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Abstract 
When longitudinal data contains outliers, the classical least-squares approach 
is known to be not robust. To solve this issue, the exponential squared loss 
(ESL) function with a tuning parameter has been investigated for longitudinal 
data. However, to our knowledge, there is no paper to investigate the robust es-
timation procedure against outliers within the framework of mean-covariance 
regression analysis for longitudinal data using the ESL function. In this paper, 
we propose a robust estimation approach for the model parameters of the 
mean and generalized autoregressive parameters with longitudinal data based 
on the ESL function. The proposed estimators can be shown to be asymptoti-
cally normal under certain conditions. Moreover, we develop an iteratively 
reweighted least squares (IRLS) algorithm to calculate the parameter esti-
mates, and the balance between the robustness and efficiency can be achieved 
by choosing appropriate data adaptive tuning parameters. Simulation studies 
and real data analysis are carried out to illustrate the finite sample perfor-
mance of the proposed approach. 
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1. Introduction 

Longitudinal data arises frequently in many fields, such as biological research, 
social science and other fields. The observations on the same subject are meas-
ured repeatedly over time, and thus intrinsically correlated [1]. The covariance 
matrix of such data is important since ignoring the correlation structure may 
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lead to inefficient estimators of the mean parameter. Furthermore, the cova-
riance matrix itself may be of scientific interest [2]. However, it is challenging to 
model the covariance matrix which suffers from the positive-definiteness con-
straint and includes many unknown parameters. To avoid this challenge, a 
common strategy is to specify the working correlation structure [3], which does 
not permit more general structures and cannot flexibly incorporate covariates 
that may be helpful to explain the covariations. To overcome this limitation, 
joint modelling for the mean and covariance of longitudinal data has received 
increasing interest recently; see, for example, [4]-[12]. Among these joint mod-
eling approaches, the modified Cholesky decomposition (MCD) for the cova-
riance matrix proposed in [4] [5] is attractive owing to the fact that it leads au-
tomatically to positive definite covariance matrix, and the parameters in it can 
be interpreted by suitable statistical concepts. As a result, the regression tech-
niques and model based inference can be adopted to the parameters in this de-
composition, see [7] for more details. 

However, the aforementioned approaches are very sensitive to outliers or 
heavy-tailed distributions. [13] proposed a robust procedure for modeling the 
correlation matrix of longitudinal data based on an alternative Cholesky decom-
position and heavy-tailed multivariate t-distributions with unknown degrees of 
freedom. It should be pointed out that the use of the multivariate t-distribution 
alone does not necessarily guarantee robustness. In addition, [14] [15] developed 
robust generalized estimating equations (GEE) for regression parameters in joint 
mean-covariance model by employing the Huber’s function and leverage-based 
weights. [16] developed an efficient parameter estimation via MCD for quantile 
regression with longitudinal data. [17] further proposed a moving average Cho-
lesky factor model, which is transformed from MCD, in covariance modeling for 
composite quantile regression with longitudinal data. Then, [18] carried out 
smoothed empirical likelihood inference via MCD for quantile varying coeffi-
cient models with longitudinal data. Later, [19] developed quantile estimation 
via MCD for longitudinal single-index models. 

Although M-type regression and quantile regression procedures can overcome 
outliers and heavy-tail errors, they may lose efficiency under the normal distri-
bution. To overcome this difficulty, [20] recently proposed a robust variable se-
lection approach by adopting the exponential squared loss (ESL) function with a 
tuning parameter. They have showed that, with properly selected tuning para-
meter, the proposed approach not only achieves good robustness with respect to 
outliers in the dataset, but also is as asymptotically efficient as the least squares 
estimation without outliers under normal error. Later, some authors employed 
the ESL funtion for longitudinal data. For example, [21] propsed an efficient and 
robust variable selection method for longitudinal generalized linear models 
based on GEE. [22] proposed a robust and efficient estimation procedure for 
simultaneous model structure identification and variable selection in generalized 
partial linear varying coefficient models for longitudinal data. [23] developed 
GEE-based robust estimation and empirical likelihood inference approach with 
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ESL for panel data models. With a similar loss function, [24] proposed a robust 
variable selection method in modal varying-coefficient models with longitudinal 
data. [25] proposed modal regression statistical inference for longitudinal 
semivarying coefficient models, including GEE, empirical likelihood and variable 
selection. However, to our knowledge, there is no paper to investigate the robust 
estimation procedure against outliers within the framework of mean-covariance 
regression analysis for longitudinal data employing the ESL function. 

In this paper, we propose a robust estimation approach for the model para-
meters of the mean and generalized autoregressive parameters in the within 
subject covariance matrices for longitudinal data based on the ESL function. We 
begin with the ESL-based estimation for the mean parameters pretending that 
the repeated measurements within a subject are independent. Then based on the 
roughly estimated mean parameters, the simultaneous estimation for the mean 
and generalized autoregressive parameters is carried out using the ESL function. 
The proposed estimators can be shown to be asymptotically normal under cer-
tain conditions. Moreover, we develop an iteratively reweighted least squares 
(IRLS) algorithm [26] to calculate the parameter estimates. Numerical studies 
are carried out to illustrate the finite sample performance of our approach. 

The outline of this paper is organized as follows. Section 2 develops the robust 
estimation procedure. Section 3 establishes the asymptotic properties of the 
proposed ESL estimators. The IRLS algorithm and a data-driven method for the 
selection of tuning parameters are presented in Section 4. Simulations are car-
ried out in Section 5. Section 6 analyses a real data set. A discussion is given in 
Section 7. The technical proofs are provided in the Appendix. 

