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Abstract 
Quadrature rules for evaluating singular integrals that typically occur in the 
boundary element method (BEM) for two-dimensional and axisymmetric 
three-dimensional problems are considered. This paper focuses on the nu-
merical integration of the functions on the standard domain [−1, 1], with a 
logarithmic singularity at the centre. The substitution px t= , where p (≥ 3) 
is an odd integer is given particular attention, as this returns a regular integral 
and the domain unchanged. Gauss-Legendre quadrature rules are applied to 
the transformed integrals for a number of values of p. It is shown that a high 
value for p typically gives more accurate results. 
 

Keywords 
Boundary Element Method, Singular Integral, Numerical Integration 

 

1. Introduction 

In this paper the problem of determining an efficient quadrature rule for and 
integral of the form 

( )1

1
d ,f x x

−∫                             (1) 

in which ( )f x  is a continuously differentiable function, except for having weak 
logarithmic singularity at its mid-point (when 0x = ), is considered. A weak lo-
garithmic singularity is one in which the behaviour near the singularity is of the 
form ( ) ( )logf x O x= . In this work, we look at finding near-optimal quadra-
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ture rules for the numerical evaluation of this class of integral. In the outcome, it 
is noted that the method proposed method may be generalised and applied to 
stronger singularities. 

Integrals like the one above typically occur in implementation of the two-di- 
mensional (2D) boundary element method (BEM) [1] [2] [3], when the observa-
tion point lies at the parametric mid-point of the element or panel. The govern-
ing partial differential equation is reformulated as a boundary integral equation, 
and the latter is solved in order to determine unknown boundary properties. The 
boundary is represented by a set of panels, with functional representations of the 
properties on those panels that ascribe the boundary elements. By applying a 
suitable integral equation method, such as collocation, the boundary integral 
equation is resolved into a linear system of equations, with each row of the ma-
trices representing a geometrical line integral of each panel with respect to a par-
ticular boundary observation (e.g. collocation) point. 

In the boundary element method, the integrals are generally found numeri-
cally, although in a number of special cases the integrals can by evaluated ana-
lytically [4]. For two-dimensional problems, the logarithmic singularity occurs 
when the observation point lies on the panel over which the integration is ap-
plied. For constant elements, where the functional representation of boundary 
properties is a constant value on each panel, the diagonal components of the 
matrices correspond to singular integrals. All of the other integrals are regular 
and are therefore amenable to standard quadrature methods, often Gauss-Legendre 
quadrature rules for their optimal efficiency. However, some panels are close to 
the observation point, and the corresponding integral are regular, but are also 
strongly-varying, and some researchers also apply special treatment to these 
nearly-singular integrals [5]. 

Much of the aforementioned story is the same for three-dimensional problems, 
except that, in this case, the bounding surface is represented by a mesh, made up  

of panels. However, in 3D we have 1O
r

 
 
 

 like singularities (where r represents  

the distance between the observation point and the point on the panel). There 
have been a number of papers addressing the problem of integrating functions 
like this for general 3D problems in the BEM, both numerically [6] and analyti-
cally [7], although this is outside the scope of this paper. However, for the par-
ticular class of axisymmetric 3D problems, the first azimuthal integration over 
the panel results again in a logarithmic ( )logO r  singularity in the remaining 
integral along the generator of the panel and for these problems this work is ap-
plicable. 

In the previous work on the boundary element method by the first author 
[8]-[13], typical elements that are applicable include straight-line panels for 2D 
problems in which the boundary function approximated by a constant, with the 
observation points located at the centres of the panel. Similarly, axisymmetric 
problems are modelled by constant elements and the panels are equivalent to 
conic sections. Typical panels for approximating the boundary in 2D and axi-
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symmetric 3D are illustrated in Figure 1, with the node at the (parametric) cen-
tre of the straight-line panel and at the centre of the generator on a truncated 
conical panel. Hence a 2D panel or the generator of a 3D axisymmetric panel can 
be mapped onto the domain [−1, 1], with the mid-point of the panel mapping to 
zero. Although the problem posed in this paper is restrictive in that the singular-
ity is defined to be at the parametric centre of the panel, this is also the most 
common case in practice, and this is all that is required for these simple ele-
ments. 

