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Abstract 
We consider a functional partially linear additive model that predicts a func-
tional response by a scalar predictor and functional predictors. The B-spline 
and eigenbasis least squares estimator for both the parametric and the non-
parametric components proposed. In the final of this paper, as a result, we got 
the variance decomposition of the model and establish the asymptotic con-
vergence rate for estimator. 
 

Keywords 
Functional Data Analysis, Functional Principal Component Analysis, Partial 
Linear Regression Models, Penalized B-Splines, Variance Model 

 

1. Introduction 

Function data are infinite dimensional vectors in functional space, the study of 
functional data helps people to further understand data changes in finance, medi-
cine, etc. The study of fucntional response can date back to the work Ramsay 
and Silverman (2005) [1] where the model the functional concurrent model con-
siders current response relate to the current values of the covariates. Wong et 
al. (2018) [2] investigated a class of partially linear functional additive models 
(PLFAM) that predicts a scalar response by both parametric effects of a multiva-
riate predictor and nonparametric effects of a multivariate functional predictor. 
Further an additive function-on-function regression is established using prin-
cipal component basis functions and b-spline basis functions by Janet S. Kim et 
al. (2016) [3]. Luo, R., Qi, X. (2017) [4] consider functional linear regression 
models with a functional response and multiple functional predictors, with the 
goal of finding the best finite-dimensional approximation to the signal part of 
the response function. This paper extends function on function regression, con-
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sidering functional partially linear additive models that predict a functional re-
sponse by a scalar predictor and functional predictors. Specifically we consider 
the model 

( ) ( ) ( ) ( ) ( ) ( )
1

, d
x

p

j j
j

Y t t t s t x s s t
τ

µ γ β ε
=

= + +∑∫
            

(1) 

where ( )Y t  is the response function defined in an interval yτ , For conveni-
ence, we assume that the response has zero-mean, the predictive curves.  
( ) ( ) ( )1 2, , , px s x s x s�  are defined in xτ . where yτ  and xτ  are compact in-

tervals. ( )tµ  is scalar predictor defined in an interval yτ . ( )tγ  is scalar coef-
ficient, ( )tε  is the noise function with mean zero and unknown autocovariance 
function ( ),A t t′  and is independent of the predictor and the response. In the 
previous papers, these focused on function-on-function, scalar-on-function, and 
scalar-mixed data. There is no paper devoted to function-on-mixed data. That is 
to say, the functional dependent variable analyzes the regression model of the 
mixed data. This paper considers the actual situation is closer to the actual de-
mand. Considering that the real world data cannot be all the functional data, 
there will definitely be a part of the scalar in the model. From this perspective, 
expand the new model. This paper uses a different estimation method from the 
previous. The general method adopted by these articles is to use non-parametric 
methods such as spline function to approximate the model generation estima-
tion parameters, and at the same time minimize the objective function. In the 
past, the model was generally complicated and inconvenient to calculate. They 
consider fitting with B-splines in three directions at the same time, and there will 
be over-fitting when doing so. In this paper, the problem is optimized by using 
the eigenbasis and orthogonal B-spline, that is, using the special feature base of 
( )Y t  and an orthogonal B-spline to fit the model. While ensuring the fitting ef-

fect, the complexity of the model is reduced, and the model is not over-fitting. 
We use the classical formula of probability to express the error term of the mod-
el from the perspective of variance, and the method of resampling is used to ap-
proximate the error of the model. At the same time, assume from the article hy-
pothesis, we establish the asymptotic convergence rate for estimator. 

2. Model  

In this section, we consider the estimation of coefficients in a partial linear re-
gression model of a function. In this paper, the model is estimated by using the 
eigenbasis spline and the B-spline function. Note kφ  is the corresponding ei-
genfunctions of ( )y t , and 

( ) ( )1

0

1,
d

0,n m

n m
t t t

n m
φ φ

=
=  ≠

∫
                   

(2) 

Let 

( ) ( ) ( )h t t tµ γ=                         (3) 

we project ( )h t  onto the eigenbasis of ( )y t , 
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( ) ( )dk ky
H h t t t

τ
φ= ∫                       

(4) 

then we can express ( )h t  as 

( ) ( )
1

k k
k

h t H tφ
∞

=

= ∑
                       

(5) 

For the function coefficient term part of (1), we estimate it by means of B- 
spline and feature base. For convenience we write model (1) as 