2. Robust Estimation Procedure  
2.1. Initial Estimate for the Mean Parameters  

Consider n subjects, where each subject is measured repeatedly over time. For 
the ith subject, suppose that ijY  is the observed scale response variable at time 

ijt , and ijX  is the corresponding 1p×  covariate vector,  
1, , , 1, , ii n j m= =  . Denote 

1

n

i
i

N m
=

= ∑ . Furthermore, let ( )1, ,
ii i imY Y Y

Τ
=  , 

( )1, ,
ii i imX X X

Τ
=  , ( )1, ,

ii i imt t t
Τ

=  . A longitudinal linear regression model 
has the form  

,   1, , , 1, , ,ij ij ij iY X i n j mβ εΤ= + = =                (1) 

where β  is the 1p×  vector of associated parameters, ( )T

1, ,
ii i imε ε ε=   is 

the random error satisfying that ( )| 0ij ijE Xε =  and ( )var |i i iXε = Σ . 

Define the ESL function ( ) ( )21 1 expt tτφ τ− = − − . We first estimate β  
pretending that the random error ijε ’s are independent. More specifically, we 
estimate β  by maximizing the objective function  

( ) ( )11
1 1

,
imn

ij ij
i j

L Y Xτβ φ βΤ
= =

= −∑∑                    (2) 

where 1τ  is a tuning parameter. The resulting initial estimate of β  is denoted 

https://doi.org/10.4236/ojs.2020.101002


F. Lu et al. 
 

 

DOI: 10.4236/ojs.2020.101002 13 Open Journal of Statistics 
 

by β . 

2.2. Simultaneous Estimate for the Mean and Generalized  
Autoregressive Parameters  

Based on the Cholesky decomposition, there exists a lower triangle matrix iΦ  
with diagonal ones such that  

( )var | ,i i i i i i iX Dε ΤΦ = Φ Σ Φ =  

where ( )2 2
1diag , ,

ii i imD d d=  . In other words, let ( )T

1, ,
ii i im i iε= = Φ   , we 

obtain that  

( ) ( )
1 1

,1 1 , 1 , 1

,

, 1, , , 2, , ,
i i

i i
ij j i j j i j ij ii n j m

ε

ε φ ε φ ε− −

=

= + + + = =  




     (3) 

where ( )
,
i

j kφ  is the negative of the ( ) t, hj k  element of iΦ . It’s obvious that 

ij ’s are uncorrelated with ( ) 0ijE =  and ( ) 2var ij ijd= , 1, , ij m=  . If iε ’s 
were available, then (1) could be transformed as the following linear model with 
uncorrelated error ij ’s:  

( ) ( )
1 1 1

,1 1 , 1 , 1

,

, 1, , , 2, , .
i i i

i i
ij ij j i j j i j ij i

Y X

Y X i n j m

β

β φ ε φ ε

Τ

Τ
− −

= +

= + + + + = =  




   (4) 

[4] pointed out that the MCD has a well-founded statistical interpretation, 
and it has the advantage that the generalized autoregressive parameter ( )

,
i

j kφ ’s 
and log-innovation variance ( )2log ijd ’s are unconstrained. For simplicity, we 
assume that 2 2

ijd d=  for all 1, , , 2, , ii n j m= =  . Since ( )var |i i iXεΣ =  
may depend on iX , we adopt a more parsimonious structure,  

( ) ( )
, , ,i i

j k j kZφ γΤ=                         (5) 

where ( )1, , qγ γ γ
Τ

=   is the regression coefficient, and the covariates 
( ) ( ) ( )( ), , ,1 , ,, ,i i i
j k j k j k qZ Z Z

Τ
=   may contain the time, the baseline covariates iX , the 

interactions and so on. 
Based on β , we can obtain the estimated residuals  

, 1, , , 1, , 1.ij ij ij iY X i n j mε βΤ= − = = −


              (6) 

From (4), (5) and (6), we can obtain the simultaneous estimate ( )ˆ ˆ ˆ,θ β γ
Τ

Τ Τ=  
of ( ),θ β γ

ΤΤ Τ=  by maximizing the following objective function:  

( ) ( ) ( )( )
( ) ( )

( )

( )

2

2

2

2

2 1 ,1 , 1 , 1
1 2

1 1

, , ,1 1 , , ,
1 2 1 1

1 2

1 2
,

i

i

i

i

mn
i i

ij ij i j i j j j
i j

m j jn
i i

ij ij i k j k i k j k q q
i j k k

mn

ij ij ij
i j

mn

ij ij
i j

L Y X Z Z

Y X Z Z

Y X

Y

τ

τ

τ

τ

θ φ β ε γ ε γ

φ β ε γ ε γ

φ β ζ γ

φ δ θ

Τ ΤΤ
− −

= =

− −
Τ

= = = =

Τ Τ

= =

Τ

= =

= − − − −

 
= − − − − 

 

= − −

= −

∑∑

∑∑ ∑ ∑

∑∑

∑∑

 


 






    (7) 
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where ( ),ij ij ijXδ ζ
ΤΤ Τ=   with ( ) ( )

1 1

, , ,1 , , ,
1 1

, ,
j j

i i
ij i k j k i k j k q

k k
Z Zζ ε ε

Τ− −

= =

 
=  
 
∑ ∑

 
 . Then we can 

obtain the estimates of ( )
,
i

j kφ ’s in model (3) by combining (5) and γ̂ .  

