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Abstract 
Nanostructured, sub-wavelength anti-reflection layers (NALs) have attracted 
much attention as a new generation of anti-reflection surfaces. Among dif-
ferent designs, sub-wavelength periodic nanostructures are capable of en-
hancing transmission of coherent light through an interface without inducing 
scattering. In this work, we have explored a new profile for periodic NALs 
capable of transmitting IR light with higher efficiency compared to NALs 
based on a parabolic profile. To achieve high transmission and low diffrac-
tion, the profile and pitch of the nanostructured NALs are calculated using a 
combination of a multi-layer modeling and Rigorous Coupled Wave (RCWA) 
analysis. 
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1. Introduction 

Traditional anti-reflection coatings (ARCs) are based on destructive interference 
of light from two or more interfaces [1] [2]. The effects of using ARC layers are 
specially noticeable when the refractive indexes of the two media differ consi-
derably [3]. A single layer of antireflection coating is not usually sufficient to 
achieve broadband transmission and high angular tolerance. Typically, mul-
ti-layer coatings are used to increase the bandwidth and angular tolerance [4]. 
One can also reduce the reflection by gradually increasing the refractive index 
from air to substrate. This is conventionally done by deposition of layers of uni-
form films on bulk substrate [5]. This method is limited due to limited palette of 
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available materials with desired refractive indexes. Also, the mismatch between 
the thermal expansion coefficients of different layers, introduces residual stresses 
under high power illumination (this is a serious limitation for mechanical stabil-
ity [6], and for applications like high power laser transmission particularly in the 
infrared where thicker layers are required) [7] [8]. 

Nanostructured ARC layers (NALs [9]) on the other hand, work by a gradual, 
adiabatic change of effective refractive index from that of the incidence medium 
(air) to that of the bulk material (silicon in our case). These structures are also 
referred as moth-eye structures [10] due to their resemblance to the surface of a 
moth’s eye [11]. In this paper, we will refer to nanostructures designed for re-
ducing reflection as NALs. 

Larger-scale ( λ ) structured layers are widely used for increasing light 
transmission in solar cells [12]-[20], fabrication of lenses and imaging [21], ex-
treme temperature applications [22], super-hydrophobic antireflection applica-
tions [23] [24] like anti-fogging [25], light extraction from LEDs [11] [26]-[30], 
lasers [3] [31] [32], and enhancing sensitivity of sensors [33]-[38]. Sub-wavelength 
structures can provide smooth change of index from one medium to another. If 
mounted over larger pitch micro-structures, these structures increase transmis-
sion by generating forward diffraction [26] [27] [28]. In solar cells, the objective 
is to increase the transmission from air to the substrate, maximizing the trans-
mission of light energy. In the case of LEDs, the objective is to enhance trans-
mission from substrate to air, by reducing total internal reflection (TIR). In such 
applications, designers are mainly concerned with the percentage of light trans-
mitted into/out of the substrate and are not concerned with beam quality. On 
the other hand, for coupling light out of laser cavities (particularly semiconduc-
tor lasers), the absence of diffraction or scattering of the transmitted light is crit-
ical for maintaining the quality of the laser beam [3] [31] [39]. When made of 
same material as the transmission medium, the nanostructured antireflections 
can tolerate high laser powers. Due to elimination of residual stress, the damage 
threshold rises significantly [40]. Usually for maintaining the quality of the laser, 
NALs are made in a periodic fashion to avoid scattering, which needs patterning 
approaches. Due to the nature of the patterning, most of the common patterning 
methods, including lithography, don't result in a completely gradual transition 
from one medium to the other one where the NALs meet the substrate. Individ-
ual nanostructures should merge each other at the base, where they are joining 
the substrate, so that the transition between one medium to the other one hap-
pens gradually [41]. One approach for reducing this jump is using a graded in-
dex material between the NAL and the substrate [42]. Kraus et al. have used a 
SixOyNz sputtered layer over the substrate. By altering the composition of each 
deposited layer, he has gradually decreased the index from high index substrate 
to a low index SiO2 layer on top. The NALs made of SiO2 were then generated on 
top of that layer. By reducing the index of NALs, the jump due to the gap be-
tween nanostrutures reduces considerably [42]. Also, the gap between the fabri-
cated NALs can be filled by a layer deposition process [43]. When designing our 
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NALs, in our calculations we assume that there is no gap between the nano-
structures. 

