
Open Access Library Journal 
2020, Volume 7, e6041 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1106041  Jan. 14, 2020 1 Open Access Library Journal 
 

 
 
 

Phenocopies: Mimics of Inborn Errors of 
Immunity 

Cesar Daniel Alonso-Bello1, Sara Elva Espinosa-Padilla2, Mariano Daniel Témix-Delfín2, 
Fernando Lozano-Patiño2, Victoria Isabel Castañeda-Avila3, María Eugenia Vargas-Camaño1, 
María Isabel Castrejón-Vázquez1 

1Clinical Immunology and Allergy Service, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios 
Sociales de los Trabajadores del Estado, Mexico City, Mexico 
2Immunodeficiency Research Unit, Instituto Nacional de Pediatría, Mexico City, Mexico 
3Pediatric Service, Hospital de Gineco-Pediatría 3A, Instituto Mexicano del Seguro Social, Mexico City, Mexico  

 
 
 

Abstract 
A phenocopy is defined as a clinical non-inherited phenotype in an individu-
al, with environmental induction, which is identical to the genetically deter-
mined phenotype of another. Until February 2017, the IUIS (International 
Union of Immunological Societies) reported in its classification 354 innate 
immunity errors and a final group (classification table IX) with conditions 
that are not part of the innate alterations and are called phenocopies. These 
are classified into two types, the associated with somatic mutations and those 
associated with auto-antibodies. The phenotypes that occur by any of the 
mechanisms mentioned are complex and varied. It is necessary to know the 
clinical manifestations of the pathologies classified in this group to enrich the 
possible differential diagnoses in individuals with suspected immunodefi-
ciency. 
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1. Phenocopies of Inborn Erros of Immunity 

A phenocopy is defined as a clinical phenotype in an individual, non-inherited, 
with environmental induction, which is identical to the genetically determined 
phenotype of another [1] [2]. Until February 2017, the IUIS (International Un-
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ion of Immunological Societies) reported in its classification 354 innate immun-
ity errors and a final group (classification Table IX) with conditions that are not 
part of the innate alterations and are called phenocopies. This group is divided 
into two categories, associations with somatic mutations and those associated 
with autoantibodies [3] [4] Table 1. 

It is necessary for the first contact physician to know this type of pathologies 
that can occur at any stage of the patient’s life, so that they are included within 
the repertoire of diseases to perform differential diagnosis. The most important 
characteristics to make a suspicion and confirmatory diagnosis of the modifica-
tions classified as phenocopies of innate immunity errors are described below. 

2. Phenocopies Associated with Somatic Mutations 

It is known as a mutation to an error in the genetic material of a cell, mutations 
can happen in somatic cells or germ cells. Once a somatic mutation happens, all 
cells derived from it will inherit that mutation. These types of mutations are not 
transmitted to the next generation [5] [6]. 

2.1. Autoimmune Lymphoproliferative Syndrome with Somatic  
Mutation in FAS (ALPS-sFAS) 

Autoimmune lymphoproliferative syndrome (ALPS) (OMIM 601859/603909) is 
characterized by chronic evolution, lymphoproliferation not associated with ma-
lignancy and autoimmunity, accompanied by increased numbers of double 
negative T cells (DN, α/β CD4-CD8-) and elevated risk to develop malignant 
diseases in adult life. In about 70% of cases, the disease is caused by germinal 
mutations in components of the FAS pathway, mainly mutations in the 
TNFRSF6, CD95, APO1 gene (ALPS type 1a) [7]. In other cases of ALPS the 
mutations are in genes encoding ligand FAS (ALPS type 1b), caspases 8 and 10 
(ALPS type II), or NRAS (ALPS type IV). These alterations are classified within 
group IV of the IUIS classification that includes diseases with immunological 
deregulation and autoimmune syndromes. 
 

Table 1. Phenocopies of inborn errors of immunity, IUIS classification [3]. 

Associated with somatic mutations Associated with auto-antibodies 

ALPS-sFAS. Somatic mutations in TNFRSF6 
Chronic mucocutaneous candidiasis. 

(Isolated or with APECED syndrome). AutoAb to IL-17 and/or IL-22 

RALD (RAS-associated autoinmuneLeukoproliferative disease). 
N-RAS GOF, K-RAS GOF 

Adult onset immunodeficiency with 
susceptibility to mycobacteria. AutoAb to INF-γ. 

Cryopyrinipathy (Muckle-Wells/CINCA/NOMID-like). NRLP3 Recurrent skin infections. AutoAb to IL-6. 