3. Asymptotic Properties  

Define ( ) ( )( )11 1, |ij ijF x E X xττ φ ε′′= = , ( ) ( )( )1

2
1 1, |ij ijG x E X xττ φ ε′= = ,  

( ) ( )( )22 2, |ij ijF x E X xττ φ′′= = , ( ) ( )( )2

2
2 2, |ij ijG x E X xττ φ′= = ,  

( ) ( )|ij ij ij ij ijH x E X xζ ζ Τ= = , ( )1, ,ij i ijX X X
Τ

=  , ( )1, ,ij i ijx x x
Τ

=  ,  

( ),ij ij ijXδ ζ
ΤΤ Τ= , ( ) ( )

1 1

, , ,1 , , ,
1 1

, ,
j j

i i
ij i k j k i k j k q

k k
Z Zζ ε ε

Τ− −

= =

 
=  
 
∑ ∑ . To establish the asymptot-

ic properties of the proposed ESL estimator, assume that the following regularity 
conditions hold: 

(C1) There exists a positive integer M such that 
1
max ii n

m M
≤ ≤

≤ < ∞ . This means 
that n and N have the same order. 

(C2) There exists a positive constant C such that ( )k
ijX C≤  for 1 i n≤ ≤ , 

1 ij m≤ ≤  and 0 k p≤ ≤ . In addition, 
1 1

1 imn

ij ij
i j

X X
n

Τ

= =
∑∑  converges to a finite 

positive definite matrix in probability. 
(C3) ( )1 1,F x τ  and ( )1 1,G x τ  are continuous with respect to x. Moreover, 

for any 1 0τ > , ( )1 1, 0F x τ < . 

(C4) ( )( )1
| 0ij ijE X xτφ ε′ = = , ( )( )1

3
|ij ijE X xτφ ε′ = , ( )( )1

2
|ij ijE X xτφ ε′′ = , 

( )( )1
|ij ijE X xτφ ε′′′ =  and ( )( )1

2
|ij ijE X xτφ ε′′′ =  are continuous with respect to 

x. 

(C5) ( ) ( )( )1 1
1

1 n

i i i i
i

E X X
n τ τφ ε φ ε ΤΤ

=

′ ′∑  converges to a finite positive definite 

matrix. 
(C6) For 1 61 , 1 , , 1ii n j j m≤ ≤ ≤ ≤ − , ( ){ }1 2 3 1 2 3

| , ,ij ij ij ij ij ijE X X X xε ε ε =  
and ( ){ }( )

1 1
| , , 2,3, 4,6

k kij ij ij ijE X X x kε ε = =   are continuous with respect 
to x. 

(C7) 
1 1

1 imn

ij ij
i jn

ζ ζ Τ

= =
∑∑  converges to a finite positive definite matrix in probabili-

ty. 
(C8) ( )2 2,F x τ  and ( )2 2,G x τ  are continuous with respect to x. Moreover, 

for any 2 0τ > , ( )2 2, 0F x τ < . 

(C9) ( )( )2
| 0ij ijE X xτφ′ = = , ( )( )2

3
|ij ijE X xτφ′ = , ( )( )2

2
|ij ijE X xτφ′′ = , 

( )( )2
|ij ijE X xτφ′′′ =  and ( )( )2

2
|ij ijE X xτφ′′′ =  are continuous with respect to 

x. 
Theorem 1 If regularity conditions (C1)-(C5) hold, then  
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( ) ( )1 1
0 1 2 10,n Nβ β − −− → Σ Σ Σ  

in distribution as n →∞ , where  

( ){ }1 1 1
1 1

1lim , ,
imn

ij ij ijn i j
E F X X X

n
τ Τ

→∞ = =

Σ = ∑∑  

( ) ( )( )1 12
1

1lim .
n

i i i in i
E X X

n τ τφ ε φ ε ΤΤ

→∞ =

′ ′Σ = ∑  

Then if the random error ijε ’s are independent, we have the following corol-
lary, which is similar to Corollary 2 and useful for the choice of tuning parame-
ters in Section 4.2. 

Corollary 1 If regularity conditions (C1)-(C4) hold and ijε ’s are independent, 
then  

( ) ( )1 1
0 1 2 10,n Nβ β − ∗ −− → Σ Σ Σ  

in distribution as n →∞ , where  

( ){ }1 1 1
1 1

1lim , ,
imn

ij ij ijn i j
E F X X X

n
τ Τ

→∞ = =

Σ = ∑∑  

( ){ }2 1 1
1 1

1lim , .
imn

ij ij ijn i j
E G X X X

n
τ∗ Τ

→∞ = =

Σ = ∑∑  

Theorem 2 If regularity conditions (C1)-(C9) hold, then  

( ) ( )1 1
0 3 4 3

ˆ 0,n Nθ θ − −− → Σ Σ Σ  

in distribution as n →∞ , where  

( ) ( ){ }3 2 2
1 2

1lim , | ,
imn

ij ij ij ijn i j
E F X E X

n
τ δ δ Τ

→∞ = =

Σ = ∑∑  

( ) ( ){ }4 2 2
1 2

1lim , | .
imn

ij ij ij ijn i j
E G X E X

n
τ δ δ Τ

→∞ = =

Σ = ∑∑  

In fact, we have  

( ) ( )
0

| .
0

ij ij
ij ij ij

ij

X X
E X

H X
δ δ

Τ
Τ

 
 =
 
 

                 (8) 

Then it can be deduced that β̂  and γ̂  are asymptotically independent, that 
is, the following corollaries hold. 

