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Abstract 
For treating wastewater, electrochemical engineering has been rediscovered 
during the last four decades through the world for its inherent advantages com-
paratively with traditional technologies especially the chemical and biological 
techniques. However, the expansion of this technology founded on electric cur-
rent applying has been retarded by several technical-economic factors espe-
cially the detection of disinfection by-products (DBPs) formation. This work 
focuses on the challenges and future tendencies for this highly-efficient tech-
nology to reach the full-scale implementations particularly in disinfecting wa-
ter. Lately, new versions of electrochemical techniques have been suggested such 
as employing sulfate radical anion ( 4SO•− ) and sunlight to generate ●OH rad-
icals in TiO2 photocatalysis and photo-Fenton water treatment. These improve-
ments elevated the electrochemical engineering efficiency and acceptation. 
However, more efforts remain to be accomplished for water reuse vision. Future 
researches would focus on integrating membranes processes such as nanofil-
tration and reverse osmosis for a safe removal of DBPs. 
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1. Introduction 

Implementing the electrochemical technique in ecological treatment has been 
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the subject of numerous investigations during the last four decades [1]. Thou-
sands of researches have focused on presenting novel techniques or enhancing 
previous methods (Figure 1). Following these extended years, very few techniques 
are being used at full-scale and most processes assessed are only viewed as “en-
couraging” methods. Most possess established advantages; however, considera-
ble practical and cost hindrances may be listed, which remain linked to lost pieces 
in the gain series of the technique [2]. 

Electrolytic techniques involve the cathodic deposition of metals observed in 
the largely employed electrowinning and electrorefining methods and the oxida-
tion of organic matters [3] [4] [5] [6], either directly on the anode surface or me-
diated via oxidants formed on the anode or on the cathode surface [7] [8]. This 
last situation is of huge importance since hydrogen peroxide (H2O2) may be ef-
ficaciously generated from the reduction of oxygen employing gas diffusion 
electrodes (GDEs) [2] [9] or more newly utilizing cross-flow electrodes surpri-
singly with implementing elevated pressures [2], conducting to more performant 
techniques. Moreover, electrocoagulation (EC) processes are launched through 
liberating electrolytically coagulants from a sacrificial anode and may be utilized 
to fragment emulsions in industrial wastes or to eliminate colloid contaminants 
in such wastes and in the course of treating surface water [10] [11] [12] [13] 
[14]. 

Not only electrodialysis [15] and capacitive deionization [16] (which let the con-
centration of ions in liquids) are comprised in electrochemically assisted separation 

 

 
Figure 1. Number of publications per year related to different environmental electrochem-
ical technologies according to Scopus [2]. 
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methods, but as well electrokinetic techniques (which permit the transfer of spe-
cies in solid-liquid mixtures like soil or sludge) [2] [17] [18]. 

Not all electrochemically founded techniques are at the identical technology 
readiness level (TRL) (Figure 2) [2]. Huge gaps are observed among electrowin-
ning or electrodialysis and the electrolysis of wastewater contaminated with or-
ganic chemicals. Occasionally, comprehending such gaps is required for compa-
nies wanting to expand these techniques, particularly if there is a shortage of 
choices. If competitive alternatives are completely merchandised, it is hard to 
dislodge them, except if the benefits of the fresh technique would assist to reach 
a so quick return. Morals have to be taught concerning the prosperous applica-
tion of electrodialysis and electrodeposition of metals, to attain total pertinency 
of different electrochemical techniques and to permit paybacks on spent money 
to companies and society. Plenty of electrochemical techniques, comprising the 
electrochemical oxidation of wastewater, electrodisinfection [19] [20] [21] [22] 
[23] and soil electroremediation are presently in status to elevate TRLs [24]. Oc-
casionally, the dare to be confronted is practical; in other circumstances it is 
economic. 

The following concentrates on a short description of electrodisinfection [25]. 
Further, this work discusses the needed procedures to attain the full-scale utili-
zations of the green electrochemical engineering especially in disinfecting waste-
water. 

 

 
Figure 2. TRL of the main environmental electrochemical technologies, including the key challenges that have to be overpassed to 
increase this level: no significant challenges (0); further fundamental work (1); components development (membranes, electrodes, 
cells, etc.) (2); scale up (3); competition with efficient technologies (4). TRL: technology readiness level [2]. 
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2. Environmental Electrochemical Technology: One-Step 
Closer to Let Full-Scale Usages 

2.1. Dares in Electrochemically Disinfecting Water 

During the time that the employment of mixed metal oxide anodes has been re-
vealed for disinfecting water, especially generating chlorinated disinfectants, a 
hard work stays to drive the technique from classical disinfection of saline swim-
ming pools or spas, in which numerous small and medium enterprises (SMEs) 
are concentrating their business [2] [26]. 

