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Abstract 
The current study reports the evidence of enhancement in power generation 
from cellulosic biomass in microbial fuel cell (MFC) systems by supplement-
ing dried Doraji (Platycodon grandiflorum) roots powder. Mediator-less two 
chamber H-type MFCs were prepared using rumen fluid as anode inocula to 
convert finely ground pine tree (Avicel) at 2% (w/v) to electricity. Dried Do-
raji roots were ground to pass 1 mm sieve and added to the anode of MFC at 
0.1% w/v dosage for treatment. MFC power and current across an external 
resistor were measured daily for 10 d. At the end of incubation on d10, col-
lected gases were measured for total gas volume and analyzed for gas compo-
sition on gas chromatography. Supplementation of Doraji roots powder to 
MFC anode chamber increased power generation and CO2 production. Over 
the 10d experimental period, power density normalized to anode surface area 
were between 17.0 and 37.7 with average of 32.5 mW/m2 in Doraji MFCs, and 
between 16.8 and 19.8 with average of 18.2 mW/m2 in control group. CO2 
production increased and methane to CO2 ratio decreased in Doraji root 
treatment comparing to control group. These observations imply that Doraji 
root components would inhibit methanogenesis and alter microbial fermen-
tation of cellulose compounds favorable to produce bioenergy efficiently in 
MFC. 
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1. Introduction 

Fossil fuels have served as the main energy resources for industrialization and 
economic growth for the past century [1], and represented 80% of the global 
primary energy use [2], but the use of these also contributed 94% to 96% of green-
house emission in the USA [3] including CO2, methane, CO and nitrous oxide 
(N2O), which cause global warming and pollution [4]. Thus, greater efforts are 
currently being undertaken to develop technologies generating clean and sus-
tainable energy sources that would replace and/or displace fossil fuels [5]. 

Microbial fuel cell (MFC) is one of such technologies that directly convert 
biomass including organic waste to electricity [6]. MFC has shown tremendous 
electron donor versatility including simple substrates such as glucose, acetate, 
and lactate [7] [8] [9] complex substrates such as municipal and industrial 
wastewaters [10] [11] and cellulose [1] [12] [13] [14].  

Cellulosic biomass is particularly attractive renewable resources because of its 
relatively low cost, plentiful supply [15] [16], and neutral carbon balance [17] 
and furthermore cellulose is a significant component in the annual production 
of 250 million tons municipal solid wastes and 40 billion cubic meters waste wa-
ter [18]. To utilize cellulosic biomass in MFC, the anodic process requires cellu-
lose degradation, but often the microorganisms that are electrochemically active 
did not show cellulolytic activity, thus, it requires products of cellulose fermen-
tation as electron donors to generate electricity [19] [20]. Therefore, rumen fluid 
from cow [14] [21] or goat [22] had been studied for electricity generation from 
cellulose or cellulosic biomass because rumen microorganisms include both 
strict and facultative anaerobes, which effectively hydrolyze cellulose, and con-
serve energy via anaerobic respiration or fermentation [23]. However, one of 
major products from cellulose fermentation is acetic acid, and the acetate con-
centration and anaerobic condition influence the growth of methanogens which 
contribute significantly to limiting power generation in MFC. Methanogenesis 
diverts electron from the anode and methanogens act as substrate competitors to 
the exoelectrogens; acetoclastic methanogens compete for electron donors and 
hydrogenotrophic methanogens utilize the hydrogen produced in the reactor 
[24].  

Supplementation of saponin or saponin rich plant materials has shown me-
thanogenesis inhibitions [25] [26] [27] or proliferation of fiber degrading bacte-
ria [28] in cultures of rumen microorganisms. Platycodon grandiflorum root 
(Korean name, “Doraji”, Japanese name, “Kikyo”, and Chinese name, “Jiegeng”) 
has been reported to contain saponins [29] [30]. However, either Doraji root ef-
fects on methanogenesis in culture of microorganisms or saponin effects on 
anolyte fermentation characteristics has not been reported.  