Corollary 2 If regularity conditions (C1)-(C9) hold, then  

( ) ( )1 1
0 5 6 5

ˆ 0,n Nβ β − −− → Σ Σ Σ  

in distribution as n →∞ , where  

( ){ }5 2 2
1 2

1lim , ,
imn

ij ij ijn i j
E F X X X

n
τ Τ

→∞ = =

Σ = ∑∑  

( ){ }6 2 2
1 2

1lim , .
imn

ij ij ijn i j
E G X X X

n
τ Τ

→∞ = =

Σ = ∑∑  
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Corollary 3 If regularity conditions (C1)-(C9) hold, then  

( ) ( )1 1
0 7 8 7ˆ 0,n Nγ γ − −− → Σ Σ Σ  

in distribution as n →∞ , where  

( ) ( ){ }7 2 2
=1 =2

1lim , ,
imn

ij ijn i j
E F X H X

n
τ

→∞
Σ = ∑∑  

( ) ( ){ }8 2 2
=1 =2

1lim , .
imn

ij ijn i j
E G X H X

n
τ

→∞
Σ = ∑∑  

4. Implementation of the ESL Estimator  
4.1. IRLS Algorithm  

In this subsection, we develop an IRLS algorithm to calculate the parameter es-
timates. The IRLS algorithm has been commonly adopted for general 
M-estimators. Since the maximizers of (2) and (7) can be regarded as special 
M-estimators, the IRLS algorithm can be carried out to find β  and θ̂ . In the 
following, we first develop the IRLS algorithm to find the maximizer of (2), and 
then we can calculate the maximizer of (7) in a similar way. Later, we summarize 
the algorithm in detail. 

Because β  maximizes (2), we have the following normal equation:  

( )1
1 1

0,
imn

ij ij ij
i j

X Y Xτφ βΤ
= =

′ − =∑∑   

or  

( )( )1
1 1

0.
imn

ij ij ij ij ij
i j

X Y X Y Xτφ β βΤ Τ

= =

− − =∑∑                  (9) 

Let ( )1ij ij ijW Y Xτφ βΤ= −  , then (9) can be transformed as  

( )
1 1

0,
imn

ij ij ij ij
i j

X W Y X βΤ
= =

− =∑∑   

or X WX X WYβΤ Τ= , where ( )1, , nY Y Y Τ=  , ( )1, , nX X X Τ=   and 

( )11 ,diag , ,
nn mW W W=  . Given the k-th approximation ( )kβ , we can compute 

the corresponding weight matrix ( )kW  with ( ) ( )( )1

k k
ij ij ijW Y Xτφ βΤ= −  . Then we 

have  

( ) ( )( ) ( )11 .k k kX W X X W Yβ
−+ Τ Τ=                   (10) 

This iteration of (10) will monotonically non-decrease the objective function 
(2), that is, ( )( ) ( )( )1

1 1 0k kL Lβ β+ − ≥  . In fact,  

( )( ){ } ( )( ){ }

( ) ( )
( )

( )

1
1 1

1
1

1 1 1 1 1 1

1 1

log log

log log log
i i i

i

k k

km m mn n n
ijk k

ij ij mn
ki j i j i j

ij
i j

L L

W
W W

W

β β+

+
+

= = = = = =

= =

−

 
      = − =          
 

∑∑ ∑∑ ∑∑
∑∑

 
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( )

( )

( )

( )
( )

( )

( )

1 1

1 1 1 1

1 1

log log ,
i i

i

k k km mn n
ij ij ijk

ijm k kn
ki j i jij ij

ij
i j

W W W

W WW
π

+ +

= = = =

= =

 
   
   = =
   

  
 

∑∑ ∑∑
∑∑

 

where ( )
( )

( )

1 1

i

k
ijk

ij mn
k

ij
i j

W

W
π

= =

=

∑∑
. Based on the Jensen’s inequality, we have  

( )( ){ } ( )( ){ }
( )

( )

( )

( ) ( )( ) ( )( ){ }

1
1 1

1

1 1

2 21

1 11

log log

log

1 .

i

i

k k

kmn
ijk

ij k
i j ij

mn
k k k

ij ij ij ij ij
i j

L L

W

W

Y X Y X

β β

π

π β β
τ

+

+

= =

+Τ Τ

= =

−

 
 ≥
 
 

= − − −

∑∑

∑∑

 

 

 

From expression (10), we can find out that ( )1kβ +
  minimizes 

( ) ( ) ( )kY X W Y Xβ βΤ− − , or ( ) ( )2

1 1

imn
k

ij ij ij
i j

W Y X βΤ
= =

−∑∑ . Then we have 

( )( ){ } ( )( ){ }1
1 1log log 0k kL Lβ β+ − ≥  . 

The IRLS algorithm is summarized as follows: 
Step 1. Computation of β  by maximizing (2). Take the initial value ( )0β  as 

the ordinary least squares (OLS) estimator. Given the k-th approximation ( )kβ , 
the IRLS iteration updates ( )1kβ +

  through (10). Repeat this iteration until the 
convergence occurs. The resulting estimator is denoted as β . 

Step 2. Computation of ( )ˆ ˆ ˆ,θ β γ
Τ

Τ Τ=  by maximizing (7). Take ( )0θ̂  as the 

OLS estimator by minimizing ( )2

1 2

imn

ij ij
i j

Y δ θΤ
= =

−∑∑  . Similar to (10), given the k-th 

approximation ( )ˆ kθ , the IRLS iteration updates  

( ) ( )( ) ( )11ˆ ,k k kV V Yθ
−+ Τ Τ= ∆ ∆ ∆    

where ( )1, , nδ δ
Τ

∆ =  

 , ( )2 , ,
ii i imδ δ δ

Τ
=  

 , ( ) ( ) ( )( )12 ,diag , ,
n

kk k
n mV V V=  , and 

( ) ( )( )2
ˆk k

ij ij ijV Yτφ δ θΤ= −  . Repeat this iteration until the convergence occurs. The 

resulting estimator is denoted as θ̂ .  