( ) ( ) ( ) ( ) ( ) ( )T , d
x

y t t t s s t s t
τ

µ γ ε= + +∫ X β
            

(6) 

where ( ) ( ) ( )( )T
1 2, ,s x s x s=X �  is the p-dimensional vector of predictive func-

tions, ( ) ( ) ( )1, , , , ,ps t s t s tβ β= �β  is the p-dimensional vector of coefficient 
functions. Let 

( ) ( ) ( )T, ,s t s s t=F X β                      (7) 

Transform ( ),s tF  in the same way as ( )h t  

( ) ( ) ( ), dk ky
s s t t t

τ
φ= ∫G F

                    
(8) 

So we can put ( ),s tF  similar expression of Karhunen-Loeve expansion 

( ) ( ) ( )
0

, dk k
k

s t s t tφ
∞

=

= ∑F G
                    

(9) 

In this paper, on spectral decomposition method projecting the corresponding 
function to the orthogonal eigenbasis of y, we estimate the parameter of the 
model can be performed without punished the complexity of the t direction. 
Generally, we preset the maximum variance number similar to the method in 
the functional principal component analysis, usually 85%. Next we will use the 
Orthogonal b-spline method (2010) [5] [6] to represent the parameter items in 
the s direction. 

( ) ( ) .
1

M

k l l k
l

s s θ
=

= ∑G B
                     

(10) 

( ) ( ) ( ).
0 1

,
M

l l k t
k l

s t s tθ φ
∞

= =

= ∑∑F B
                  

(11) 

where ( )l sB  are or-thogonalized B-spline bases of dimensions M, .l kθ  is un-
known parameters, we get 

( ) ( ) ( ) ( ) ( )
1 0 1

d
M

k k l kx
k k l

y t H t s t s t
τ

φ φ ε
∞ ∞

= = =

= + +∑ ∑∑∫ B
          

(12) 

In the t direction perform truncation K for the preset maximum variance, we 
get 

( ) ( ) ( ) ( ),
1 0 1

d
K K M

k k l l k kx
k k l

y t H t s t s
τ

φ θ φ
= = =

≈ +∑ ∑∑∫ B
           

(13) 

We denote ( )1 2, , , p=Z Z Z Z� , lZ  as ( )dlx
s s

τ∫ B , let  
( )1 2, , ,k k k pkθ θ θ= �Φ . 

Then we can get the simplified expression of ( )y t  
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( ) ( ) ( )
1 1

K k

k k k k
k k

y t H t tφ φ
= =

≈ +∑ ∑ ZΦ
                

(14) 

3. Parameter Estimation 

We assume that with probability 1, the trajectory of nx  is contained in a Hilbert 
space nχ , with inner product. We will focus on the case that jχ ’s are 2L  
functional spaces and the inner products are ( ) ( ), df g f t g t t= ∫  for any 

, nf g χ∈ . We use quadratic penalties for the direction s and control the rough-
ness in the direction t by the preset number of orthogonal basis functions. so the 
loss function is as follow 

( ) ( ) ( ) ( )T

1 1
,

K K

k k k k k k
k k

L H y t h t tφ φ
= =

 = − − 
 

∑ ∑ZΦ Φ
          

(15) 

We use the least squares penalty to punish the curvature of the functional pa-
rameter, considering the penalty term 

( ) ( ) ( ) ( )
2

22 22 2
1

2 2 2
1

,
d d d d d

K

k k K
kk

k

s ts t s
s t s t s

s s s

φ
=

=

 ∂    ∂ ∂
 = =      ∂ ∂ ∂     
 

∑
∑∫∫ ∫∫ ∫

GF G

 

(16) 

( ) ( )
2 22 2

2 T
,2 2

1 1
d d P

K K
k l

l k k k
k k

s s
s s

s s
λ θ λ

= =

   ∂ ∂
= =      ∂ ∂   

∑ ∑∫ ∫
G B

Φ Φ
       

(17) 

where 
( )2

2
1

P d
M

l

l

s
s

s=

∂
=

∂∑∫
B

. Then we can get the penalized criterion 

( ) ( ) ( )
2

T

1 1
P

K k

k k k k k k
k k

y t H t tφ φ λ
= =

− + +∑ ∑Z Φ Φ Φ
           

(18) 

Similarly ( ),s tF  and ( )h t  to process ( )y t . We have Karhunen-Loeve ex-
pansion on y(t) 