With a view to satisfying this perspective, two key dares should be resolved. 
The first one is to define how to evade the generation of toxic by-products like 
chlorates or trihalomethanes [13] [27]. Chlorates are produced via oxidation of 
hypochlorite or by its disproportionation, which is a natural phenomenon that 
also takes place through the aging of the disinfected water [28]. This chemical is 
linked to grave health issues as it is established to touch the nervous system. The 
second kind of dangerous agents is surprisingly more debatable. Chlorinated 
chemicals are produced from the integration of organic matter with active spe-
cies of chlorine; however, such agents are linked to cancer and other so severe 
illnesses. These chemicals are not distinctive of the electrochemical technology 
since they are also created through the usage of traditional chlorination tech-
niques [28] [29] [30] [31]. The additional dare remains in implementing changes 
for mixed metal oxide anodes, like diamond-like coatings, which are able both to 
oxidize chloride ions and generate more performant disinfectants, comprising 
hydroxyl radicals (●OH) [32] [33] [34]. If utilizing such electrodes, issues related 
to the formation of dangerous chemicals may be worsened, since the well-known 
generation of perchlorates throughout oxidation of chlorates [2]. Such fresh elec-
trode materials conquer the hope of encouraging the contribution of diverse oxi-
dizing species, like, ozone and peroxosalts [35] to assist eliminate resistant pa-
thogens. Appropriate residence period among water and the anodes in the elec-
trolyzer, an enough big specific current, and the cathodic production of H2O2 to 
avoid more oxidation of chlorine to chlorates and perchlorates remain between 
precautions viewed to bypass such issues [36]. 

Chen et al. [37] followed the conversion of roxarsone (ROX) throughout UV 
disinfection employing Fe(III). Fe(OH)2+, as the main Fe(III) species at pH = 3, 
forms ●OH under UV irradiation conducting to the oxidation of ROX. Dissolved 
oxygen [38] has an extremely significant contribution in the constant transfor-
mation of produced Fe2+ to Fe3+, which guarantees a Fe(III)-Fe(II) cycle in the 
device. The existence of Cl−/ 3HCO− / 3NO−  has a small impact on the ROX con-
version; however, 3

4PO −  attains an evident inhibitory influence. The conversion 
of ROX conducts to the generation of inorganic arsenic comprising a much higher 
quantity of As(V) than As(III). LC-MS analysis depicts that phenol, o-nitrophenol, 
and arsenic acid were the major conversion products. Both the radical scavenger 
test and electron spin resonance data establish that the ●OH is in charge of ROX 
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conversion. The poisonous transformation products are observed to possess inhe-
rent ecological dangers for nature, organisms, and humans. 

2.2. Dares Allowing Electrocoagulation (EC) to Rival  
with Coagulation 

Electrocoagulation (EC) remains another possibility of chemical coagulation [39]. 
In EC, the coagulant is furnished via solubilizing sacrificial electrodes [40]. The 
ease of running and the secondary phenomena implying the formation of bub-
bles are the main benefits. In the first situation, the injection of coagulant may 
be set easily by adjusting the current intensity applied, and the manipulation of 
chemicals is averted. In the second circumstance, a suitable mechanical cell scheme 
may assist to use oxygen and hydrogen microbubbles to enhance turbulence and 
improve the flocculation of particles (in so-named electroflocculation). Every so 
often, separation may be elevated through flotation, once microbubbles have fixed 
to the surface of the flocs, reducing their global density (in so-named electroflo-
tation [14] [41]). In chemical coagulation, the chemicals are usually salts of iron 
[42] or aluminum [30]; the principal-agent in EC remains hydroxyl ions with 
Fe2(3)+/Al3+ [43] [44] [45], and the counterion does not elevate the salinity of the 
treated water. In traditional coagulation, salts injected work as Lewis acids and ne-
cessitate neutralization [46] through alkali additions, to reach an appropriate pH. 
This elevates both the salt charge of the treated waste and the volume of sludge, 
conducting to an effluent with so more important conductivity [2]. Reciprocally, 
EC by itself adjusts the pH, so there is no need of introducing pH-neutralizing 
chemicals [47] [48] [49] [51]. 

Even if conceiving an EC at the lab-scale remains so easy, its scale-up stays 
difficult [40] [52] [53] [54]. On the other hand, it is not forever doable to employ 
tank cells with sheets of iron and aluminum; further, there is a requirement to 
utilize cheap materials as sacrificial electrodes [2] [55]. Employing low-quality iron 
or aluminum could let bipolar electrode arrangements to be utilized [56] [57] 
[58]. Integrating EC with free radical-assisted techniques stays an encouraging 
procedure to promote its application at full scale [59] [60] [61] [62] [63]. 