4.2. The Choice of Tuning Parameters  

In this subsection, we give a data driving method to determine the tuning para-
meters { }1 2,τ τ . In order to simplify the calculation with respect to 1τ , we as-
sume that the random error ijε ’s are independent of each other and ijX ’s. 
Then from Corollary 1, we can obtain that the ratio between the asymptotic va-
riance of the initial ESL estimator and that of the OLS estimator for β  is  

( ) ( ) ( )2
1 1 1 1

1 2 ,
G F

r
τ τ

τ
σ

−

  
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where ( )2 var ijσ ε= . Therefore, the ideal choice of 1τ  is  

( ) ( ) ( )
1 1

2 2
1,opt 1 1 1 1 1arg min arg min .r G F

τ τ
τ τ τ τ σ−= =  

Then ( )1r τ  can be estimated by ( ) ( )2 2
1 1 1 1G Fτ τ σ−
 

 , where  

( ) ( ) ( ) ( )1 1

2
1 1 1 1

1 1 1 1

1 1and
i im mn n

ij ij
i j i j

F G
N Nτ ττ φ ε τ φ ε

= = = =

′′ ′= =∑∑ ∑∑

   

with ij ij ijY Xε βΤ= − 

 , and σ  is the standard deviation of ijε . Then 1,optτ  can 
be easily obtained using the grid search approach. 2τ  can also be chosen in a 
similar way.  

5. Simulation Studies  

In this section, we conduct some simulation studies to investigate the finite sam-
ple performance of the proposed approach. We generate 200 datasets and con-
sider sample sizes 50n = , 100 and 200. In particular, the datasets are generated 
from the following model:  

,   1, , , 1, , ,ij ij ij iY X i n j mβ εΤ= + = =   

where ( )binomial1 6,0.8im −  , ( )1 2, 0,1ij ijX X N , ( )1,2β Τ= ,  

( )0,1ijt U , ( ) ( ), 1,i
j k ij ikZ t t

Τ
= − , ( )0.5,0.2γ Τ= , 

ii mD I= , and ( )0,i iNε Σ  

with i i i iDΤΦ Σ Φ = . 

To investigate robustness, we denote the above datasets as no contamination 
(NC) situation and consider the following four contaminations: 

1) iε  follows the multivariate t-distribution with 2 degrees of freedom and 
covariance matrix iΣ . 

2) iε  follows the multivariate t-distribution with 2 degrees of freedom and 
covariance matrix iΣ , and randomly choose 2% of ijX  to be ( )6,6ijX Τ+ . 

3) ( )0,i iNε Σ , and randomly choose 2% of ijε  to be 15ijε + . 
4) ( )0,i iNε Σ , randomly choose 2% of ijε  to be 15ijε +  and 2% of ijX  

to be ( )6,6ijX Τ+ . 
We compare the proposed ESL method with the OLS method, the 

M-estimator (M) in [26] and the quantile regression (QR) method in [27]. Note 
that the OLS, M and QR methods follow the estimation procedure similar to that 
of ESL, while the main difference is that the objective function is respectively re-
placed by their counterparts. To assess the finite sample performance, we calcu-
late the mean and standard deviation (SD) for the estimators of β  and γ . The 
corresponding simulation results are displayed in Tables 1-5. 

From Table 1, it can be observed that the performance of the M, QR and ESL 
methods is comparable to that of the OLS method, when the error follows a 
normal distribution and there are no outliers in the data. From Tables 2-5, it 
can be found out that the M, QR and ESL methods outperform significantly the 
OLS method, particularly in terms of SD, in several contamination cases; more-
over, the ESL method always perform best in these cases. More specifically, Ta-
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ble 2 and Table 3 indicate that the M, QR and ESL methods outperform signifi-
cantly the OLS method with respect to both β  and γ , when the error follows 
a heavy-tailed error distribution. Table 4 and Table 5 indicate that the M, QR 
and ESL methods outperform significantly the OLS method with respect to β , 
when there are outliers in responses; the OLS, M and QR methods perform ra-
ther poorly with respect to γ , however, the ESL method sill performs well in 
this case.  

6. Real Data Analysis  

In this section, we analyse the CD4 cell study, which was previously analysed by 
[7] [28]. This dataset comprises CD4 cell counts of 369 HIV-infected men, and 
there are totally 2376 values collected at different times for each individual, over 
a period of approximately eight and a half years. The number of measurements 
for each individual varies from 1 to 12 and the time points are not equally spaced. 
We use square roots of the CD4 counts [28] to make the response variable closer 
to the normal distribution, and the related six covariates are respectively time 
since seroconversion ijt , age relative to arbitrary origin 1ijX , packs of cigarettes 
smoked per day 2ijX , recreational drug use 3ijX , number of sexual partners 

4ijX  and mental illness score 5ijX . Note that Figure 1 displays the sample 
regressogram and local linear fitted curve for the square root of CD4 count over 
time, which reflects polynomial trend with respect to time. In the following, we 
use the mean model [1]. 

 
Table 1. Parameter estimates (with SD in parentheses) for the NC situation. 

  50n =  100n =  200n =  

0 1β =  OLS 0.9968 (0.0690) 0.9973 (0.0419) 0.9997 (0.0268) 

 M 0.9972 (0.0697) 0.9968 (0.0431) 0.9997 (0.0285) 

 QR 0.9923 (0.0845) 0.9945 (0.0493) 0.9999 (0.0357) 

 ESL 0.9972 (0.0783) 0.9956 (0.0478) 0.9997 (0.0329) 

1 2β =  OLS 2.0025 (0.0522) 1.9987 (0.0394) 1.9961 (0.0289) 

 M 2.0033 (0.0535) 1.9979 (0.0414) 1.9954 (0.0289) 

 QR 2.0005 (0.0642) 1.9970 (0.0483) 1.9953 (0.0340) 

 ESL 2.0033 (0.0601) 1.9971 (0.0466) 1.9941 (0.0315) 

