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Abstract

In this paper, efforts have been made to investigate, and compute general for-
mulae of the pyroelectric coefficient and figure-of-merit of pyroelectric-polymer
composite for uncooled infrared detector and energy harvesting, using volume
fraction, depolarization coefficient of particles and dielectric constants of the
constituents.
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1. Introduction

Uncooled infrared (IR) detectors have rapidly advanced scientifically and tech-
nologically in recent years. In particular, IR sensors operating at room tempera-
ture are useful to many civilian and military applications, such as night vision,
detection of gas leakages, surveillance, fire rescue operations, ear thermometer,
manufacturing quality control, early fire detection and guidance, medical diag-
nostics, missile tracking, and an interception. There are two types of IR detec-
tors: photon and thermal. In general, photon types are preferred primarily due
to their superior sensitivity and resolution. However, the photon sensors must

be cryogenically cooled down during operation to obtain high sensitivity which
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is a bulky and expensive proposition. Uncooled thermal sensors based on pyroe-
lectric materials have attracted much attention because they operate at room
temperature. These devices offer the advantage of low-cost fabrication and broad-
band of 8 - 14 pm and beyond, In particular, in consumer applications such as
human detection, burglar alarms, and door openers. The candidate materials for
uncooled pyroelectric infrared detectors (PIR) are triglycine sulfate (TGS), li-
thium niobate (LN), lithium tantalate (LT), lead titanate (PT), lead zirconate ti-
tanate (PZT), lead strontium Titanate (PST), polyvinylidene fluoride (PVDF),
polyvinylidene fluoride-trifluoroethylene copolymer (P(VDF-TrFE)), and others
[1] [2] [3] [4]. PVDF is flexible and mechanically strong, has several attractive
pyroelectric, ferroelectric, and piezoelectric properties with the reasonably fast,
dynamic response for use in touch/tactile sensors, infrared detectors and vidi-
con/imaging devices [3] [4].

Pyroelectric: Polymer’s composites can be considered an established substitute
for conventional electro-ceramics and to pyroelectric polymers. The composites
have a unique blend of polymeric properties such as mechanical flexibility, high
strength, formability, and low cost with high electro-active properties of ceramic
materials. It has attracted considerable interest because of their potential use in
pyroelectric infrared detecting devices and piezoelectric transducers.

In the light of many technologically important applications in this field; it is
worthwhile to investigate, and derive general formulae of the pyroelectric coeffi-
cient and figure-of-merit for uncooled infrared detector and energy harvesting,
using volume fraction, depolarization coefficient of particles and dielectric con-

stants of the constituents.

2. Theoretical
2.1. Mathematical Modeling

In the current study, a composite structure of continuous matrix (referred to as
substance: 1) with the dielectric constant of ¢ and particles (referred to as sub-
stance; 2) with a dielectric constant ¢, has been considered. The pyroelectric par-
ticles are considered to be in ellipsoid shapes and distributed uniformly in the ma-
trix. Also assumed that the volume of each of the ellipsoidal particle being same.

A few terms are defined here prior to the main mathematical equations used
for deriving the composite dielectric constant, pyroelectric coefficient, and other
characteristic parameters.

P = Polarization of the composite;

P, = Polarization of the ellipsoid particles;

n,= Depolarization coefficient of the ellipsoid particles in the x-direction;

g = volume fraction which is defined as = N* v/ V where N is number of el-
lipsoid particles in a certain volume of the composite ( V) and volume of each el-
lipsoid particle is v;

a = Polarization ratio of the pyroelectric material.

The pyroelectric coefficient of the composite and ellipsoid is defined as:
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p. =dP/dT
p, =dP, /dT

The effective dielectric constant of the composite has been developed by Wang

et al. [5], based on Clausius-Mossotti relation as:

Q(Ez_el) (1)

€ =¢|1+
E 61+(€2_61)(1_q)nx

The pyroelectric coefficient of the composite can be expressed as a function of
the dielectric constant of the composite, pyroelectric coefficient of the ellipsoid

particles (p,) as given below:
age,
. = q p2 (2)
e +(e—e)n,
The above two equations can be algebraically rewritten as a ratio of: 1) dielec-
tric constant of composite with that of the particles and 2) pyroelectric coeffi-

cient to the dielectric constant of the composite as a function of a few dimen-

sionless parameters as given below.