The transmission through NALs can be described based on the concept of “fill 
factor” [1]. That is, when the average spacing among the peaks and valleys of the 
NAL is small compared to the wavelength in the medium, the transmitted light 
will experience an average refractive index of the two materials, which gradually 
varies from the index of the incident material (usually air or vacuum) to the in-
dex of the substrate. When designing NALs for higher transmission of the inci-
dent light into substrate, we have assumed that the effective refractive index is a 
linear function of fill-factor. However, other groups have used a nonlinear rela-
tion between the effective refractive index and fill-factor [44] [45]. Our numeri-
cal simulations show that relating the geometry with fill factor using a linear re-
lationship yields a much higher transmission enhancement. While increasing the 
height of NALs greatly reduces the reflection, the profile of the nanostructures 
plays a deterministic role in enhancing effectiveness of NALs [45]. Here, we fo-
cus on periodic NALs over planar surfaces. In periodic NALs, the resulting 
transmission depends on the pitch of and unit-cell shape. In previous works, 
numerical methods have been developed and used mainly to evaluate and verify 
the transmission through fabricated nanostructures with unit-cell profiles de-
termined by the fabrication process [3] [41] [46]. Our goal is to develop a profile 
that results in near 100% transmission of the optical wave through NAL. The 
proposed design eliminates scattering while it's high pitch enough to avoid dif-
fraction [47]. We will evaluate the bandwidth and peak transmission of our de-
sign and compare it with a commonly used parabolic design. The shape of the 
unit cell in many NALs is inspired by nanostructures seen in nature [1]. Consi-
derable research has been done on characterizing the transmission through 
NALs with different unit cell shapes resulting from different etching techniques 
[15] [41] [48]-[52]. However, to the best of our knowledge, in none of the pre-
vious works, specific unit cell shape was systematically calculated for achieving a 
better transmission. Moreover, the effect of pitch on the transmission of the pe-
riodic NALs has not been investigated. 

While different gradient layers over each other [53] have been evaluated for 
their capability of suppressing reflection, little has been done for designing a 
nanostructure profile relevant to the refractive indexes of the layered structure 
proposed [54]. As mentioned, this is important since in practice we have limita-
tion in finding materials with some of the required refractive indexes, unless we 
generate this smooth index transition using fill-factor principle. Here, we pro-
pose and numerically characterize a new unit cell shape (index profile). It is 
shown that by carefully controlling the pitch, the transmission through the cor-
responding NAL can exceed 99% without introducing significant diffraction. We 
evaluate the bandwidth and peak transmission across a range of parameters and 
compare it with a commonly used parabolic profile. We use matrix-based multi-
layer modeling for unit cell shape calculation. Using Rigorous Coupled Wave 
Analysis (RCWA), the transmission is evaluated as a function of wavelength and 

https://doi.org/10.4236/jamp.2019.712217


B. K. Mousavi et al. 
 

 

DOI: 10.4236/jamp.2019.712217 3086 Journal of Applied Mathematics and Physics 
 

pitch for a given unit cell. Using these calculations, we find the wavelength de-
pendence of the optimum pitch resulting in maximal transmission in zero-order 
diffraction for the selected unit cell shape. Note that in most of previous efforts, 
transmission through NALs was defined as the ratio between output and input 
power without paying attention to distribution of the transmitted power among 
different spatial frequencies. 

This work is done at Center for High Technology Materials (CHTM) at Uni-
versity of New Mexico. 

2. Theory of Antireflection Layers 

NAL adiabatically transforms the otherwise abrupt change of refractive index 
between the two media. For a single homogeneous ARC layer (which cancels the 
reflection through destructive interference), the refractive index of antireflection 
coating should ideally be the geometric mean of the refractive indexes of the two 
media: 

= i tn n n ,                            (1) 

where in  and tn  are the refractive indexes of the “incidence” and the “trans-
mission” media, respectively. In the next section, we show that this simple rela-
tion can be used to design the unit cell of our NAL.  

2.1. Nanostructures as Antireflection Layer 

Periodic NALs can be considered as arrays of cone-shaped structures (unit cells) 
as illustrated in Figure 1. For ease of explanation, the cones are shown separated 
by a relatively large distance, but the separation at the substrate has to be small 
compared to the unit cell dimensions to approach the correct index at the sub-
strate. One may consider the NAL of Figure 1 as many stacked thin layers (slic-
es). Each horizontal slice consists of regions of silicon and of air. The percentage 
of each slice occupied by silicon, referred to as the “Fill-Factor”, determines its 
optical properties. 
 