0 0.5γ =  OLS 0.4970 (0.0343) 0.4969 (0.0227) 0.5003 (0.0165) 

 M 0.4991 (0.0333) 0.4988 (0.0227) 0.5011 (0.0167) 

 QR 0.4975 (0.0393) 0.4977 (0.0283) 0.5010 (0.0200) 

 ESL 0.5008 (0.0368) 0.5001 (0.0262) 0.5010 (0.0187) 

1 0.2γ =  OLS 0.1922 (0.1072) 0.2057 (0.0656) 0.1956 (0.0478) 

 M 0.1961 (0.1037) 0.2043 (0.0672) 0.1962 (0.0493) 

 QR 0.2016 (0.1191) 0.2064 (0.0881) 0.1965 (0.0603) 

 ESL 0.1935 (0.1121) 0.2022 (0.0802) 0.1973 (0.0560) 
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Table 2. Parameter estimates (with SD in parentheses) for the first contamination 
situation. 

  50n =  100n =  200n =  

0 1β =  OLS 0.9953 (0.1707) 1.0188 (0.1392) 1.0002 (0.0819) 

 M 0.9973 (0.0878) 1.0032 (0.0585) 1.0028 (0.0387) 

 QR 1.0034 (0.0894) 1.0011 (0.0589) 1.0040 (0.0390) 

 ESL 1.0004 (0.0869) 1.0007 (0.0513) 1.0032 (0.0379) 

1 2β =  OLS 1.9982 (0.1207) 2.0007 (0.1092) 1.9910 (0.0844) 

 M 2.0041 (0.0718) 2.0018 (0.0568) 1.9958 (0.0385) 

 QR 2.0048 (0.0743) 1.9997 (0.0567) 1.9985 (0.0387) 

 ESL 2.0031 (0.0782) 1.9994 (0.0551) 1.9980 (0.0367) 

0 0.5γ =  OLS 0.4821 (0.0868) 0.4680 (0.1295) 0.5081 (0.0871) 

 M 0.4956 (0.0508) 0.4924 (0.0465) 0.5029 (0.0367) 

 QR 0.4976 (0.0491) 0.4928 (0.0445) 0.5029 (0.0345) 

 ESL 0.4994 (0.0546) 0.4976 (0.0452) 0.5030 (0.0321) 

1 0.2γ =  OLS 0.2248 (0.2766) 0.2697 (0.3493) 0.1720 (0.2637) 

 M 0.2076 (0.1511) 0.2201 (0.1394) 0.1928 (0.1104) 

 QR 0.2027 (0.1486) 0.2202 (0.1364) 0.1930 (0.1036) 

 ESL 0.2010 (0.1652) 0.2028 (0.1325) 0.1929 (0.1002) 

 
Table 3. Parameter estimates (with SD in parentheses) for the second contamination 
situation. 

  50n =  100n =  200n =  

0 1β =  OLS 1.0063 (0.1406) 1.0106 (0.1086) 1.0041 (0.0664) 

 M 1.0003 (0.0709) 1.0007 (0.0473) 1.0018 (0.0320) 

 QR 1.0011 (0.0786) 1.0001 (0.0474) 1.0024 (0.0324) 

 ESL 0.9997 (0.0771) 1.0009 (0.0432) 1.0014 (0.0317) 

1 2β =  OLS 2.0048 (0.1041) 1.9993 (0.0908) 1.9970 (0.0708) 

 M 2.0051 (0.0629) 2.0004 (0.0482) 1.9966 (0.0338) 

 QR 2.0032 (0.0616) 2.0001 (0.0495) 1.9980 (0.0364) 

 ESL 1.9973 (0.0673) 1.9980 (0.0465) 1.9974 (0.0329) 

0 0.5γ =  OLS 0.4815 (0.0887) 0.4729 (0.1140) 0.5084 (0.0870) 

 M 0.4954 (0.0522) 0.4926 (0.0465) 0.5032 (0.0368) 

 QR 0.4978 (0.0501) 0.4927 (0.0447) 0.5030 (0.0336) 

 ESL 0.4994 (0.0543) 0.4977 (0.0446) 0.5030 (0.0323) 

1 0.2γ =  OLS 0.2271 (0.2820) 0.2651 (0.3357) 0.1718 (0.2648) 

 M 0.2060 (0.1544) 0.2209 (0.1392) 0.1925 (0.1115) 

 QR 0.2022 (0.1523) 0.2213 (0.1368) 0.1935 (0.1026) 

 ESL 0.1988 (0.1673) 0.2043 (0.1327) 0.1929 (0.1013) 
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Table 4. Parameter estimates (with SD in parentheses) for the third contamination 
situation. 

  50n =  100n =  200n =  

0 1β =  OLS 0.9969 (0.1632) 0.9955 (0.1038) 1.0023 (0.0835) 

 M 0.9945 (0.0757) 0.9934 (0.0500) 1.0013 (0.0370) 

 QR 0.9985 (0.0830) 0.9938 (0.0552) 0.9997 (0.0418) 

 ESL 1.0025 (0.0695) 0.9949 (0.0491) 1.0014 (0.0361) 

1 2β =  OLS 1.9826 (0.1399) 2.0107 (0.1041) 2.0099 (0.0766) 

 M 1.9929 (0.0631) 2.0013 (0.0473) 2.0065 (0.0365) 

 QR 1.9961 (0.0756) 2.0049 (0.0532) 2.0084 (0.0448) 

 ESL 2.0000 (0.0573) 2.0016 (0.0457) 2.0025 (0.0343) 

0 0.5γ =  OLS 0.3576 (0.1294) 0.3651 (0.0925) 0.3519 (0.0565) 

 M 0.4524 (0.1412) 0.4582 (0.1125) 0.4475 (0.0709) 

 QR 0.4745 (0.1266) 0.4773 (0.0971) 0.4659 (0.0576) 

 ESL 0.5143 (0.0784) 0.5020 (0.0371) 0.4970 (0.0206) 

1 0.2γ =  OLS 0.0013 (0.4243) −0.0277 (0.3062) −0.0012 (0.1764) 

 M 0.0051 (0.4775) 0.0161 (0.3990) 0.0631 (0.2578) 

 QR 0.0067 (0.4497) 0.0363 (0.3547) 0.0879 (0.2198) 

 ESL 0.1263 (0.3046) 0.1938 (0.1379) 0.2034 (0.0625) 

 
Table 5. Parameter estimates (with SD in parentheses) for the fourth contamination 
situation. 

