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Abstract 
In recent years, many methods have been used to find the exact solutions of 
nonlinear partial differential equations. One of them is called the first integral 
method, which is based on the ring theory of commutative algebra. In this 
paper, exact travelling wave solutions of the Non-Boussinesq wavepacket 
model and the (2 + 1)-dimensional Zoomeron equation are studied by using 
the first integral method. From the solving process and results, the first 
integral method has the characteristics of simplicity, directness and effective-
ness about solving the exact travelling wave solutions of nonlinear partial dif-
ferential equations. In other words, tedious calculations can be avoided by 
Maple software; the solutions of more accurate and richer travelling wave so-
lutions are obtained. Therefore, this method is an effective method for solving 
exact solutions of nonlinear partial differential equations. 
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1. Introduction 

Over the past few decades, finding the exact solutions of nonlinear partial diffe-
rential equations (PDEs) has become an attractive topic in physical science and 
nonlinear science. The nonlinear PDE is an important model for describing the 
problems of fluid mechanics, chemical physics, kinematics, atmosphere and 
ocean phenomena and so on. In order to find the exact solutions of nonlinear 
PDEs, pioneers presented the following these methods, such as ( )G G′ -expansion 
method [1], tanh-sech function method [2], Darboux and Backlund transform 
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[3], bifurcation theory method of dynamic systems [4], Jacobi elliptic function 
expansion method [5], F expansion method [6], exp-function method [7], Hiro-
ta bilinear method [8] and so on. 

Since Feng [9] proposed solving nonlinear PDEs by the first integral method. 
The theory has been applied to handle various PDEs by many scholars in science 
and engineering. such as S. Ibrahim et al. [10] used the first integral method to 
obtain the exact solutions of three nonlinear schrodinger equations. S. S. Singh 
[11] employed the first integral method to solve the exact solutions of Kudrya-
shov-Sinelshchikov equation and generalized Radhakrishnan-Kundu-Lakshmanan 
equation. A. Seadawy et al. [12] obtain the solitary wave solutions of Cubic-Quintic 
Nonlinear Schrödinger and Variant Boussinesq Equations by the first integral 
method. N. Taghizadeh et al. [13] used the first integral method to study the ex-
act solutions of three nonlinear PDEs, etc. 

For the Non-Boussinesq wavepacket model, H. Wang et al. [14] obtain the so-
litary wave solutions, kink and anti-kink wave solutions, periodic travelling wave 
solutions of the Non-Boussinesq wavepacket model by dynamical systems and 
bifurcation theories, and the travelling wave solutions are expressed by the 
hyperbolic functions and Jacobian elliptic functions. P. Robin et al. [15] intro-
duced in this Boussinesq-type model a forcing term and the present numerical 
results are compared with experiments conducted in the large air/sea facility of 
IRPHE at Marseille. Furthermore, for the (2 + 1)-dimensional Zoomeron equation, 
Q.S. Liu and X.Q. Zhou [16] investigated the (2 + 1)-dimensional Zoomeron equ-
ation by using the generalized algebraic method, and the Jacobi elliptic function 
solutions, the hyperbolic function solutions and the trigonometric function solu-
tions are obtained. K. Khan et al. [17] applied an enhanced ( )G G′ -expansion 
method to find the traveling wave solutions of the (2 + 1)-dimensional Zoome-
ron equation. As a result, the hyperbolic and trigonometric functions involving 
several parameters are derived, and so on. 

The rest of this paper is structured as follows. In Section 2, we introduce the 
basic idea of the first integral method briefly. In Section 3, we use this method to 
solve two partial differential equations in detail. Finally, a conclusion is given in 
Section 4. 

2. The First Integral Method 

Consider the general nonlinear PDE in the form 

( ), , , , , , , 0.t x x x t t xt x x xP u u u u u u u =                 (1) 

where P is a polynomial in its arguments. 
We use the transformations 

( ) ( ), , .u x t u x ctξ ξ= = −                     (2) 

where c is a constant, then 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2 2, , , .c c

t x tξ ξ ξ
∂ ∂ ∂ ∂ ∂ ∂

⋅ = − ⋅ ⋅ = ⋅ ⋅ = ⋅
∂ ∂ ∂ ∂ ∂ ∂



         
(3) 
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Step 1: We use the Equation (3) to transform the nonlinear PDE (1) into non-
linear ordinary differential equations (ODEs) 

( ), , , 0.Q u u uξ ξξ =

                      
(4) 

where the subscript denotes the derivation with respect to ξ . 
Step 2: Suppose the solution of nonlinear ODE (4) can be translated as 

( ) ( ), .u x t u ξ=                          (5) 

Step 3: We introduce a new independent variable 

( ) ( ) ( ) ( ), .X u Y uξξ ξ ξ ξ= =                    (6) 

which leads to the system of ODEs 

( ) ( )
( ) ( ) ( )( )

,

, .