We hypothesized that supplementation of Doraji root in anolyte would inhibit 
methanogenesis and (or) proliferate cellulolytic microorganisms in anode cham-
ber and subsequently ferment cellulosic biomass more efficiently and (or) en-
hance power generation in MFC. In the current study, MFCs were constructed 
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with stained rumen fluid as anolyte and cellulose as electron donor, and effects 
of Doraji root supplementation on power generation and fermentation gas pro-
duction were investigated. 

2. Materials & Methods 
2.1. Microorganisms and Culture Media 

For MFC anode compartment inoculum (anolyte), rumen fluid was collected 
from a dry dairy cow and while flushing of CO2 gas, filtered through 4 layers of 
cheesecloth to remove feed debris and transferred to an Erlenmeyer flask, then 
bubbled with CO2 gas for 10 min and closed with cotton ball and stored in an 
incubator at 39˚C until inoculated to MFCs.  

Culture medium containing 0.048% KH2PO4, 0.048% K2HPO4, 0.048% (NH4)2SO4, 
0.096% NaCl, 0.5% Trypticase peptone, 5% yeast extract, 0.05% cysteine-HCl, 
0.013% CaCl2·2H2O, 0.02% MgSO4·7H2O, 0.4% Na2CO3, 0.1% sodium fumarate, 
and 1 ppm of resazurin, was prepared anaerobically and autoclaved at 121˚C for 
30 min and stored at room temperature. Phosphate buffered saline pH7.4 (PBS) 
consisted of 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4 
and was autoclaved at 121˚C for 30 min and stored at room temperature.  

2.2. Microbial Fuel Cells 

H-type MFCs consisted two 125 mL-volume glass bottles joined at branched tube. 
Cation exchange membrane (CMI-7000S, Membranes International Inc., NJ) was 
placed and clamped between branched tube of anode and cathode compartments. 
Two gram of cellulose (Avicel PH-101, Sigma-Aldrich, MO) was weighed into 
anode chamber and 80 mL of culture medium, 20 mL strained rumen fluid were 
transferred, then suspended using a magnetic bar on agitator. Graphite plates 
(12 cm2) were used as electrodes for both anode and cathode. Electrode connected 
with copper wire fixed to butyl rubber stopper was placed in anode chamber. 100 
mL of PBS was transferred to cathode chamber and electrode connected with cop-
per wire was placed in the middle of cathode. Rubber stopper was capped on ca-
thode but left open to air through tubing. Anode and cathode were connected 
externally through a copper wire with a resistor (300 ohm). MFCs were placed in 
a water bath at 39˚C for operation.  

After 9 d of MFC pretrial operation, 100 mg of dried Doraji root (C&M Food, 
Seoul, Korea) ground to pass through 1 mm screen was added into anode chamber 
of treatment group. Two L-volume Mylar balloons were connected to each anode 
to collect biogas produced during experiment.  

2.3. Measurements and Calculation 

Using a digital multimeter, voltage across an external resistor (closed circuit vol-
tage), open circuit voltage, and current were recorded daily for 10d. The power 
density normalized to electrode surface area was calculated using following equ-
ations.  
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where, I(A) is the current, V(V) is voltage, R(ohm) is the external resistance, and 
A(m2) is the projected area of the anode.  

The volume of biogases produced in anode collected in Mylar balloons were 
measured using a 250 mL glass syringe, and gas components were analyzed us-
ing an Agilent 6890 series gas chromatograph equipped with a thermal conduc-
tivity detector and a stainless steel packed column prepared with 60/80 Carbox-
en 1000 (12390-U Supelco, Sigma-Aldrich, MO). 

2.4. Statistical Analyses 

Effects of Doraji root addition to anode chamber of MFC on electricity genera-
tion, fermentation gas production and gas composition were analyzed using the 
one way ANOVA procedure of JPM 14.1.0 (SAS Institute Inc., NC). When the 
effect was significant (P < 0.05), means between treatments were separated using 
Student’s t-test (P < 0.05). Means for operation time (d) were separated using 
Tukey HDS where the operation time effects exist (P < 0.05). 