  50n =  100n =  200n =  

0 1β =  OLS 0.9921 (0.1448) 1.0105 (0.0856) 0.9985 (0.0624) 

 M 0.9911 (0.0687) 1.0018 (0.0383) 0.9959 (0.0301) 

 QR 0.9920 (0.0774) 0.9996 (0.0429) 0.9970 (0.0343) 

 ESL 1.0001 (0.0591) 1.0018 (0.0371) 0.9992 (0.0275) 

1 2β =  OLS 1.9993 (0.1210) 2.0014 (0.0907) 2.0010 (0.0635) 

 M 1.9972 (0.0541) 1.9964 (0.0423) 1.9984 (0.0304) 

 QR 1.9967 (0.0613) 1.9972 (0.0477) 1.9998 (0.0339) 

 ESL 1.9990 (0.0527) 2.0000 (0.0372) 2.0011 (0.0274) 

0 0.5γ =  OLS 0.3452 (0.1183) 0.3641 (0.0792) 0.3494 (0.0570) 

 M 0.4481 (0.1374) 0.4661 (0.0992) 0.4468 (0.0721) 

 QR 0.4736 (0.1230) 0.4819 (0.0833) 0.4642 (0.0597) 

 ESL 0.5095 (0.0815) 0.4997 (0.0309) 0.5008 (0.0209) 

1 0.2γ =  OLS 0.0138 (0.4240) −0.0171 (0.2704) 0.0122 (0.1909) 

 M −0.0174 (0.4892) 0.0004 (0.3634) 0.0664 (0.2663) 

 QR −0.0161 (0.4618) 0.0302 (0.3149) 0.0936 (0.2250) 

 ESL 0.1324 (0.3339) 0.1962 (0.1071) 0.1964 (0.0648) 
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Figure 1. Sample regressogram and local linear fitted curve for 
the CD4 data: square root of CD4+ number versus time. 

 
( )1 1 2 2 3 3 4 4 5 5 ,ij ij ij ij ij ij ij ijY X X X X X f tβ β β β β ε= + + + + + +  

where ( ) 2
0 6 7f t t tβ β β+ += + +  with ( )0t tI t+ = > . We use cubic polynomial to 

model the generalized autoregressive parameters, that is,  
( ) ( ) ( )( )2 3
, 1, , ,i

j k ij ik ij ik ij ikZ t t t t t t
Τ

= − − − . 

We apply the OLS, M, QR methods and the proposed ESL method to the CD4 
cell study. To assess the prediction performance, we randomly split the data into 
three parts, each with 369/3 = 123 subjects. We use the first two parts as the 
training dataset to fit the model, and then assess the out of sample performance 
on the testing dataset (defined as TD) which is left out. This process is repeated 
200 times. We define the median absolute prediction error (MAPE) as median of 

{ }ˆ , TD, 1, ,ij ij iY Y i j m− ∈ =  . To illustrate the estimation robustness of the 
proposed ESL method compared with the other methods, we re-analyse the da-
taset by including 5% outliers in the dataset, which are randomly generated by 
replacing ijY  with 300ijY + . Moreover, we also re-analyse the dataset by in-
cluding 5% outliers only in the training data set, in order to assess the robustness 
in terms of prediction performance. The results are displayed in Table 6. It can 
be observed that the estimates for γ  are very similar based on different me-
thods, but the estimates for β  based on the ESL method are somewhat distinct 
with those of the OLS, M and QR methods in the no outlier case. Moreover, the 
MAPE of the proposed ESL method is slightly larger than the others, indicating 
that these methods possess comparative prediction performance in the case of 
no outlier. In the 5% outliers case, the MAPEs indicate that the ESL, M and QR 
methods perform similarly but much better than the OLS method in the predic-
tion performance. Comparing the no outlier with 5% outliers case, we can see 
that the estimates based on the ESL method varies more slightly than the other 
methods, especially in terms of the estimates for γ ; the ESL, M and QR me-
thods are robust to the outliers, while the OLS method is adversely affected by 
the outliers. 

7. Conclusions  

In this paper, based on the ESL function, we proposed a robust estimation ap-
proach for the mean and generalized autoregressive parameters with longitudinal  
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Table 6. Parameter estimates and prediction results for the CD4 data. 