Hypereosinophilic syndrome 
due to mutations in STAT5b. STAT5b GOF 

Pulmonary alveolar proteinosis. AutoAbto GM-CSF 

Acquired angioedema. AutoAb to C1 inhibitor. 

Atypical Hemolytic Uremic Syndrome. AutoAb toFactor H. 

Thymoma with hypogammaglobulinemia 
(Good syndrome). AutoAbto various cytokines. 
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Lymphoproliferation is the most common clinical manifestation and has 
chronic evolution (>6 months), and is also accompanied by lymphadenopathy, 
hepatomegaly or splenomegaly. Autoimmunity is the second manifestation in 
frequency, usually affects 70% of patients, the presentation includes cytopenias 
such as autoimmune hemolytic anemia and autoimmune mediated thrombocy-
topenia, and autoimmune neutropenia is less common [8]. Table 2 shows the 
revised diagnostic criteria of ALPS [9] [10]. 

The phenocopy of these innate immunity errors refers to the somatic muta-
tion in FAS (ALPS type III), initially it had been described that the alteration 
could present clinically without the classic manifestations or incompletely [11]. 
Dowdell et al., Analyzed 15 individuals with type III ALPS and compared them 
with 16 patients with ALPS type Ia, the clinical evolution of the patients was 
similar, however there was less incidence of splenectomy and a lower lympho-
cyte count in patients with somatic mutation. The characteristics of the lymph 
node biopsy of 5 patients with somatic mutation were the classic lymphadeno-
pathy associated with ALPS, 3 patients showed in the biopsy, cell augmentation 
in cells with positive S-100 protein similar to what is expected in Rosai-Dorfman 
disease. The remaining 5 patients had poor specific changes with follicular and 
reactive parafolicular hyperplasia. The average age of presentation in type III was 
10 years (3m-48a) and type I 5 years (0m-53a). Although defects in apoptosis 
were found, being less pronounced in patients with type III ALPS compared to 
Ia, no statistical significance was found [12]. 

This findings demonstrate that clinically the presentation of ALPS is the same 
regardless of the mutation found, however the diagnosis of the phenocopy of 
this inborn error of immunity must have the identification of the alteration as a 
probable type III ALPS and try to find the somatic mutation in an individual in 
whom the germ mutations have not been found. 
 

Table 2. ALPS Revised criteria, report from the 2009 NIH International Workshop [9]. 

Required 
1) Chronic lymphadenopathy (>6 months) without malignancy, non-infectious or splenomegaly or both 
2) Elevation of DN cells, CD3 + TCRαβ + CD4-CD8- (≥1.5% of total lymphocytes or 2.5% of CD3+ lymphocytes) 
in the context of normal or elevated lymphocyte count 

Accessories 
Primary 
1) Lymphocyte defective apoptosis (in 2 different trials) 
2) Somatic or germline mutation in FAS, FASLG, or CASP10 
Secondary 
1) Elevation of sFASL plasma levels (>200 pg/mL) or elevated Interleukin-10 plasma levels (>20 pg/mL) or elevated B12 vitamin  
serum levels (>1500 ng/L) or elevated interleukin-18 plasma levels (>500 pg/mL) 
2) Typical immunohistological findings in a review by an expert hematopathologist 
3) Autoimmune cytopenias (hemolytic anemia, thrombocytopenia or neutropenia) and elevated levels of immunoglobuline G 
(polyclonal hypergammaglobulinemia) 
4) Family history of lymphoproliferation without malignancy, non-infectious with or without autoimmunity 

The definitive diagnosis is realized with the presence of the 2 required criteria plus a primary accessory criterion. 
A probable diagnosis is based on the presence of 2 required criteria and a secondary accessory criterion. 
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Martinez-Feito et al. reported a somatic mutation in FAS and a germinal mu-
tation in CASP10 in the same patient that met the full criteria for ALPS [13], re-
lated to what was observed in the case report presented by García-García et al., 
in a 55-year-old patient with chronic lymphadenopathy as the only manifesta-
tion and only somatic mutation of FAS that did not require treatment, [14] we 
can argue that sometimes two mutations may be necessary to cause the complete 
manifestation of the syndrome. 