X Y

Y F X Y
ξ

ξ

ξ ξ

ξ ξ ξ

 =


=                     
(7) 

Step 4: According the qualitative theory of ODEs [18], if we can find the first 
integrals to Equation (7) under the same conditions, then the general solutions 
to Equation (7) can be found directly. However, there is no systematic theory 
that can tell us how to find its first integrals, nor we know what these first inte-
grals are. Fortunately, for some equations we can apply the Division Theorem to 
reduces Equation (4) to a first order integrable ordinary differential equation. 
An exact solution to Equation (1) is obtained by solving this equation. Now, let 
us review the Division Theorem [19]. 

Division Theorem: Suppose that ( ),P x y  and ( ),Q x y  are polynomials in 
( ),C x y , and make ( ),P x y  is irreducible in ( ),C x y . If ( ),Q x y  vanishes at 

all zero points of ( ),P x y , then there exists a polynomial ( ),F x y  in ( ),C x y , 
such that 

( ) ( ) ( ), , , .Q x y P x y F x y=                     (8) 

3. Application 

In this section, we apply the first integral method based on the Division Theo-
rem to solve the two nonlinear PDEs. 

Firstly, we consider the following nonlinear Boussinesq wavepacket model 

( )
2 2

2

2

2 2

0,
6 4

t g z zz

z
H

zzz
z

zN k e
Hi c A A A A

ii A m A e A
H

ω
ω

ω ω

′′
∂ + ∂ + −

  ′′′  − + + =                       

(9) 

where 0N > , 0z > , 0H > , 
2

1 NH
g

− = , and 

2 2
2

2 2 2 2 2 2, ,
4 4g

N k mc
mk m H k m H
ω ωω ω− −

∂′= = = = −
∂+ + + +       

(10) 
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( )
( )

( )
( )

2 2 22

2 22 2 2

2 2 23

3 32 2 2

2 4
,

4

3 2 3 3 4
.

4

m k H

m k m H

m m k H

m k m H

ωωω

ωωω

−

−

−

−

− −∂′′ = =
∂ + +

− −∂′′′ = = −
∂ + +

              

(11) 

Here 0k > , 0m > , let 0ω > , we also can get 2 2 0p
mc

k m
ω

= >
+

 and 0gc < . 

The Boussinesq limit in Equation (9) is to let H →∞  that is let 
2

0N
g

→  and 

retain N. 
Now let’s introduce the following scalings 

( ) ( ) ( ) ( )1 1 1 1 1, , , , , 2 ,g gt L c t z Lx k m k m L A c m uω= = = =
   

(12) 

where 
2 g

L
c
ω′′

= . 

Substituting Equation (12) into Equation (9) and dropping the mark 1, we get 

( ) ( ) ( )2 22 1 0,x
t x xx xxx

x
i u u e u u i u i m u e uσχ σσβ α σ ∂ − ∂ + − + − + =  

 
  

(13) 

where 

( ) ( ) 1, 0,sgn sgn L Hσ ω α′′= = = ± = >              (14) 

( )
( )

2 2 2 2 2 2 2

2 22 2 2

2 2 3 3 4 2 4
, 0.

22 4

m m k m k

mm k
α β

− − − −
= = ≥

− −

 


        

(15) 

Then the Boussinesq limit in Equation (13) corresponds to 0=  and Equa-
tion (13) can be written to 

( ) ( )2 22 0,t x xx xxx
x

i u u u u i u u uσβ α ∂ − ∂ + − + − =            
(16) 

or 

( )2 22 0,t x xx xxx
x

iu iu u u u i u iu uσβ α− + − + − =
           

(17) 

Suppose the from of solution to Equation (17) is as following: 

( ) ( ) ( ), .i px qtu x t eϕ ξ −=                      (18) 

where x tξ β λ= − . And , , ,p qβ λ  are real parameters, ( )ϕ ξ  is real functions. 
Substituting Equation (18) into Equation (17), and making imaginary and real 

part are zero respectively: 

( )3 2 22 3 2 0,p pαβ ϕ β λ β βα ϕ ϕ ϕ′′′ ′ ′+ − − − − =
          

(19) 

( ) ( )2 2 3 2 33 2 0.p q p p pβ α β ϕ α ϕ σβϕ′′− + + − − − =
        

(20) 

Integrating Equation (19) once, and substituting the resultant equation into 
Equation (20), we have 
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3 2 2
3

2 2 3 2 2 3

222 3 3 0.
3 3

q p p p p p
p p

σβα β λ β βαϕ ϕ ϕ
β α β αβ β α β αβ

++ − − + − − −′′ + − =
− + − +  

(21) 

For simplicity, we denote 
3 2 2

1 2 2 3

2 3
3

q p p p p p
p

α β λ β βαδ
β α β αβ

+ − − + − − −
= −

− +
 

and 2 2 2 3

22
3

3 p

σβ
δ

β α β αβ

+
=

− +
. Putting Equation (6) in Equation (21), we get 

( ) ( )
( ) ( ) ( )3

1 2

,

.