2.3. Dares in Dealing with Industrial Wastes 

During the last decade, one of the most thrilling research fields has been the ex-
pansion of techniques dealing with industrial wastes in situations where using 
biological processes and else inexpensive methods are inactive [2] [64] [65] [66] 
[67]. In this context, numerous methods have been suggested, most of them be-
ing categorized as advanced oxidation processes (AOPs) [32] [33] [34]. The fun-
damental oxidant implicated is the ●OH. This radical possesses two magnificent 
benefits as contrasted with diverse conventional oxidants, as in the instance of 
chlorine: the ●OH diminishes the production of dangerous by-products [68] and 
could be quicker and more efficacious, due to the severe oxidation circumstances. 
For all the excellent expansions in this domain, illustrated in a huge amount of 
publications, numerous dares stay [69]. 
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With respect to the link among such AOPs and electrochemical engineering, 
many characteristics should be mentioned: 1) the affirmation in 2003 of the strong 
contribution of hydroxyl radicals in the electrochemical oxidation with diamond 
electrodes [70]; and 2) the application of the integration of Fenton and electro-
chemical techniques [71] [72] conducted to the admission of a fresh class of 
AOP methods, i.e., electrochemical AOPs [2] [73] [74] [75]. 

Concerning the existing situation of this technique, implementing electrochem-
ical AOPs for eliminating numerous kinds of organic contaminants has been large-
ly investigated [2]. Numerous researches have been dedicated to clarifying the 
contribution of electrochemical cell schemes and sorts of electrode on the elec-
trochemical phenomena. It has been emphasized that a fundamental need in the 
inherent pertinence of electrochemical engineering resides in the judicious usage 
of all the pieces of the electrochemical setup [76] [77] [78]. This involves not 
only the usage of an appropriate anode but also the synergistic usage of the ca-
thode reaction and the advancement of mediated oxidation methods in the bulk 
throughout the remediation. Moreover, enhancing the mass transfer rate within 
the device is also crucial. Consequently, the efficacious mechanical conception of 
the setup and a judicious selection of the running parameters are fundamental to 
attain excellent efficiency. For all such attempts, the technique stays at an aver-
age TRL (Figure 2) and huge expansions are required to attain bigger readiness 
degrees which admit the appropriate mechanical scheme of the electrochemical 
device to reach excellent models for flow and current distribution [79], scale-up 
either via elevating electrode size of through stacking [80], the control of hydro-
gen formed [81] [82] and direct current electrical power necessities [83]. 

2.4. Dares in Sanitary Effluents: Perspective for  
Electrochemical Technology 

Hospitals generate sanitary effluents with an elevated charge of a huge diversity 
of chemical products (like pharmaceuticals, detergents, disinfectants, heavy met-
als, radionuclides) and highly pathogenic microorganisms [2]. Usually, they are 
immediately ejected in public sewage for remediation at traditional urban waste-
water treatment plants (WWTPs). The inadequacy of biological processes at the 
WWTPs to deal with sanitary effluents conducts to the dispersal of hazardous 
chemicals and pathogens in nature, destructively influencing both aquatic or-
ganisms and human health [84]. Consequently, many investigations focused on 
technical solutions to diminish the effect of sanitary effluents in nature [85]. Two 
major programs have been proposed: 1) supporting efficient treatments at WWTPs 
via implementing supplementary remediation; and 2) pretreatment prior to in-
troducing them into WWTPs [2]. The last choice is rising as the fundamental subs-
titute since it deals with the issue in more concentrated effluents and the volume 
of wastewater handled is further much lower than in the first situation. Included 
in the accessible techniques, a solo electrochemical approach like electrochemical 
oxidation or electro-Fenton and the integration of free radical-assisted electro-
chemical technologies have shown total disinfection and partial oxidation of 
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chemicals towards the reduction of toxicity and augmentation of biodegradabil-
ity of sanitary effluents [2]. 