More than half of patients with ALPS need immunosuppressive treatment for 
manifestations of autoimmunity, high-dose systemic steroid schemes are needed 
for short cycles [15]. The use of medications such as mycophenolatemofetil, 
azathioprine, methotrexate, 6-mercaptopurine or sirolimus has also been docu-
mented, although they are not compatible to control the disease by themselves, 
so hematopoietic progenitor cell transplantation can be alternative [16] [17]. 
Rituximab has been used for patients with cytopenias refractory to treatment, 
although it is advised that the risk of prolonged hypogammaglobulinemia must 
be assessed in all patients [18].  

2.2. RAS-Associated Autoimmune Leukoproliferative Disorder 

The RAS-associated autoimmune Leukoproliferative disorder (RALD) is a pa-
thology not associated with malignancy, initially identified in individuals with 
ALPS [19]. The main difference is that there is not an elevation of DN T cells 
(α/β CD4-CD8-) or serum vitamin B12 alterations, the germinal or somatic mu-
tations characteristic of ALPS are absent. Absolute or relative monocytosis is the 
definitive characteristic of RALD [20]. 

RAS proteins are essential components in cellular signaling of the immune 
system, TCR stimulation causes rapid activation of RAS and this protein regu-
lates activation pathways of T cells [21] [22]. 

RALD is caused by gain of function mutations in the RAS family proteins 
(NRAS and KRAS) and shares clinical characteristics with ALPS without meet-
ing the definition of DN T cell elevation in peripheral blood. This pathology is 
characterized by autoimmunity, lymphadenopathy, splenomegaly, cytopenias 
and monocytosis. Somatic mutations in NRAS and KRAs have been found in 
myeloid malignant pathologies and other types of cancer [23]. 

The importance of KRAS is that it is enzymatically active when a GTP is 
found and activates various signaling factors. For inactivation a hydrolysis of 
GTP to GDP is performed. Gain-of-function mutations eliminate the intrinsic 
inactivation ability. NRAs, another member of the RAS family, also play an im-
portant role in intracellular signaling pathways, as well as proliferation and 
apoptosis. Germ mutations of KRAS produce cardio-fascio-cutaneous, Costello 
and Noonan syndromes [24] [25]. 

The clinical presentation in individuals in whom the somatic mutation with-
out germinal mutation of KRAS is the symptomatology of ALPS, although with 
predominant autoimmune cytopenias and hepatosplenomeomegaly, however, 
this pathology has special characteristics. Patients present monocytosis as a dif-
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ferential clinical feature [26]. Therefore, it is also necessary to establish a diffe-
rential diagnosis with juvenile myelomonocytic leukemia (JMML) [20]. NF1 and 
RAS family mutations have been found in these leukemia cells, so even in this 
pathology there may also be somatic mutations of KRAS, some authors propose 
that somatic mutation can occur in stages prior to the onset of malignant hema-
tology disease [27]. 

Wang et al. studied the clinical manifestations of patients with somatic muta-
tion in NRAS. They report in terms of frequency the presence of rash, arthritis 
and thrombocytopenia, initially these patients were studied as patients with 
early onset Systemic Lupus Erythematosus (SLE) and stood out from the study 
group because they did not present typical characteristics of the disease [28]. 
The clinical manifestations in general terms do not differ from the mutations 
in KRAS. 

The treatment of RALD includes medications such as systemic steroids, cyc-
losporine, and azathioprine and has been successful in patients presenting with 
refractory cytopenias with rituximab [29]. 

2.3. Cryopyrinopathy 

The cryopyrin-associated periodic syndromes (CAPS) are a group of diseases 
characterized by fever, systemic inflammation and skin rash [30], these inborn 
errors of immunity are within the classification in group VIIa, they are herita-
ble pathologies and have been identified in mutations with gain-of-function in 
NLRP3 and NLRP12. NLR contains a pyrin domain such as NLRP3 and/or 
caspase activation domains (CARD), which promotes its self-assembly, some 
NLRs form multiprotein complexes called inflammasomes, which protect the 
cell from injuries as well as regulate homeostasis. The gain-of-function muta-
tions in NLRP3 cause hyperactivation of cryopyrininflammasome and thus cause 
disease manifestations [31] [32]. 