X Y

Y X X

ξ ξ

ξ δ ξ δ ξ

′ =


′ = +                   
(22) 

Secondly, we consider the following (2 + 1)-dimensional Zoomeron equation 

( )22 0.xy xy

xt
tt xx

u u
u

u u
   

− + =   
                     

(23) 

Suppose the form of solution to Equation (23) is as following: 

( ) ( ), , , .u x y t kx ly tφ ξ ξ λ= = + −                 (24) 

where , ,k l λ  are real parameters, ( )φ ξ  is real functions. 
Substituting Equation (24) into Equation (23), and integrating the resultant 

equation twice for Equation (23), we obtain 

( )2 2 2 32 0,kl k l k pλ φ λφ φ′′− − + =
                

(25) 

where p is the integration constant. 
Taking Equation (6) in Equation (25), we get 

( ) ( )

( ) ( ) ( )3
2 2 2 2 2 2

,
2 .

X Y
p kY X X

kl k l kl k l

ξ ξ
λξ ξ ξ

λ λ

′ =



′ = − + − −           

(26) 

If we let again 1 2 2 2

p
kl k l

δ
λ

= −
−

, 2 2 2 2

2k
kl k l

λδ
λ

=
−

 then Equations (22) and  

(26) is equivalent to the first integral. In order to obtain their exact solution, we 
just need to talk about system Equation (22). 

Now, according to the first integral method. We assume the ( )X X ξ=  and 
( )Y Y ξ=  are the nontrivial solutions of Equation (22), and 

( ) ( )
0

, .
n

i
i

i
Q X Y a X Y

=

= ∑
                    

(27) 

is an irreducible polynomial in the complex domain C[X,Y] such that 

( ) ( )( ) ( )( ) ( )
0

, 0.
n i

i
i

Q X Y a X Yξ ξ ξ ξ
=

= =∑
            

(28) 

where ( )( )0,1, ,ia X i n=   are polynomial of X and ( ) 0na X ≠ . Equation (28) 

is called the first integral of the Equation (22). Note that ( ) ( ),Q X Yξ ξ    is a 

polynomial in X and Y, and d
d
Q
ξ

 implies 
(27)

d 0
d
Q
ξ

= . According the Division 

https://doi.org/10.4236/apm.2020.101002


Q. M. Zhang et al. 
 

 

DOI: 10.4236/apm.2020.101002 17 Advances in Pure Mathematics 
 

Theorem, there exists a polynomial ( ) ( ) ( ),H X Y h X g X Y= +  in ( ),C X Y , 
such that 

( ) ( )( ) ( )
0(19) (27)

d d d d d .
d d d d d

N
i

i
i

Q Q X Q Y h X g X Y a X Y
X Yξ ξ ξ =

   = + = +   
  
∑

   
(29) 

In this example, we make two different cases, suppose that n = 1 and n = 2 in 
Equation (28). 

Case I 
Assume that 1n = , and then from Equation (29) we have 

( ) ( ) ( )( ) ( ) ( )( ) ( )
1 1 1

1 1

0 0 0
.i i i

i i i
i i i

a X Y ia X Y Y h X g X Y a X Yξ+ −

= = =

 ′ ′+ = +  
 

∑ ∑ ∑
  

(30) 

where prime denotes differentiating with respect to the variable X. By comparing 
with the coefficient of ( )2,1,0iY i =  on both sides of Equation (30), we get 

( ) ( ) ( )1 1 ,a X g X a X′ =                     (31) 

( ) ( ) ( ) ( ) ( )0 1 0 ,a X h X a X g X a X′ = +               (32) 

( )( ) ( ) ( )3
1 1 2 0 .a X X X h X a Xδ δ+ =

               
(33) 

Since ( )( )0,1ia X i =  are polynomials, then from Equation (31) we obtain 
that ( )1a X  is constant and ( ) 0g X = . For simplicity, make ( )1 1a X = . Ba-
lancing the degrees of ( )h X  and ( )0a X , we get that ( )( ) 1deg h X =  only. 
Assume that ( ) 0 1h X A X A= + , where 0 0A ≠ , then 

( ) 2
0 0 1

1 .
2

a X A X A X f= + +
                  

(34) 

where f is an arbitrary integration constant. 
Substituting ( )0a X , ( )1a X  and ( )h X  into Equation (33) and setting all 

the coefficient of powers of X to be zero, then we obtain a system of nonlinear 
algebraic equations, that is, 