 
Figure 1. These NALs have been created by stacking 60 slices with Z dependant fill factor. 
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Thus, by controlling the fill factor one can effectively engineer the refractive 
index of each slice to any desired value overcoming the difficulty faced in ho-
mogeneous antireflection coatings layers. So the NAL can be modeled as stack of 
slices, which their refractive index is a function of the fill factor according to: 

( ) ( ) ( )( )1= + −Si Airz z zn p n p n ,                  (2) 

where ( )ip z  is the fill factor of the i-th slice. Therefore, we will proceed by 
calculating the unit cell shape based on Equation (1) and Equation (2), and 
compare the performance of the resulting NAL with the one with parabolic unit 
cell using in carrier media) using RCWA. While we use Equation (1) to estimate 
the required fill factor for each slice, we note that the RCWA calculation is based 
on the geometry in each layer (determined from Equation (2) as described in the 
next section), and not an effective index approximation, such as the Max-
well-Garnet or Bruggeman models for effective indexes [55] (which are only ap-
plicable to thick homogeneous mixtures of particles. 

2.2. Smoothing Index Transition for the Unit Cell 

Conventionally multilayered anti-reflection coatings are designed to cancel out 
the reflection for different wavelengths based on destructive interference of ref-
lections. A more recent approach is deposition of thin film layers over substrate, 
gradually increasing the refractive index from air into the transmission medium. 
It is well-known that this approach allows broader wavelength range to pass as 
well as increasing the angular tolerance [4] [56]. Here, we use the same concept 
for designing unit cell profile of the NAL. For NALs, the index of each slice is 
determined by its fill-factor (Equation (2)). Therefore, as opposed to its compo-
sition, we have the freedom to minimize the reflection based on continuous var-
iation of index and thickness of each slice along the unit cell. Our criteria for se-
lecting the index (fill-factor) of each layer is based on the single layer ARC, in 
other words, the fill-factor of each layer is the geometrical mean of the layers 
immediately above and below:  

1 1− +=i i in n n  where 0,1,2, , 1= +i N .               (3) 

Calculating the natural logarithm of each term, this nonlinear relation be-
tween refractive indexes of subsequent layers is converted to a linear recursive 
equation:  

( )1 1
1ln ln ln
2 − += +i i in n n  where 0,1,2, , 1= +i N .          (4) 

By defining ( )ln=N iA n  Equation (4) can be rewritten as:  
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which can be used to determine the required refractive index of each layer con-
sidering ( )00 ln 0= =NA n , ( ) ( )

11 ln ln 3.5
++ = =

iN NA n . As can be seen in the 
right hand side other than 0A  and 1+NA  the other rows are zero. This is be-
cause all the unknowns ( 1A  to NA ) are moved to the left hand side of the linear 
equations. Solving Equation (4) easily yields ( )ln in  for each layer.  

3. Calculation of the Unit Cell Profile 

In this section, we determine the refractive index profile and the corresponding 
shape of the unit cell for a periodic NAL using the framework introduced above. 
The goal is to enable high (>99%) transmission from air to bulk with a thin NAL. 
While most reported results indicate that by increasing the NALs thickness the 
transmission significantly increases [57], Zhang et al. have shown that by taper-
ing the index profile properly it is possible to obtain very high transmission even 
with NALs as short as a wavelength [57]. Note that lower height is crucial for 
enhancing mechanical stability of NALs and reducing plasma etching cost and 
time. We show that for a fixed NAL height, our design yields a higher transmis-
sion compared to parabolic NAL profile (a commonly used profile). In our cal-
culations, each unit cell is divided into 100 horizontal slices that are sandwiched 
between air (above) and bulk material (below). While a larger number of slice 
increase the resolution and accuracy of the resulting shape, given practical limi-
tation of nano-fabrication at such resolution, we have limited our calculations to 
100 slices. 