The phenocopy of this inborn error of immunity is a somatic mutation in 
NLPR3, which makes the disease not inheritable but with a clinical behavior 
phenotypically equal to the germline mutation. The clinical manifestations of 
this pathology have been reported in syndromes similar to Muckle-Wells, 
chronic infantile neurological-cutaneous-articular syndrome (CINCA) and 
neonatal multisystemic inflammatory disease (NOMID). All subtypes have cu-
taneous, musculoskeletal, ocular manifestations and central nervous system in-
volvement to varying degrees, although the most frequent initial manifestation 
in any of the syndromes is the urticarial rash [33]. In addition, patients present-
ing with fever, myalgia, arthralgia, headache, conjunctivitis, keratitis, sterile me-
ningitis. Symptoms are triggered by exposure to cold (described at temperatures 
below 72˚F for more than 30 minutes), exacerbations have a chronic course and 
vary from 1 to 3 days. Table 3 shows the characteristics that can help differen-
tiate these syndromes [31] [34].  

In laboratory studies, patients present with leukocytosis and during exacerba-
tions, neutrophiliais found, there is a little elevation of acute phase reactants.  
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Table 3. Cryopyrinopathy clinical features for differential diagnosis. Modified from Booshehri LM, Hoffman HM. CAPS and 
NLRP3. J Clin Immunol. 2019; 39(3): 277-86 [32]. 

 
Familial cold auto-inflammatory 

syndrome (FCAS) 
Muckle-Wells Syndrome CINCA/NOMID 

Clinical characteristics 
Urticarial rash, fever, fatigue, 

chills, arthralgia, myalgia, 
conjunctivitis, keratitis, headache. 

Urticarial rash, fever, fatigue, 
arthralgia, myalgia, arthritis, 

conjunctivitis, keratitis, uveitis, 
sensory hearing loss, headache. 

Urticarial rash, fever, fatigue, 
arthralgia, myalgia, distal femur 

overgrowth, conjunctivitis, keratitis, 
uveitis, papilledema, sensory 

hearing loss, headache, aseptic 
meningitis, intracranial 

hypertension, developmental delay. 

Patterns of exacerbations 12 - 24 h 1 - 3 days 1 - 3 days 

 
Skin biopsy may show edema and neutrophilic infiltrate in the dermis [31]. The 
findings in imaging studies such as magnetic resonance, the IRM of the central 
nervous system have shown a decrease in the T2 signal in the cochlea and brain, 
which is related to the loss of sensory hearing in these patients [35] [36]. 

The definitive diagnosis of this phenocopy is made in individuals with ger-
mline mutations negative to NLRP3 with clinical manifestations characteristic of 
these syndromes. When sequencing is performed in this group of patients, some 
degrees of somatic mutations have been reported for NLRP3 in up to 15% of pa-
tients [37] [38]. 

Secondary renal amyloidosis is one of the main complications of these pa-
thologies and the treatment is aimed to reducing the inflammation that causes 
the hyperactivity of the inflammasome [39]. 

The treatment consists in blocking the action of IL-1β that is elevated, with 
medications such as anakinra, rilanocept, canakinumab, although they have been 
associated with an increased risk of infections, particularly tuberculosis [40] [41] 
[42] [43] [44]. Despite these treatments, patients have a significant decrease in 
the quality of life, rated by decrease in EuroQol five-dimensional questionnaire 
(0.769 out of total score of 1, N = 14) [45]. 

Various ways to block the activation of NLRP3 with s drugs such as glyburide, 
dapansutrile, 3 - 4 methylene dioxy-β-nitrostyrene, oridine, tranilast and com-
pound CY-09 are currently under investigation, the latter directly blocking the 
ATP binding site of NLRP NATCH, thus inhibiting its ATPase action, oligome-
rization and activation. 

2.4. Hypereosinophilic Syndrome Due to Somatic Mutations in  
STAT5b 

STAT are cytosolic proteins involved in the signaling of type I and II cytokine 
receptors. Seven proteins of this family have been identified (STAT1, 2, 3, 4, 5a, 
5b and 6). Germ or somatic mutations affect the structure and function of the 
protein causing immunodeficiency and autoimmunity. Somatic gain-of-function 
mutations in STAT3 and STAT5 have been described frequently in lymphoma 
and leukemia [46] [47] [48]. Altered transcriptional activity of STAT5b causes 
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immunodeficiency and dysfunction, this pathology is classified in group IIb of 
the IUIS, which includes combined immunodeficiencies with syndromatic cha-
racteristics. The alteration manifests itself in short stature due to insensitivity to 
growth hormone, dysmorphia, eczema, lymphocytic interstitial pneumonitis and 
autoimmunity [49]. 