( ) ( )
1

K

k k t
k

y t t eξ φ
=

= +∑
                     

(19) 

where te  is zero-mean error, and the variables kξ  are the FPCA (Functional 
principal component) scores of Y. And note that ( )2 d 1k t tφ =∫ , so the criterion 
can be simplify written as 

2T

1
P

K

k k k k k
k

Hξ λ
=

− + +∑ Z Φ Φ Φ
                 

(20) 

So the estimation process for the parameters kH , kΦ  is as follows. 
1) We get the function curve ( )ŷ t  for smooth sample points, and we de- 

mean ( )Ŷ t  for get a curve ( )ˆ cy t  with a mean of 0. The point K is determined 
by the pre-specified percentage of variance. 

2) We use FPCA(Functional Principal Component) to estimate eigenbasis k̂φ , 
and we project ( )ŷ t  onto the corresponding eigenbasis k̂φ  to obtain an esti-
mation of the principal component score ( ) ( )ˆ ˆˆ dc

k y
y t t t

τ
ξ φ= ∫ . 
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3) We get a two-step estimation for kH , kΦ  
a) Obtain estimation of kΦ , 1,2,3, ,k K= � , of the coefficients by minimiz-

ing the penalized criterion(19) with respect to kΦ  and kH , The estimated 
value we get for kΦ  is 

( )
T

ˆ
ˆ

P
k k

k

Hξ

λ

−
=

+

Z

ZZ
Φ

                      
(21) 

b) Obtain estimation of kH  by minimizing 

T

1

ˆ ˆarg min
K

k k k
k

Hξ
=

− −∑ Z Φ
                  

(22) 

So the estimation of kΦ  is ˆ
kΦ  and ˆ

kH  is ˆ
kH . We can get 

( ) ( )( )T

1

ˆ ˆ ˆˆ
K

k k k
k

y t t Hφ
=

= +∑ Z Φ
                  

(23) 

4. Error Variance Decomposition 

In this section, we get error variance decomposition. Let ( ),A t t′  be the va-
riance function of ( )tε .we estimate ( ),A t t′ . 

1) obtain residuals by fit (14), ( ) ( )ˆj j je y t y t= − . 
2) Use FPCA for the residual function, to approximate the infinite covariance 

function using the estimated finite covariance function. 
Let newx , newµ  be new observation independent of X and ( )tε , and fit 

function-on-partially linear functional additive models,then we measure the un-
certainty in the prediction by predicting error ( ) ( )ˆnew newy t y t− .Base on Ruppert 
et al. (2009) [7] 

( ) ( ){ } ( ){ } ( ){ }ˆ ˆvar var varnew new new newy t y t y t tε− = +
         

(24) 

We estimate the expression of ( ){ }var new tε  by estimating ( ){ }var tε  Then 
we estimate ( ){ }ˆvar newy t  using the classical variance formula 

( ){ } ( ){ } ( ){ }0 0 0ˆ ˆ ˆvar var | var |t E t E tπ πε ε π ε π   = +            
(25) 

In this paper, we assume that π  is a known parameter set containing esti-
mated arbitrary parameter values and corresponding parameter variance and 
covariance functions. So we will expand ( ){ }0ˆvar |tε π  of the formula (24) as 
follows 

( ){ } ( )( )T
,

1

ˆ ˆ ˆˆ |var var
K

new k new k new k
k

y t t Hπ φ
=

= +∑ Z Φ
          

(26) 

If we write T Pλ+
Z

Z Z
 as mλ , TmλZ  is recorded as Jλ , then  

( ) ( )T

ˆ
ˆˆ

P
k k

k k k

H
m Hλ

ξ
ξ

λ

−
Φ = = −

+

Z

Z Z
 and  

( ) ( )T T ˆ ˆˆ ˆ ˆ ˆˆ 1k new k k new k k k kH H m H J H Jλ λ λξ ξ+ Φ = + − = − +Z Z . So we expand the ex-

pression (25) as follow 
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( ){ } ( ) ( ) ( )

( ) ( ) ( )

T

1

T T

ˆ ˆˆ ˆˆvar | var

ˆ ˆˆ ˆˆ ˆcov ,

K

new k k new k k
k

k k new k k new k k
k k

y t t H t

t H H t

π φ φ

φ φ
=

′ ′
′≠

= +

+ + +

∑

∑

Z

Z Z

Φ

Φ Φ
   

(27) 