3.1. Determination of the Fill-Factor 

Each slice of the NAL can be considered a thin homogeneous layer with an index 
calculated using Equation (5) ( 100=N  slices). Figure 2(a) shows the calculated 
refractive index for each of the slices of a silicon NAL. The corresponding 
fill-factor for each slice, calculated using Equation (2), is plotted in Figure 2(b). 
These slices are numbered from 1 to 100, starting at the top. Figure 2(a) shows 
that the refractive index continuously increases from n = 1 (the refractive index 
of air) to n = 3.5 (the refractive index of silicon) from slice 1 to 100 along the 
unit cell. Figure 2(b) shows that the corresponding fill-factor for each slice in-
creases continuously from 0 to 1 (or 100%) at the bottom. This means the nano-
structures should start from a point at the top and merge together at the base. 

3.2. NAL Slice Thicknesses and Profile Design 

While Equations (2) and (5) determine the fill-factor for each slice, the thickness 
of the slice has to be determined based on two additional constraints. As light 
enters the NAL, it experiences a phase lag (compared to air) due to higher index. 
Instead of selecting a specific layer thickness, we impose a constraint on this 
phase lag. We determine the thickness of each pillar versus the phase shift it 
imposes on the incident light. The reason is that, for a same phase shift of π , a 
longer wavelength requires a taller pillar. This way our comparisons are consis-
tent. The first constraint is imposed on the total phase-change for a wave that  
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Figure 2. (a) Calculated refractive indexes versus slice number (slice 1 is at 0=z  which 
is the interface between NAL and air); (b) The resulting fill-factor that gradually changes 
from 0% to 100%. Slice 0 is the top air and slice 101 is the bulk substrate ( 1=Airn  and 

3.5=Sin ). 

 
travels from the top to the bottom of the unit-cell; we make the total phase-shift 
(φt ) equal to π : 

1
φ

=

=∑
N

i i t
i

k t .                          (6) 

In this equation, it  and ik  are the thickness and the wave vector at each of 
the N slices, respectively. This equation is simply the summation of the 
phase-changes in each slice. Our numerical simulations have shown that below 
π  phase shift the transmission drops substantially; so a total phase shift of π  
is the minimum required NAL thickness. Equation (6) can be rewritten as:  

1 2
λ

=

=∑
N

i i
i

n t ,                            (7) 

where λ  is the wavelength of incident light and in  is the refractive index of 
each slice of NAL. Since Equation (7) can be satisfied using different distribu-
tions of it , the next constraint is imposed on the optical path length (i.e. i in t ). 
So the thickness of each layer is related to its index via:  

2
λ

=i
i

t
Nn

.                           (8) 

Figure 3(a) shows the calculated thickness of each slice for silicon NAL de-
signed for 4 mλ = µ . Having determined the fill-factor and thickness for each 
slice of the NAL, one can plot the corresponding shape for the unit cell (Figure 
3(b)). The input parameters in the design of each profile are the refractive in-
dexes of the incident and transmission medium and the wavelength of the light. 
Figure 3(b) shows the resulting shape of the NAL when the incidence and 
transmission media is air and silicon and 4 mλ = µ . The profile can be de-
signed for each wavelength. By multiplication of the results obtained in norma-
lized-length with the pitch, one can obtain the shape of the calculated profile of 
the nanostructure in units of nm for different wavelengths. Another important 
consideration for the calculated profile of Figure 3(b) is that, the designed  
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Figure 3. Designing the final profile by calculating the thickness of each layer (a) The 
thickness of each of the 100 cross-sectional layers of a NAL that will maximize transmis-
sion at 4 mλ = µ ; (b) Resulting Nano-pillar profile. 

 
nanostructure starts as a point at the top (with a fill factor of 0%) and gradually 
grows, filling the whole unit cell at the base. Thus, each of the designed nano-
structures merge with their immediate neighbors as well as with the silicon sub-
strate.  

4. Transmission through NAL 

Extensive numerical studies have been reported on the performance of NALs of 
different shapes and materials. These reports use different methods including 
Effective Medium Theory (EMT) [58], Finite Difference Time Domain (FDTD) 
[59], Transfer Matrix Method (TMM) [60], Finite Element Method [61] [62] and 
Rigorous Coupled Wave Analysis (RCWA) [63]. Using these methods, research-
ers have estimated the transmission and reflection at the boundary between air 
and NALs with unit-cell shapes [64]. Here, we use RCWA that is well suited for 
calculating reflection and transmission from layered structures and the code we 
have used is previously optimized for fast computation of transmission and ref-
lection [65].  