&_1 a(s-1)
6 B 1+1+(/3—1)(1—q)nx 3)
Pe _ "‘2 Py (4)
“© (1-n,)C+n, @
€

The factor Bis defined as ¢, /¢, .

2.2. Figure-of-Merit

The term figure-of-merit is used widely to characterize the performance of a de-
vice and it can be expressed in many different ways for a sensor. In the section
below, a few different figures of merit are defined as below, which will be used

for making the current analysis.

P

FOM=— - % (5)
P (o) %,
€ €

where the ratio of ¢, /e, is given by Equation (3).

As can be observed from the above equation (Equation (5)), the figure of me-
rit is a function only of the following four dimensionless parameters:

1)a

2) g

3)n,

4) B(=e/a)

The other of the figure-of-merit of device application for the current study are

defined as below:
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FOM,, =P Figure-of-Merit for high voltage responsivity (6a)

C

P

Ve

p2

FOM_, = — Figure-of-Merit for thermal energy harvesting  (6c)
€

C

FOM,,, = Figure-of-Merit for vidicons (6b)

3. Results

Figure 1 shows the dependence of relative figure-of-merit (FOM) on the volume
fraction ¢ at different depolarization coefficient 1, when ¢, /¢, =50. It can be
inferred that at an appropriate volume fraction, the FOM of the composite can
be much higher than that of pure ferroelectric ceramic particles, even when g is
small, such as g = 0.05, 0.15, 0.3. However, at some volume fraction ¢, the FOM
can be much different for composites of different 1, as illustrated in Figure 2.
Different processing procedures may result in the different values of FOM.
Figure 3 shows the dependence of FOM on relative dielectric constants ¢, /¢
at different volume fractions when n, = 1/3. It can be seen that FOM increases
rapidly when ¢, /¢, is small, the increase becomes slower when ¢, /¢, exceeds a
specific value. Thus, it can be inferred from the above-cited modeling results
that the FOM of the composite not only depends on the volume fraction g, but it
also depends on n, and the relative dielectric constants ¢, /¢, . Figure 4 shows
the optimized values of volume fraction ¢ and the depolarization coefficient n, to
obtain highest value of FOM as a function of relative dielectric constant ¢, /e, .
Figure 5 shows the figure-of-merit for high voltage responsivity (FOMy) as a
function of volume fraction of ferroelectric particles g at different values of n,.
Figure 6 presents the variation of the figure-of-merit for vidicons (FOMy,) ap-
plications as the function of g at various values of n,. Figure 7 illustrates the fig-

ure-of-merit for thermal energy conversion (FOMgy) with g as various values of n,.
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Figure 1. A figure-of-merit (p/E/p,/ E,) as a function of volume fraction (g) at different 2,
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Figure 2. A plot of figure-of-merit as a function of n, at a different volume fraction.
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Figure 3. A plot of figure-of-merit as a function of relative dielectric constant (¢, /¢, ).
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Figure 4. Optimized values of volume fraction and n, (along the secondary axis) to reach
the maximum figure-of-merit as a function of ¢, /e, .
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Figure 5. The figure-of-merit (FOM,) as a function of volume fraction at different n,.
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Figure 6. Figure-of-merit (FOM,p) as a function of volume fraction (g) at different n,.
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Figure 7. The figure-of-merit (FOMyy) as a function of volume fraction (g) at different n,.
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It is evident that for different applications of the composite pyroelectric de-
tector, one has to select appropriate n, and ¢ so as to obtain maximum perfor-

mance.

4. Conclusion

The important figure-of-merit of pyroelectric-polymer composite is computed
in terms of the two components (22, and g). They not only depend on the make-up
of the composite, but also on the depolarization coefficient of the ferroelectric
particles and relative dielectric constant ¢, /¢, . The figure-of-merit of the com-
posites can be higher than individual constituents. It is worth mentioning that
different three parameters (2, ¢, €, /¢, ) have to be optimized in order to obtain

the maximum performance of the application device function.
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