Germline gain-of-function mutations in STAT3 manifest with developmental 
delay, repetitive respiratory tract infections, susceptibility to non-tuberculous 
mycobacteria, multiorgan autoimmunity such as autoimmune enteropathy, sub-
clinical hypothyroidism with positive anti-TPO antibodies, sicca syndrome or 
subsequent uveitis, anemia and autoimmune thrombocytopenia. The treatment 
is directed to complications and immunomodulatory medications are used for 
autoimmune pathology [50]. What we know about somatic mutations is that it 
manifests clinically with migratory annular erythema, persistent urticaria, diarr-
hea and eosinophilia in laboratory studies. The shared mutation of the reported 
patients is STAT5 N642H, a single nucleotide variant. In murine models, the in-
creased activity of STAT3 causes an increase in the sensitivity of IL-3 and an in-
crease in the production of thymic stromal lymphopoietin, which may explain 
dermatitis-like manifestations. The manifestations do not have a good response 
with conventional treatment and hematopoietic progenitor cell transplantation 
has been performed although with post-transplant complications [51]. 

3. Phenocopies Associated with Auto-Antibodies 

This group includes the immunological alterations that cause the production of 
autoantibodies against various cytokines and complement activation regulatory 
factors. The diseases in the current classification are analyzed below. 

3.1. Chronic Mucocutaneous Candidiasis (CMC) (Isolated or with  
APECED Syndrome) 

The presence of autoantibodies against IL-17 and/or IL-22 causes manifestations 
in this pathology. Interleukins 17 and 22 are important for the immune response 
in the mucous membranes. IL-17 also induces neutrophil infiltration, activation 
and survival, in addition to cytokine expression and IL-22 production. IL-22 is 
an interleukin secreted by several cells such as CD4+, CD8+, NKT, ɣδ T cells 
and CD4+ Th17. It acts by altering the expression of genes related to the de-
fenses of innate immunity to bacteria, including β-defensins, promotes chemo-
kine expression and releases IL-6 and TNF [52]. 

APECED also called autoimmune polyglandular syndrome type 1 (APS-1) 
(OMIM240300) is a monogenic disease, caused by biallelic mutations in the au-
toimmunity regulator (AIRE), is classified as a group IV immunodeficiency of the 
IUIS,the patients presentwith hypoparathyroidism, hypothyroidism, adrenal in-
sufficiency, diabetes, gonadal insufficiency in addition to chronicmucocutaneous 
candidiasis [53] [54]. The production of antibodies against IL-17 and IL-22 is a 
characteristic of these patients in addition to the specific organ antibodies [55] 
[56]. There is also aassociation between the presence of antibodies against 
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IL-17A and the predisposition to CMC in patients with APECED [57]. 
The presence of CMC can also be isolated, it has been shown that these pa-

tients have decreased production of IL-17 and low proliferation of IL-17 CD4+ 
with the stimulation of Candida species, these findings do not differ from indi-
viduals who present APECED [58] [59]. Patients presenting with autoantibodies 
against IL-22, have the same manifestations. These autoantibodies are predomi-
nantly IgG4 [60]. 

Due to the immunopathology of this condition, immunosuppressive treat-
ment is indicated for CMC cases in the context of APECED. The use of cyclos-
porine A has related to reverse pancreatic insufficiency, keratitis and alopecia. 
Other medications used with reversal of CMC lesions are tacrolimus, mycophe-
nolate and prednisone [61] [62]. 

3.2. Adul-Onset Immunodeficiency with Susceptibility to  
Mycobacteria 

Susceptibility to non-tuberculous mycobacteria is a characteristic of this disease 
in which the INF-ɣ pathway is affected by the presence of autoantibodies that 
block its effect [63]. INF-ɣ is mainly produced by Th1 cells, the activation of its 
receptor (INF-ɣR) phosphorylates and activates molecules such as STAT1. [64] 
Some studies have shown that the ability of interferon inhibition by these au-
toantibodies is more important than the concentration to determine the predis-
position to the disease, besides there is a heterogeneity between the types of au-
toantibodies in each individual [65] [66]. 

One of the mycobacteria found in these patients is Mycobacterium abscessus, 
with fast growing, and in terms of slow growth Mycobacterium avium complex 
(MAC). Additionally, patients with a history of chickenpox virus (VZV) infec-
tion have reactivation such as herpes zoster and salmonellosis. It is reported in a 
smaller percentage of patients with fungal coinfection. 