4.1. Transmission through NAL as a Function of Wavelength and  
Pitch 

All the logarithmic calculations we did, optimizes the nanopillar for a certain 
wavelength. That is, for every wavelength there will be a certain NAL with a 
height dependent on the wavelength. Also, we should note that the X-Y of the 
base was in unit of area. The XY of NAL at any elevation can be easily calculated 
by simply multiplying the percentage (X or Y) with pitch value. That is, for 
creating a NAL we use parameters of wavelength and pitch. Our design max-
imizes the transmission of light for a certain wavelength. Also, for the specific 
λ  of design (and specific pillar height coupled to it), there is a unique pitch for 
further maximizing the transmission. This is the main difference of this report 
with previous works. Previously, researchers have calculated the index of each 
layer. But, instead of designing a nanopillar, they have just designed continuous 
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films of different indexes, laying on top of each other from silicon surface to air. 
However, the nanopillar pitch is a parameter that has to be optimized along with 
the index variation along the nanopillar. 

Figure 4(a) shows the power transmitted in the zeroth order as a function of 
wavelength (that varies from 3 μm to 9 μm in mid-IR range) for several values of 
the pitch. Every pitch is optimum for a certain wavelength and the pillar de-
signed for that λ . Figure 4(b) shows the power transmitted in the zeroth order 
as a function of the pitch (that varies from 0.5 μm to 3 μm) for several NALs 
each optimized for a specific wavelength (the corresponding reflection in log 
scale is depicted in Figure 4(c) and Figure 4(d) versus wavelength and pitch). 
As expected when the pitch to wavelength ratio is smaller than a certain limit, 
most of the energy is transmitted without diffraction [66]. The relation for the 
Pitch of the periodic nanostructure to eliminate diffraction is [66]:  

2
λ

≤ inc

sub

Pitch
n

,                          (9) 

where subn  is the refractive index of the substrate and λinc  is the wavelength 
at free space. Our calculations indicate that the transmission is maximum along 
the 0.27λ=pitch  for our design. Figure 4(c) and Figure 4(d) show the reflec-
tion coefficient for the NAL as a function of wavelength and pitch respectively. 
Note that here the objective is to maximize transmission into zeroth order and  
 

 
Figure 4. Transmission through NALs with the logarithmically calculated profile. Pillar 
height is coupled to the wavelength. (a) Transmission versus pitch at different wave-
lengths; (b) Transmission versus wavelength at different pitches; (c) Reflection versus 
wavelength at different wavelengths; (d) Reflection versus pitch at different pitches. 
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minimize reflection, as well as diffraction to higher order spatial frequencies. An 
extra factor of two is added to subn  in Equation (9) to avoid backward diffrac-
tion at grazing incidence [66]. 

4.2. Comparison with Parabolic NALs 

An alternative profile previously reported for NALs is the parabolic profile [57]. 
The Parabolic design and the comparative effective refractive index of parabolic 
and our design are shown in Figure 5. 

A parabolic index profile is one of the most common unit cell profiles pre-
viously used for designing NALs [57]. The design shown in Figure 5(a) & Fig-
ure 5(b) shows a comparison between effective refractive index of each hori-
zontal slice (total of 100 slices) for parabolic and our design. Figure 6 shows 
transmission and reflection, through NALs with parabolic unit cell in mid-IR range 
calculated using RCWA simulation. Clearly, the minimum reflectivity (maximum 
transmission) values are more than those calculated for the shape (index profile) 
proposed in this work. The difference in minimum reflectivity can be as large as 
3%. Note that when using high power lasers and amplifiers, even a small change 
in reflection is relevant and three-fold change in reflection can be catastrophic! 

Table 1 shows the minimum reflection and the corresponding pitch for the 
parabolic and our design for three different substrates (indexes), at three differ-
ent wavelengths for our design and parabolic design respectively. 

In general, it is well understood that as the index difference between the inci-
dence and substrate medium increases, the transmission decreases. This makes 
the use of proper NALs profile more crucial. Accordingly, the effectiveness of 
our design is more critical at higher refractive index media (like silicon with re-
fractive index close to 3.5) as evident from Table 1. 

As the main focus here is to study transmission through silicon-based NALs 
into the silicon substrate, we have estimated the bandwidth (for transmission 
above 96%) around the max point at three different values of pitch for silicon 
substrate (see Table 2). 
 