 No outlier 5% outliers 

 OLS M QR ESL OLS M QR ESL 

0β  28.8062 28.4158 28.0787 28.8102 40.6204 28.7359 28.1893 28.3733 

1β  −0.0057 0.0016 0.0129 0.0554 0.2781 0.0255 0.0458 0.0515 

2β  0.8205 0.7354 0.5780 1.9846 1.8209 0.9624 0.8708 1.8776 

3β  0.7355 0.9075 1.1222 0.1831 4.9434 1.1518 1.4320 0.6300 

4β  −0.0417 −0.0375 −0.0194 0.0712 −0.2606 −0.0716 −0.0944 0.0781 

5β  −0.0370 −0.0263 −0.0095 −0.0239 0.2315 −0.0202 −0.0150 −0.0159 

6β  −4.6644 −4.4641 −4.2399 −8.9039 −10.1189 −5.2498 −5.2998 −8.2283 

7β  0.6175 0.5793 0.5339 3.1414 1.9313 0.8235 0.8420 2.7472 

0γ  0.7108 0.7118 0.7240 0.7575 −0.0061 0.0022 0.0006 0.6983 

1γ  −0.6340 −0.6291 −0.6446 −0.6536 0.0302 0.0016 0.0044 −0.5495 

2γ  0.1994 0.1965 0.1999 0.1908 −0.0162 −0.0008 −0.0022 0.1402 

3γ  −0.0204 −0.0202 −0.0202 −0.0183 0.0020 0.0001 0.0002 −0.0116 

MAPE 3.9138 3.9052 3.9269 4.7627 15.2271 3.9738 3.9743 4.2478 

 
data. The generalized autoregressive parameters that resulted from the MCD of 
the covariance matrix are unconstrained and can be well interpreted by statistic-
al concepts in the framework of time series. Then the mean and generalized au-
toregressive parameters can be estimated via linear regression models using the 
ESL function. Moreover, the balance between the robustness and efficiency can 
be achieved by choosing appropriate data adaptive tuning parameters. Under 
certain conditions, we established the theoretical properties. Simulation studies 
and real data analysis were also carried out to illustrate the finite sample perfor-
mance of our approach. 

Several further problems need to be investigated. First, the dimension of the 
covariates in regression models is assumed to be fixed, thus it is interesting to 
extend our approach to the high-dimensional settings. Second, the models can 
be extended to nonparametric and semiparametric models. For more discussion 
along this line, references including [10] [29] may be helpful. Moreover, this pa-
per targets the conditional mean of the response given covariates, which suffers 
from difficulties when the conditional distribution of the response is asymmetric. 
In this case, the conditional mode may be a more useful summary than the con-
ditional mean, and thus modal linear regression [30] may be an interesting 
problem.  
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Appendix 

Lemma 1 If regularity conditions (C1)-(C5) hold, then with probability ap-
proaching to 1, there exists a local maximizer of (2), denoted as β , such that  
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1 .PO
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− =  
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Proof of Lemma 1. Let ( ) ( ) ( )11 1
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to show that for any given 0ρ > , there exists a large constant 0C >  such that  
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for any p-dimensional vector v satisfying that v C= . Based on the Taylor ex-
pansion, we have  
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where ijε
∗  lies between ij ijv X nε Τ−  and ijε . Then, for 1I , we have  
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Using the Cr inequality and condition (C1), we can obtain that  
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Therefore, we can deduce that ( ) ( )( ) ( )1
1 1 1varP PI E I O I O Cn−= + = . Simi-

larly, we get ( )3 2
3 PI O n−= . For 2I , we have  
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Note that v C= , we can choose a sufficiently large C such that 2I  domi-
nates both 1I  and 3I  with a probability of at least 1 ρ− . From condition (C3), 
we get ( )1 1, 0F x τ < , then (1) holds. The proof of Lemma 1 is finished.  

Proof of Theorem 1. Let ( )0ij ijXϕ β βΤ= − , then β  satisfies the following 
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where ijε
∗  locates between ij ijε ϕ−   and ijε . It can be easily shown that  
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where 1K  is a constant independent of i. Then by condition (C5), 
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So the proof of theorem 1 is completed by the Lyapunov central limit theorem 
and Slutsky’s theorem.  

Lemma 2 If regularity conditions (C1)-(C9) hold, then with probability ap-
proaching to 1, there exists a local maximizer of (7), denoted as θ̂ , such that  
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Proof of Lemma 2. Since 0
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for any ( )p q+ -dimensional vector ν  satisfying that Cν = . Based on the 
Taylor expansion, we have  
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where ij
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and  
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Therefore, we can deduce that ( ) ( )( ) ( )1
7 7 7varP PI E I O I O Cn−= + = . Si-

milarly, we get ( )3 2
9 PI O n−= . For 8I , we have  
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Note that Cν = , we can choose a sufficiently large C such that 8I  domi-
nates both 7I  and 9I  with a probability of at least 1 ρ− . From condition (C8), 
we get ( )2 2, 0F x τ < , then (2) holds. The proof of Lemma 2 is finished. 

Proof of Theorem 2. Let ( )0
ˆˆij ijα δ θ θΤ= − , then θ̂  satisfies the following 
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( )

( ) ( ) ( )

2

2 2 2

1 2

2

1 2

10 11 12

1 ˆ0

1 1ˆ ˆ
2

,

i

i

mn

ij ij ij
i j

mn

ij ij ij ij ij ij
i j

n

n
I I I

τ

τ τ τ

δ φ α

δ φ φ α φ α

= =

∗

= =

′= −

 ′ ′ ′′′= − + 
 

+ +

∑∑

∑∑





    

where ij
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Notice that ( )( )2
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where 2K  is a constant independent of i. Moreover,  
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So the proof is completed by the Lyapunov central limit theorem and Slutsky’s 
theorem.  

List of Main Symbols  

  “Define as’’ or “Denote as’’ 

( )I A  Indicative function of set A 

Τ  Vector or matrix transposition 

( )1oξ =  ξ  is infinitesimal 

( )1Oξ =  ξ  is a bounded variable 

( )n P noξ η=  For any 0ε > , ( ) 0n nP ξ ε η≥ →  

( )n P nOξ η=  n nξ η  is bounded in probability 

( ),N µ Σ  Normal distribution with mean µ  and covariance matrix Σ  

( )E ⋅  Expectation 

( )var ⋅  Variance 

⋅  2  norm 
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