It can be seen that all the variances and covariance functions in the expression 
are represented by the variance and covariance functions of the existing esti-
mates. Then we focus on the second item of expression (24), the second term is 

( ){ }0ˆvar |E tπ ε π   . This paper hopes to obtain an approximation form of the 
finite term of the variance function under finite samples by resampling the boot-
strap method. We perform the bootstrap algorithm through the following steps; 

1) For 1,2,3, ,q Q= � . 
2) Resample the samples to get Q groups different sample. 
3) Smooth the resample points and get the corresponding curve  
( ) ( ) ( ), ,q q q

jX s t y tµ . 
4) Obtain the de-mean ( ) ( )ˆ

qcy t  and the corresponding feature basis func-
tion ˆq

kφ , and obtain the corresponding principal component score ˆq
kξ . 

5) Fit the function-on-partially linear functional additive models to obtain the 
corresponding parameter estimation. 

6) Get prediction function ( )ˆ q
newy t  to any new observation curve  

( ) ( ),new newx t y t  and calculate ( )ˆ ,qA t t′ . 
7) Get ( ){ }ˆvar |q

newy t π  by expression (24). 
Thus the approximate value of the finite term of ( ),A t t′  is found  

( )
( )

1

ˆ ,
ˆ ,

Q
q

q
A t t

A t t
Q

=

′
′ =

∑
. and the variance estimate of the error 

� ( ) ( ){ }
� ( ){ } ( ) ( ){ } ( )

2

1 1 1

ˆvar

ˆvar | ,

new new

Q Q Q
q q b q
new new new

q q q

y t y t

y t y t y t A t t

Q Q Q

π
= = =

−

′−
= + +
∑ ∑ ∑

     

(28) 

5. Basic Assumptions and Convergence Properties 

In this section,we study the asymptotic properties of ( )F t , ( )h t , where 

( ) ( )
1

ˆ ˆˆ
K

k
k

h t H tφ
=

= ∑
                       

(29) 

( ) ( ) ( ) ( )

( ) ( )

( )

1

,
1 1

1

, d d

d

K

x x
k

K M

l l kx
k l

k

k k
k

t s t s s t s

s t s

t

τ τ

τ

φ

θ φ

φ

=

= =

=

= =

=

=

∑∫ ∫

∑∑∫

∑

F F G

B

ZΦ
             

(30) 

5.1. Basic Assumption 

1) For the square integrable random function ( )X s�  satisfies  
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( ) , 2
q

E X s q< ∞ < < ∞� ; 
2) For each k, there is 2

ik kE U cλ  ≤ 
� , where c is a constant and c can take dif-

ferent values in different expressions; 
3) For the eigenvalue kλ , satisfied 1 , 1, 1s s

kc k ck k sλ− − −≤ ≤ ≥ > ; 

4) For the coefficient kH , assume there is a constant t, and 1
3
st > + , which 

make kH  satisfied s
kH ck −< ; 

5) For the parameter K, assume 3

1
s tK

n +=  

6) The number of knots r
nN n= , with 1 1

2 1 2
r

q
≤ ≤

+
. 

7) The distribution of ( )F t  and ( )h t  is absolutely continuous and its den-
sity is bounded on yτ ; 

8) The joint density function of ( )x s  is bounded on xτ ; 
9) Covariance function ( ) ( )( ),cov y t y t′  of ( )y t  is bounded on interval 
yτ  
Conditions (1)-(5) are common in functional PCA literature and conditions 

(6)-(9) are common in nonparametric regression literature. 

5.2. Related Lemma 

Lemma 1. If ( )F t�  is spline expansion of ( )F t , it is known by Chen [8] that 

there is 12,n h
N

> = , we can get 

( ) ( ) ( ) ( )2 2 nF t F t O h O h− = <�
                

(31) 

5.3. Convergence Properties 

Consider the model (6) 

( ) ( ) ( ) ( ) ( ) ( )T , d
x

y t t t s s t s t
τ

µ γ ε= + +∫ X β
            

(32) 

Use the principal component of ( )y t  for the model (6) to represent the fol-
lowing expression 

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )

T

1 1 1

T

1

0
1

, 1, ( )

k k k k k k
k k k

k k k
k

k k
k

t H t t t

H t t

D t t

ξ φ φ φ ε

φ ε

φ ε

∞ ∞ ∞

= = =

∞

=

∞

=

= + +

= +

= +

∑ ∑ ∑

∑

∑

Z

Z

Z

Φ

Φ

           