Olvera-Vargas et al. [86] proposed a sequential electrochemical process for 
integral treatment of anaerobic sludge, merging for the first time electrochemical 
peroxidation (ECP) and electro-Fenton (EF). In the first stage, ECP (consisting of 
H2O2-assisted EC with Fe electrodes [87]) was used as a conditioning and stabi-
lizing technique, whose synergistic EC/Fenton oxidation impacts greatly dimi-
nished the COD, TOC and total suspended solids (TSS) by 89.3%, 75.4% and 
85.6%, respectively, under regulated parameters (initial pH of 5, [H2O2]/[Fe2+] 
dose ratio of 5, 15.38 mA/cm2 and 2 h treatment). In addition, total coliforms were 
completely killed during the first hour of treatment. In the second stage, EF was 
successfully utilized to mineralize the remaining organic fraction in the liquid ef-
fluent after dewatering, attaining 91.6% and 87.2% of COD and TOC removal, 
respectively, after 4 h of treatment under regulated circumstances (pH 3 and 25 
mA/cm2), while almost total COD and TOC removal was attained in 8 h (Figure 3). 
The Fe sludge produced at the end of the ECP treatment was readily dewatered 
by filtration and 20.9 g of nutrient-rich dry sludge were formed. The overall cost 
of the ECP-EF treatment was S$ 0.05/L sludge. The merged impacts of coagula-
tion [88]-[96] and Fenton oxidation throughout ECP established that the treat-
ment performance is strongly dependent on the rheological properties of the 
sludge sample (Figure 4).  

3. Electrochemical Engineering for Disinfecting Water 
3.1. Demobilizing Pathogens Using Sulfate Radical 

During the last decade, demobilizing pathogens employing sulfate radical anion 
( 4SO•− ) has obtained more and more interest because of increasing requirements 

 

 
Figure 3. Elimination performance of preliminary tests. Experimental parameters: V = 400 
mL, pH = 5, Na2SO4 = 0.1 M, j = 15.38 mA/cm2, total [H2O2] = 0.24 M (for the control and 
ECP trials) and 2 h-treatment. The photographs show the sample evolution over time [86]. 
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Figure 4. Decomposition pathways occurring throughout ECP of anaerobic sludge. Inset panel: formation 
of coagulants and oxidants during ECP using mild steel electrodes [86]. 

 
to manage toxic disinfection by-products (DBPs) and improve water treatment 
setups especially for efficacious microbial handling [32] [97]-[102]. Xiao et al. 
[103] concentrated on the fundamental rules and actual research conditions of 

4SO•− -founded demobilization technique, and juxtaposed it with ●OH-founded 
demobilization of microbes. They discussed the key pathways of radical reac-
tions with biomolecules and the demobilization kinetics and routes via 4SO•− . 
They established that 4SO•−  oxidatively destroys the cell membrane, proteins, and 
genetic materials (i.e., DNA and RNA), conducting to the demobilization of the 
microorganisms (Figure 5). They reviewed the present issues, dares, and likely 
solutions in engineering implementations. 

3.2. Demobilizing Pathogens Using Solar Photocatalytic Processes 

Malato et al. [104] discussed the usage of sunlight to generate ●OH radicals in TiO2 
photocatalysis and photo-Fenton water treatment. They defined the reaction se-
tups required for solar photocatalysis and presented a global view of utilized 
compound parabolic collector photoreactors. They explained how solar photo-
catalysis might greatly participate in dealing with water containing persistent 
toxic compounds. They presented the usage of solar photocatalysis in demobi-
lizing microbes existing in the water. In the same direction, Alvarez-Guerra et al. 
[105] sized the Photovoltaic Solar Electro-Oxidation process that merges the ef-
fectiveness of the electrochemical oxidation founded on boron-doped anodes 
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Figure 5. 4SO•−  oxidative destruction of the cell membrane, proteins, 
and genetic materials [103]. 

 
to mineralize organic matter, with the autonomy and environmentally friendly fea-
tures of photovoltaic solar energy [106]. 

3.3. Electrochemical Engineering for Water Reuse 

For water reuse [107] [108] [109] [110] [111], Lefebvre [112] presented the NE-
Water successful case of water reuse in Singapore and demonstrated that elec-
trochemical approaches will constitute the centerpiece of such infallible projects. 
Other researchers attained the same conclusion [113] [114] [115] thanks to the 
established efficiency of the techniques founded on the electric current applica-
tion. 

4. Conclusion 

For treating wastewater, electrochemical engineering has been rediscovered during 
the last four decades through the world for its inherent advantages comparative-
ly with traditional technologies especially the chemical and biological techniques. 
However, the expansion of this technology founded on electric current applying 
has been retarded by several technico-economic factors especially the detection 
of DBPs formation. This work focuses on the challenges and future tendencies 
for this highly-efficient technology to reach the full-scale implementations par-
ticularly in disinfecting water. Lately, new versions of electrochemical techniques 
have been suggested such as employing sulfate radical anion ( 4SO•− ) and sunlight 
to generate ●OH radicals in TiO2 photocatalysis and photo-Fenton water treat-
ment. These improvements ameliorated the electrochemical engineering. How-
ever, more efforts remain to be accomplished for water reuse vision. Future re-
searches would focus on integrating membranes processes [116] [117] [118] [119] 
[120] such as nanofiltration and reverse osmosis for a safe removal of DBPs. 
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