2
0 2

0 1

2
0 1 1

1

1
2
3 0
2

0,

A

A A

A f A
A f

δ

δ

 =

 =


+ =
 =                        

(35) 

and using Maple solving them, we have 

1
1 0 2

2

0, 2 , ,
2

A A f δ
δ

δ
= = ± = ±

                
(36) 

Taking the conditions (36) in Equation (28), we get 

( ) 2 1
2

2

1 2 ,
2 2

Y X δ
ξ δ

δ

 
= +  

 


                 
(37) 

and combining Equation (37) with Equation (22), we can obtain the exact solu-
tions of Non-Boussinesq wavepacket model (9) as 
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( ) 1 2 1
0

2

tanh .
2

u
δ δ δ

ξ ξ ξ
δ

 
= +  

 


                
(38) 

where 0ξ  is an arbitrary constant. And the travelling wave solutions of 
Non-Boussinesq wavepacket model (9) can be written as 

( ) ( ) ( )1 2 1
0

2

, tanh .
2

px qtu x t e x t
δ δ δ

β λ ξ
δ

−  
= − + 

  


         
(39) 

Case II 
Suppose that 2n = , by comparing with the coefficient of ( )3,2,1,0iY i =  on 

both sides of Equation (28), we obtain 

( ) ( ) ( )2 2 ,a X g X a X′ =                     (40) 

( ) ( ) ( ) ( ) ( )1 2 1 ,a X h X a X g X a X′ = +               (41) 

( ) ( )( ) ( ) ( ) ( ) ( )3
0 2 1 2 1 02 ,a X a X X X h X a X g X a Xδ δ′ + + = +

     
(42) 

( )( ) ( ) ( )3
1 1 1 0 .a X X X h X a Xδ δ+ =

               
(43) 

Since ( )( )2,1,0 0ia X i = =  are polynomials, then from Equation (40) we 
obtain ( )2a X  is a constant and ( ) 0g X = . For simplicity, make ( )2 1a X = . 
Balancing the degrees of ( )h X , ( )1a X  and ( )0a X , we get ( )( ) 1deg h X = , 

( )( )1 2deg a X = , ( )( )0 4deg a X =  only. Assume ( ) 0 1h X A X A= + , where 

0 0A ≠ , then 

( )

( )

2
1 0 1

2 4 3
0 0 2 0 1

2 2
0 1 1 1

1 ,
2

1 1 1
8 2 2

1 1 .
2 2

a X A X A X f

a X A X A A X

A f A X A fX g

δ

δ

= + +

 = − + 
 
 + + − + + 
             

(44) 

where g is an arbitrary integration constant. Substituting ( )0a X , ( )1a X , 
( )2a X  and ( )h X  into Equation (43), setting all the coefficient of powers of X 

equal to zero, then we obtain a system of nonlinear algebraic equation, that is, 

3
0 0 2

2
0 1 1 2

2 2
0 0 1 0 1 2

3
0 1 1 1 1
2

1 0 1

1

1
8
5

12
2 3 2

4

0,

A A

A A A

A f A A A f
A A f A A
A f A g f
A g

δ

δ

δ δ
δ

δ

 =

 =
 + = +


+ =
 + =
 =                  

(45) 

and using Maple solving them, we get 

1 0 20, 0, , 2 2 ,g f A O A δ= = = = ±                (46) 

Taking the conditions (46) in Equation (28), we get 
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( ) 2
2

2 ,
2

Y Xξ δ= 
                     

(47) 

and combining Equation (47) with Equation (22), we can obtain the exact solu-
tions of Non-Boussinesq wavepacket model (9) as 

( )
2 0

2 .u ξ
δ ξ ξ

= ±
+                      

(48) 

where 0ξ  is an arbitrary constant. And the travelling wave solutions of Non- 
Boussinesq wavepacket model (9) can be written as 

( )
( )

( )

2 0

2, .px qtu x t e
x tδ β λ ξ

−= ±
− +                

(49) 

4. Conclusion 

In conclusion, we have studied the exact travelling wave solutions of the 
non-Boussinesq wavepacket model and the (2 + 1)-dimensional Zoomeron equ-
ation by the first integral method. By introducing the travelling wave transfor-
mations, two nonlinear PDEs have been transformed into ODEs. Then accord-
ing to the Division Theorem of polynomial, exact travelling wave solutions of 
two nonlinear PDEs are obtained. Compared with other methods, it is an effec-
tive method to solve the exact traveling wave solutions; that is, it avoids complex 
calculation process by using mathematical software. Therefore, this method can 
be extended to solve the exact traveling wave solutions of other nonlinear PDEs. 
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