3. Results and Discussion 
3.1. Power Generation 

MFCs were stabilized and operational prior to treatment addition. Voltage across 
resistor, current density and power density were 96.4 ± 4.87 mV, 186.8 ± 9.43 
mA/m2 and 18.0 ± 0.64 mW/m2, respectively.  

In control group, voltage across resistor (Table 1) were steady (P = 0.9766) 
with operation time and average was 96.8 ± 5.22 mV ranged from 93 to 101 mV, 
and end point potential (Table 2) also did not change (P = 0.9865) with opera-
tion time and average was 392 ± 33.6 mV ranged from 374 to 423 mV during 
10d operation.  

Voltage across resistor in MFCs received Doraji root powder increased (P < 
0.05) at d 2 and maintained through d10 (Table 1), but greater (P < 0.05) end 
point potentials than d 0 were observed only at d 2, 5, 7 and 8 (Table 2). In 
comparison to control group, MFCs received Doraji root powder had greater (P 
< 0.05) voltage across resistor (Table 1) at d 2 and thereafter through 10 d expe-
rimental period, and end point potential (Table 2) at d 5, 7, 8 and 10. 

Power density (Table 3) in control group did not change (P = 0.9766) through 
operation time which reflects the steady cellulolysis and electricity generation 
during 10d operation. Within Doraji received group, power density increased 
(P < 0.05) at d 2 from 17.0 to 35.6 mW/m2 and these higher power density than 
d0 and d1 was maintained until the end of operation. Between treatments, from 
d 2 to d 10, power density in Doraji group were greater (P < 0.05) than in control 
group.  

The enhanced power generation (P = 0.0043) must be attributed to the action  
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Table 1. Closed circuit voltage across 300 ohms resistor measured from microbial fuel 
cells established with strained rumen fluid and 2% of cellulose with or without Doraji 
(Platycodon grandiflorum) roots powder addition. 

Day 
Voltage across resistor (300 ohms), mV 

Control Doraji SEM1 P2 

0 97 94b 4.0 0.6513 

1 95 94b 4.0 0.8769 

2 97 136a 3.6 0.0166 

3 93 139a 3.6 0.0121 

4 100 137a 3.9 0.0208 

5 95 135a 0.7 0.0006 

6 95 136a 5.4 0.0328 

7 98 135a 4.5 0.0280 

8 101 133a 0.8 0.0013 

9 96 140a 4.4 0.0196 

10 100 135a 2.2 0.0073 

SEM1 4.4 2.7 
  

P3 0.9766 <0.0001 
  

abMeans within a treatment with different superscripts differ, P < 0.05. 1Standard error of means. 2P-value: 
probabilities that treatments effect is not significant within the day. 3P-value: probabilities that day effect is 
not significant within the treatment. 

 
Table 2. Terminal (open circuit) voltage measured from microbial fuel cells established 
with strained rumen fluid and 2% of cellulose with or without Doraji (Platycodon gran-
diflorum) roots powder addition. 

Day 
Open circuit voltage, mV 

Control Doraji SEM1 P2 

0 385 356b 29.4 0.5517 

1 406 412ab 26.2 0.8861 

2 378 526a 35.8 0.0997 

3 383 502ab 22.8 0.0665 

4 381 459ab 38.4 0.2895 

5 401 530a 15.2 0.0267 

6 394 502ab 33.8 0.1533 

7 395 522a 20.2 0.0465 

8 400 509a 15.8 0.0390 

9 374 464ab 36.9 0.2271 

10 423 466ab 6.8 0.0466 

SEM1 29.9 24.7 
  

P3 0.9865 0.0141 
  

abMeans within a treatment with different superscripts differ, P < 0.05. 1Standard error of means. 2P-value: 
probabilities that treatments effect is not significant within the day. 3P-value: probabilities that day effect is 
not significant within the treatment. 
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Table 3. Power density measured from microbial fuel cells established with strained ru-
men fluid and 2% of cellulose with or without Doraji (Platycodon grandiflorum) roots 
powder addition. 