 
Figure 5. (a) Parabolic profile sketched at the same height and pitch as our design in 
Figure 3; (b) Comparison between the effective refractive index profile in the parabolic 
design and our design. 
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Figure 6. Transmission through NAL with parabolic profile. Pillar height is coupled to 
the wavelength. (a) Transmission through NAL plotted versus pitch at different wave-
lengths; (b) Transmission through NAL plotted versus wavelength at different pitch val-
ues; (c) Reflection versus wavelength at different wavelengths; (d) Reflection versus pitch 
at different pitches. 
 
Table 1. Maximum transmission at relevant pitch values (for the two profiles) at 3 dif-
ferent wavelengths for 3 refractive indexes. 

Index of refraction λ (μm) Tdesigned (μm) TParabolic 

1.5=n  4 1.00 0.9962 

1.5=n  7 0.9999 0.9962 

1.5=n  9 0.9998 0.9962 

2.5=n  4 0.9995 0.9834 

2.5=n  7 0.9995 0.9834 

2.5=n  9 0.9949 0.9834 

3.5=n  4 0.9911 0.9677 

3.5=n  7 0.9911 0.9676 

3.5=n  9 0.9911 0.9677 

 
Figure 7 shows the wavelength at which transmission is maximized plotted 

against the corresponding pitch for the parabolic and our design. According to 
this graph, pitch to lambda ratio for the parabolic design is 0.225 and is 0.273 for 
our design. This difference is believed to be due to the difference in the effective 
refractive index of each slice for the two designs, changing the spatial distribu-
tion of electromagnetic wave. 
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Figure 7. Lambda-pitch graph at peak transmission points is approximately linear. The 
slope of the line differs for the two different designs we have investigated. 
 
Table 2. Transmission Band-width for our design and parabolic profile, designed for dif-
ferent pitches. 

Index of refraction Pitch (μm) BandwidthParabolic BandwidthOurDesign 

3.5=n  1.04 μm 2.5 μm 2.1 μm 

3.5=n  1.23 μm 2.9 μm 2.5 μm 

3.5=n  1.42 μm 3.3 μm 3 μm 

5. Conclusions 

We have proposed a unit-cell design for a nanostructured antireflection layer 
(NAL) that results in very high transmission (zeroth-order diffraction) com-
pared to nanostructures based on conventional (parabolic) unit cells. The design 
is based on dividing the unit cell into multiple slices and selecting the effective 
refractive index of each slice as the geometrical mean of the adjacent slices. The 
ultimate shape and height of the structure are determined by the resulting 
fill-factor subject to two constraints: 1) The optical path length is the same for all 
the slices. 2) The total optical phase shift along a unit cell is 180˚. The NAL 
created based on such unit cell provides high transmission with zeroth-order 
diffraction in spite of its relatively small thickness. We have characterized the 
resulting NALs in the mid-infrared wavelength range (3 to 9 microns) by calcu-
lating the transmission from air into a silicon substrate using the RCWA method. 
The effectiveness of the proposed design was studied for a range of pitches and 
wavelengths. Our results show the importance of selecting the optimal pitch for 
maximum transmission at the desired wavelength. 

We have shown that at any wavelength between 3 μm - 9 μm, there exists an 
optimal pitch that results in almost 100% transmission through the NAL made 
based on our unit-cell design. In all cases, the pitch is kept sufficiently small that 
there are no propagating diffraction orders beyond the zero-order. We have also 
compared the performance of our designed NALs with the ones based on the 
more common parabolic design and have observed more than 3 times reduction 
in the reflection with only a small bandwidth reduction. Finally, we found that 
the optimal pitch-to-wavelength ratio for maximum transmission is 0.27 for our 
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design compared to 0.205 for the parabolic design. This result leaves two ques-
tions open: first, what is the optimal structure, and the second is the fabrication 
process to achieve the promise of the model designs. Optimization is of course 
somewhat application specific. Some applications may only require a nar-
row-band design while others may require higher spectral bandwidths. Despite 
numerous publications on different profiles, this work demonstrates that there 
remains room for improvement. Fabrication is another difficult issue. In a sub-
sequent publication, we will present our experimental results based on NALs fa-
bricated using interferometric lithography and reactive-ion etching that come 
close to the promise of these simulations. 
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