Cervical lymphadenopathy is the most frequent clinical presentation although 
bones and joints with osteomyelitis and arthritis are also affected. Dermatologi-
cal manifestations in the form of a pustular rash could happen. In laboratory 
studies, patients have elevated CRP and ESR during the infectious period in ad-
dition to leukocytosis. Despite intensive antibiotic treatment, more than half of 
the patients will continue with persistent infection, in patients with this charac-
teristic the duration of treatment can vary from 206 to 1439 days [67] [68]. 

The use of medications such as cyclophosphamide or rituximab significantly 
decreases the serum level of autoantibodies although have been associated with 
persistent infection [69]. 

3.3. Recurrent Skin Infection 

IL-6 has important pleiotropic functions in hematopoiesis and cell regeneration, 
the increase in IL-6 leads to the constant activation of STAT3 which increases 
the expression of interleukin, so they are closely related. Its receptor (IL-6R) is 
an example of a soluble agonist receptor [70]. After IL-6 is synthesized in the in-
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itial stage of inflammation, it is transported to the bloodstream along with the 
elevation of CRP, serum amyloid, fibrinogen, haptoglobin and α1-antitrypsin 
[71]. The presence of autoantibodies against IL-6 inhibits their action and 
therefore clinical manifestations couldoccur by the poor activation of the STAT3 
pathway. It is common the presence of two or more episodes of staphylococcal 
skin infection. In the complementary laboratory studies, are not associated with 
elevated PCR [72]. It is not known exactly why the loss of self-tolerance in some 
individuals causes the formation of these autoantibodies. This phenomenon has 
also been studied in murine models in which it has been shown that IL-6 has an 
influence on metabolism and that along with other risk factors such as age and 
diet, the presence of autoantibodies against Il-6 is related with obesity, dyslipi-
demia and impaired glucose metabolism. In humans it has been documented 
that the presence of these autoantibodies is 2.5 times higher in individuals with 
type 2 diabetes compared to healthy ones [73]. The presence of autoantibodies 
against IL-6 has also been reported in patients with APECED or thymoma but 
their functions in these pathologies are stabilizers of interleukin and not respon-
sible for clinical manifestations. In healthy individuals, the presence of autoan-
tibodies against IL-6 can be found in up to 0.1% to 9% of the population [74] 
[75]. 

The treatment goal in this phenocopy is avoiding the complication of staphy-
lococcal infection with early detection and timely antibiotic treatment. It has 
been observed that some patients did not need prophylactic antibiotic treatment 
to avoid the risk of infection [72] [76]. 

3.4. Pulmonary Alveolar Proteinosis (PAP) 

This pathology is characterized by accumulation of surfactant factor in macro-
phages and alveoli which culminates in the alteration in the gas exchange. The 
pathophysiological mechanism is explained by the poor maturation of the alveo-
lar macrophages secondary to the poor signaling of GM-CSF. In 90% of adult 
patient cases there is a decrease in the availability of this factor due to autoim-
munity [77] [78]. Neonatal PAP is produced by the mutation of genes required 
for the adequate formation of surfactant factor, thus the phenocopy of this pa-
thology is due to the formation of antibodies against FEC-GM. 

The autoimmune form occurs in adults between 40 and 50 years old with 
nonspecific symptoms such as dyspnea and productive cough, due to the pre-
disposition to infections these patients may present fever although it may also be 
not associated with infection. One third of patients may present asymptomatic 
although alterations in chest imaging studies can be detected at the same time 
[77]. 

One of the main alterations in the laboratory tests is the alteration in the dif-
fusion of carbon monoxide (DLCO) [79]. High resolution pulmonary tomogra-
phy is very useful for the diagnosis where the crazy-paving and ground glass 
pattern has been described. The definitive diagnosis is made by pulmonary bi-
opsy and/or bronchoalveolar lavage (BAL) [80]. When they are available, the 
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determination of autoantibodies against GM-SCF can be performed to support 
the differential diagnosis [81]. The BAL fluid shows an milky aspect due to high 
protein content, acellular and basophilic dense oval bodies can be observed in 
electron microscopic vision. Histopathology shows eosinophilic and acellular, 
dense airways material with minimal interstitial inflammation. One of the com-
plications that can occur in this pathology is late interstitial lung disease [82]. 

The treatment consists of total pulmonary lavage that can be efficient for a pe-
riod of 15 months in 66% of patients [83] [84]. The administration of recombi-
nant subcutaneous or inhaled FEC-GM has shown improvement in patient oxy-
genation [85] [86]. Treatment directed against autoimmunity includes steroid 
treatment for patients with concomitant connective tissue disease. Rituximab 
has been used as therapy for patients with moderate to severe disease although 
there is insufficient evidence to support its use routinely [87]. 