(33) 

where ( ),k k kD H= Φ  and ( )0 1,=Z Z . We can get an estimation by least squares 

estimation of ( ) 0
T

0 0

ˆ
ˆ ˆ ˆ, k

k k kD H
ξ

= Φ =
Z
Z Z

, let ( ),k k kD H= Φ� � , where  

( ) ( )T

1

ˆ
K

k
k

t tφ
=

= Φ∑F Z� �  is spline expansion of ( )tF . 

https://doi.org/10.4236/jamp.2020.81001


J. Y. Huang, S. Chen 
 

 

DOI: 10.4236/jamp.2020.81001 8 Journal of Applied Mathematics and Physics 
 

Theorem 2. Under the conditions of (1)-(5), we can get 

( ) ( )
3 1

2
3ˆ ,

t
s th t h t O n n
− − + 

 
 − = → ∞
 
                 

(34) 

Proof. Use Cauchy-Buniakowsky-Schwarz Inequality we can get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

1 1

2 2

1 1 1

2 2 2

1 1 1

22 2 2

1 1 1

ˆ ˆˆ

ˆˆ2 2

ˆ ˆˆ ˆ4 4 2

ˆˆ ˆ8 4 2

K

k k k k
k k

K K

k k k k k k
k k k K

K K

k k k k k k k k
k k k K

K K

k k k k k k
k k k K

h t h t H t H t

H t H t H t

H t t H H t H t

K H t t H H H

φ φ

φ φ φ

φ φ φ φ

φ φ

∞

= =

∞

= = = +

∞

= = = +

∞

= = = +

− = −

≤ − +

≤ − + − +

≤ − + − +

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
  

(35) 

Assume from the article hypothesis, we have 

( ) ( )
3 1

2
3ˆ ,

t
s th t h t O n n
− − + 

 
 − = → ∞
 
                 

(36) 

☐ 

Theorem 3. Available under the conditions of (6)-(9), and let ( )tF�  is spline 
expansion of ( )tF  we can get 

( ) ( )
2 2

2
ˆ MKt t O

n
ρ − = + 

 
F F

                 
(37) 

Proof. 

( ) ( ) ( ) ( ) ( ) ( )
2ˆ ˆ2 2t t t t t t− ≤ − + −F F F F F F� �

         
(38) 

Consider the latter item in the text, because ( )tF�  is a spline expansion of 
( )tF , by lemma we have 

( ) ( ) ( )2t t O h− =F F�
                    

(39) 

Now consider the former item 

( ) ( ) ( ) ( )
2

2 T T

1 1

2 2T T

1 1

ˆ ˆˆ ˆ

ˆ ˆ

k k

k k k k
i i

k k

k k k k
i i

t t t tφ φ
= =

= =

− = − Φ

≤ − ≤ −

∑ ∑

∑ ∑

F F Z Z

Z Z

� �

� �

Φ

Φ Φ Φ Φ
         

(40) 

Then consider 
2 2

2 0 0
T

1 1 10 0

ˆ
k k k

k k
i i i n

ε ε
= = =

−Φ ≤ ≤∑ ∑ ∑
Z Z

F
Z Z

�

             
(41) 

Since ( ) ( ) 0,l i l j i jE B s B s i jε ε  = ≠  , 

( ) 2T0
0 02 2

1 1

1 1 M n

l i i
l i

ME E E s
n nn n
ε

ε ε ε
= =

   = = ≤   ∑∑
Z

Z Z B
       

(42) 
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Get ( ) ( )
2 2ˆ MKt t O

n
ρ − = + 

 
F F  by the above formula.☐ 

6. Conclusion 

This paper is a model extension of the function-to-function regression. The sca-
lar variable is added to the dependent variable, which extends the application 
scope of the model. For real-life data, real data should include scalar data and 
function data, and the model used in this paper can be better explained. In this 
paper, the model is estimated by using the eigenbasis spline function and the 
orthogonal B-spline function. When the loss function is punished, the complex-
ity of the t direction is controlled by controlling the preset principal component 
in the t direction, which reduces the complexity. It is more practical. At the same 
time, the variance decomposition of the error under the finite sample size is 
given. The approximation is performed by the resampling bootstrap method. 
Finally, the convergence properties of the estimated parameters are studied. 
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