, PAMA has been 
applied to the real-time FPGA (field programmable gate array) implementation. 

9. Results and Conclusions 

In this paper, we have explored two classes of continuities, parametric continui-
ties and geometric continuities less than and equal to second order, and their 
geometric properties. The presented propositions can be applied to verify the 
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continuities of surfaces constructed in computer. We can summarize the geo-
metric properties presented in this paper as follows. 

0C  and 0G  continuities can be satisfied by the connection of two adjoining 
patches with a sharp look such as a ridge, along their common boundary. 

1C  continuity can be satisfied by identifying the first parametric derivatives 
on both sides along the common boundary, which restricts the parametric re-
presentations of the first column points on both sides around a boundary point 
of the adjoining patches. The first column points have been shown in Figure 1 
in Section 5. 

1G  continuity can be satisfied by aligning the first parametric derivatives on 
both sides along the boundary with the flexibility given by four arguments of the 
first inter-parametric partial derivatives (see Equation (6)), which relaxes the re-
striction carried by 1C  continuity but maintains appropriately a smooth look 
similar to 1C  continuity. 

2C  continuity can be achieved by identifying the second parametric partial 
derivatives on both sides along the common boundary, which heavily restricts 
the parametric representations of the first two columns of points on both sides 
around a boundary point of the adjoining patches. This stiff condition can be 
met by constructing a surface as a whole set of bi-parametric cubic representa-
tions. The first and second column points are shown in Figure 1 in Section 5. 

2G  continuity can be attained by aligning the first and second parametric 
partial derivatives on both sides along the common boundary with the flexibility 
given by two matrices of parameters involved with the first and second in-
ter-parametric partial derivatives, that is, parameters of the parametric partial 
derivatives (see Equation (7)), which relaxes the stiff restriction of 2C  continu-
ity but holds a smooth look similar to 2C  continuity. 

The study in this paper is limited to the geometric properties of continuities 
less than and equal to second order. The properties of continuities of higher or-
der have not been found in this paper. 

In future, we will keep doing research on bridging the gap between the exis-
tent mathematics theories and the surface construction in computer, and extend 
the study on a composite surface into its algebraic topology. Its purpose is to 
find a mathematical basis to make a comparison between a composite surface 
and its target surface that would be represented by the composite surface. 
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