3.5. Acquired Angioedema 

The C1 inhibitor (C1-INH) belongs to the serine protease inhibitor protein su-
perfamily. The mutation in the SERPING1 gene leads to a decrease in serum le-
vels or a decrease in inhibitor functionality, this results in the loss of regulation 
of factor XIIa and calicrein enzymes culminating in the overproduction of bra-
dykinin [88]. This innate error corresponding to Hereditary Angioedema (HAE) 
and it is classified within group VIII of the IUIS that corresponds to complement 
deficiencies. A percentage of patients present the clinical characteristics without 
presenting a genetic mutation, this form of the disease is called Acquired An-
gioedema (AAE) and one of the main causes is the pharmacological one due to 
the intake of angiotensin converting enzyme inhibitors. The phenocopy we will 
address corresponds to the presence of autoantibodies against C1-INH which 
causes the same disease phenotype but with a different immunopathological 
mechanism [89]. 

The inhibitory effect of the IgG-like antibody is mediated by the Fab region, 
the binding of C1-INH with the autoantibody can continue to react with pro-
teases but the complex becomes very unstable [90]. This kind of autoantibodies 
has been found in patients with Systemic Lupus Erythematosus (SLE) although 
not related to manifestations other than those of the disease. The presence of this 
autoantibodies is related with the duration of disease activity [91]. 

Table 4 shows the useful clinical data for an adequate differential diagnosis in 
patients with angioedema and in whom this phenocopy is suspected [92].  

The evaluation of complement fractions patterns is essential for the diagnosis. 
Table 5 shows the expected patterns for hereditary and acquired angioedema. 
[89] As can be seen, what defines this phenocopy is the presence of autoantibo-
dies against C1-INH.  

The treatment consists of administering purified plasma C1-INH or icatibant 
(bradykinin inhibitor), although due to the presence of antibodies it has been 
shown that higher doses of C1-INH may be necessary [93]. Although long-term 
prophylaxis with patients with more than one crisis of angioedema per month  
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Table 4. Differential diagnosis of angioedema and clinical characteristics [92] [94]. 

 
Mediated by 

mast cells 

Bradykinin-mediated. 

Acquired Hereditary 

Symptom onset rate Minutes Hours Hours 

Average age of disease onset Anyone 30 - 60 years old 0 - 20 years old 

Site affected Face, neck 
Lips, tongue, uvula, 

upper respiratory tract 

Face, extremities, 
upper respiratory tract, 

gastrointestinal tract 

Hives Yes No No 

Family history No No Yes 

Drugs related NSAID 

Angiotensin 
Converting Enzyme 

inhibitors, Angiotensin 
Receptor Blockers, 
gliptins, sacubitril 

Angiotensin 
Converting Enzyme 
inhibitors, estrogens 

Antihistaminic response Adequate Without response Without response 

 
Table 5. Complement patterns and phenotypes of C1-INH deficiency [92]. 

Diagnosis C1-INH 
C1-INH 
function 

C4 C1q 
Autoantibodies 
against C1-INH 

HAE wit C1-INH deficiency Low Low Low Normal Absent 

HAE type 2 Normal Low Low Normal Absent 

AAE Type1 Low Low Low Low Absent 

AAE Type2 Low/Normal Low Low Low Positive 

 
can be performed with tranexamic acid three times a day. The use of ecallantide 
(plasma kallikrein inhibitor) can improve the course of the disease since there is 
no union of the drug with the autoantibodies [94]. The use of rituximab in these 
patients is reserved for cases without detection of autoantibodies against 
C1-INH and without underlying pathology. It is not known whether it is useful 
for reducing the risk of autoimmunity or lymphoproliferative disease [95] [96]. 

Patients presenting with angioedema crisis in the context of a disease such as 
SLE have improved with the administration of methylprednisolone pulses in 3 
consecutive days in addition to maintenance therapy for the underlying disease 
[97]. 

3.6. Atypical Hemolytic Uremic Syndrome (a-HUS) 

Factor H is a glycosylated plasma protein that has an important role in regulat-
ing the alternative complement pathway, acting in the fluid phase and on the cell 
surface. The absence of this factor produces spontaneous activation of the alter-
nate pathway. Phenocopy of this deficiency is caused by the production of au-
toantibodies against factor H [98] [99]. 