Day 
Open circuit voltage, mV 

Control Doraji SEM1 P2 

0 18.1 17.0b 1.46 0.6624 

1 17.3 17.0b 1.71 0.8719 

2 18.3 35.6a 1.34 0.0118 

3 16.8 37.4a 1.33 0.0082 

4 19.2 36.4a 1.50 0.0150 

5 17.5 35.3a 0.37 0.0009 

6 17.6 35.9a 2.14 0.0263 

7 18.7 35.3a 1.77 0.0220 

8 19.8 34.0a 0.33 0.0011 

9 17.9 37.7a 1.68 0.0141 

10 19.2 35.3a 1.12 0.0095 

SEM1 1.66 1.13   

P3 0.9766 <0.0001   

abMeans within a treatment with different superscripts differ, P < 0.05. 1Standard error of means. 2P-value: 
probabilities that treatments effect is not significant within the day. 3P-value: probabilities that day effect is 
not significant within the treatment. 

 
of Doraji root powder supplementation that most likely causes favorable anode 
respiration by exoelectrogens by methanogenesis inhibitions [25] [26] [27] and 
(or) by cellulolysis extension with proliferation of fiber degrading bacteria [28] in 
MFCs constructed with rumen fluid as anolyte and cellulose as electron donor. 

3.2. Biogases Production 

Total gas productions in anode for 10d MFC operation were similar (P = 0.7072) 
and the volumes were 328 and 335 mL in control and Doraji root treatment, re-
spectively (Figure 1). Biomethane production were also similar (P = 0.0248) and 
amounts were 220 and 197 mL in control and Doraji root treatment, respective-
ly. However CO2 production was greater (P = 0.0305) in Doraji root treatment 
(138 mL) than in control group (108 mL). The increase in CO2 and numerical 
difference in biomethane were clearly reflected in biomethane to CO2 ratio, and 
the ratio was less (P = 0.0461) in Doraji root treatment (1.44) than in control 
group (2.03). 

Biogas is produced from biomass fermentation, and it was from cellulose in 
the current study. Because of the identical carbon balance between methane and 
CO2 and no difference in total gas production between treatment, the extend of 
cellulolysis might not influenced by treatment in the current study. Therefore, 
the enhanced power generation in Doraji rood added MFCs should be attributed 
to the methanogenesis reduction. Methanogenesis does not only divert electron 
from the anode but also reflects the competition of methanogens for substrates  
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Figure 1. Accumulated gas production in the anode chamber of microbial fuel 
cells (MFCs). MFCs were built with rumen microorganisms and 2% of cellulose 
(Avicel®) with or without Doraji (Platycodon grandiflorum) roots powder addi-
tion Accumulated volume of gases were measured and analyzed for gas compo-
nents on d10. 

 
to exoelectrogens which transfer electrons to anode [24]. Aacetoclastic me-
thanogens compete for electron donors ( 3 4 2CH COO H CH CO− ++ → + ) and 
hydrogenotrophic methanogens utilize the hydrogen produced in the reactor 
( 2 2 4 24H CO CH 2H O+ → + ), and methanogenesis consumes exogenous energy 
(Kaur et al., 2014), and it is certainly not favorable for exoelectrogens establish-
ment on anode which is critical in electricity generation in MFC. 

4. Conclusion 

Microbial Fuel Cell is one of the technologies that generate clean sustainable bio-
energy from cellulosic biomass; however, methanogenesis remains as a major 
factor limiting MFC performance. In the current study, rumen microorganisms 
were employed as anolyte and cellulose served as electron donors, and Doraji 
(Platycodon grandiflorum) roots powder was tested at 0.1% of anolyte as me-
thanogenesis inhibitor and cellulolytic microorganisms growth promoter. Cel-
lulolysis did not change, however enhanced power generation and decreased me-
thane to CO2 ratio were observed with Doraji roots powder addition to anode in 
MFC which were hypothesized on the basis of saponine effects on rumen micro-
bial fermentation. Results from the current study imply that Doraji root addition 
would inhibit methanogenesis and enhance MFC efficiency in cellulosic electric-
ity generation. Optimal dose and preparation methods of Doraji roots may be 
elucidated by further studies to maximize the methanogenesis inhibition and 
power generation in MFCs from cellulosic biomass. 
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