The incidence of this pathology is very low, it is estimated 1 - 2 cases per mil-
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lion population, there is no predominance of age. The prognosis is bad and a 
quarter of the patients develop kidney disease after the onset of the disease, they 
will also have ischemic symptoms in the CNS, cardiovascular and respiratory 
system, skin manifestations, skeletal muscle and in the gastrointestinal tract 
[100]. 

The diagnosis of a-UHS requires the following findings: 1) microangiopathic 
hemolytic anemia (hemoglobin < 10 g/dl) with direct negative Coombs test, ele-
vation of lactate dehydrogenase (DHL), decrease of serum haptoglobin with pe-
ripheral blood schistocytes, 2) thrombocytopenia (<150,000 cell/mm3), 3) acute 
kidney injury [101]. Patients require evaluation of the complement pathway, at 
least with serum levels of C3, factor H, I and B in addition to autoantibodies 
against factor H [102]. 

The treatment consists of supportive measures for ischemic complications or 
renal failure. Plasma exchange is one of the most used therapies although it does 
not resolve the alteration in the complement pathway. Eculizumab, an IgG mo-
noclonal antibody that binds to the C5 portion, has become the preferred thera-
py as it decreases the risk of recurrence. Plasma treatment is not currently rec-
ommended unless eculizumab is not immediately available [103] [104]. The use 
of medications such as steroids, azathioprine, cyclophosphamide, rituximab, has 
been successful in reducing recurrences although the duration of treatment may 
be up to one year [105] [106]. 

3.7. Thymoma with Hypogammaglobulinemia (Good Syndrome) 

Thymomas are rare thymic epithelial tumors, the age of presentation varies from 
40 to 60 years old and they are rare in the pediatric population. These tumors 
frequently cause paraneoplastic syndromes with autoimmunity. Bone marrow 
involvement manifests as pure red cell aplasia and pure B cell aplasia, the latter 
may be the cause of some forms of Good syndrome presentation, although 
another potential mechanism of predisposition to infections is the presence of 
autoantibodies against various cytokines and this characteristic is what defines 
this phenocopy [107] [108]. 

The initial clinical manifestations may be due to thymoma such as dysphagia, 
cough, dysphonia and vena cava syndrome that are related to the size of the tu-
mor. Characteristically, these patients may present with repeated infections and 
it is common to find manifestations of autoimmunity, of these pathologies the 
most frequently found relationship is with myasthenia gravis [109] [110] [111]. 

Laboratory studies show the absolute decrease of B cells and serum immu-
noglobulin values, patients with advanced stages of thymoma, also show a de-
crease in the CD3+ CD4+ lymphocyte count. It is common that bronchiectasis 
can be seen as a pulmonary complication in chest imaging studies [107]. 

The treatment is aimed at neoplasia, with timectomy, radio and chemothera-
py, however patients require treatment with intravenous immunoglobulin subs-
titute for hypogammaglobuinemia. Each patient should be individualized to de-
termine the need for prophylactic antimicrobial treatment [112]. Immunosup-
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pressants and monoclonal antibodies such as rituximab and tocilizumab have 
been used for thymoma-associated autoimmune syndromes after timectomy, 
since in some patients despite surgery they persist with autoimmunity manife-
stations [113]. 

4. Conclusion 

The clinical manifestations presented by patients with phenocopies are indistin-
guishable from those presented by inborn immunity errors. The diagnosis of 
phenocopies is established once the genetic alteration in the germ cells of an in-
dividual with the clinical characteristics of the suspected pathology has been 
ruled out. It is necessary to recognize these clinical phenotypes to make an ade-
quate differential diagnosis in patients in whom immunodeficiency is suspected. 
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Abbreviations 

AAE: Acquired angoedema 
AIRE: Autoimmunity regulator 
ALPS: Autoimmune lymphoproliferative syndrome 
APECED: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystro-

phy 
a-HUS: atypical hemolytic uremic syndrome 
CAPS: Cryopyrin-associated periodic syndrome 
CINCA: Chronic infantile neurological-cutaneous-articular syndrome 
CMC: Chronic mucocutaneous candidiasis 
CRP: C-reactive protein 
FCAS: Familiar cold auto-inflammatory syndrome 
HAE: Hereditary angioedema 
IUIS: International Union of Immunological Societies 
NOMID: Neonatal multisystemic inflammatory disease 
PAP: Pulmonary alveolar proteinosis 
RALD: RAS-associated autoimmune leukoproliferative disorder 
SLE: Systemic Lupus Erythematosus 
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