The principles underlying the method choice include the usual one of effi-
ciency; that of accuracy in relation to the number of quadrature points or func-
tion evaluations. However, the other principle is that the method must be a 
practical method as it must be typically included into the BEM as an “automatic 
computation” of the singular integrals that arise therein. In this paper, the nu-
merical integration method is developed through a simple power substitution 
focussed at the singularity. This sort of transformation is similar to the tech-
nique of transforming the integrand by a polynomial substitution in Telles [14], 
except the problem considered therein is more general in the sense that the sin-
gularity may be located anywhere within the domain (−1, 1) and the substitution 
was with a general cubic. The concept is also similar to the method of the first 
author [8]-[13], except in that work the domain of the integration was [0, 1] with 
the singularity at zero and the method was applied on either side of the mid- 
point, as a composite integral, and summed in order to determine the integral. 
However, in general, composite integrals are less efficient. 

In this paper, integration through the substitution px t=  with p taking odd 
integer values and Gauss-Legendre quadrature applied to the resulting integral. 
This method of transformation is preferred because of its effectiveness and ma-
thematical and computational simplicity. The selection of the value of p is ex-
plored by applying the method to test problems. The objective is to obtain guid-
ance on the value of p that returns a quadrature formula that is close to optimal 
for the numerical integration of the singular functions occurring typically in the 
BEM. 

This paper is organised as follows. In Section 2, the logarithmic integrals are 
placed in the context of the boundary element method, where they typically arise. 
Various methods of treating singular integrals are considered in Section 3, with a 
particular focus on the px t=  substitution. In Section 4 methods based on the 

px t=  substitution are applied to test problems and results are summarised and 
conclusions are given in Section 5. 
 

 
Figure 1. A straight-line panel (2D) and a truncated conical panel (3D). 
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2. The Boundary Element Method and Singular Integration 

The motivation for exploring the numerical evaluation of singular integrals in 
this work is in that they arise in the boundary element method. The BEM is a 
computational technique that has developed from the reformulation of elliptic 
partial differential equations as boundary integral equations. The method is the 
computational result of solving the partial differential equations via the discreti-
sation of the boundary integral equations. 

In principal, the boundary element method has the significant advantage over 
“domain methods”—such as the finite element method and the finite difference 
method—in that it only requires an elemental decomposition of the boundary, 
rather than the full domain. Hence, when the boundary element method is ap-
plicable, it typically requires significantly fewer elements than the corresponding 
domain methods, there is less to mesh and there is a potential reduction in 
computation time. However, the boundary element method is not without its 
challenges, and not the least of these is the evaluation of singular integrals. Al-
though singular integrals of the same form occur in all application areas of the 
BEM, in order to motivate the need for such methods and to study their place 
within the BEM, in this paper the two related partial differential equations stu-
died by the authors are considered; the exterior Laplace and Helmholtz equa-
tions [3] [8]-[13]. 

2.1. Typical Boundary Integral Equations (Exterior Helmholtz and 
Laplace Problems) 

The example of a partial differential equation that can be solved by the boundary 
element method is the exterior Helmholtz (reduced wave (acoustic)) equation: 

( ) ( ) ( )2 2 0 ,k Eϕ ϕ∇ + = ∈p p p                   (2) 

where E is a domain exterior to a closed boundary S, ϕ  is the potential and k is 
the wavenumber. The domain is illustrated in Figure 2. 

For example, the elementary direct formulation of the Helmholtz equation 
can be reformulated as the following integral equation: 

( ) ( ) ( ) ( ) ( ) ( )
, 1d , d ,

2
k

q k q
q qS S

G
S G S S

n n
ϕ

ϕ ϕ
∂ ∂

− = ∈
∂ ∂∫ ∫

p q q
q p p q p      (3) 

where kG  represents an appropriate Green’s function with 

( ) ( ) ( )1
0,

4k
iG H kr=p q                        (4) 

in two dimensions and 

( ) 1 e,
4

ikr

kG
r

=
π

p q                          (5) 

in three dimensions, with S∈p , = −r p q , r = r  and n  is the unit out-
ward normal to the boundary. ( )1

0H  is the Hankel function of the first kind of  

order zero . The “ 1
2

” in Equation (3) is only true if the boundary S is smooth at  
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Figure 2. An illustration of a boundary S and the exte-
rior domain E. 

 
p , as it is in the boundary element method discussed here, in which p  takes 

the values of the centre of the straight-line panels in 2D or on the centre of the 
generator of the axisymmetric panels in 3D, as illustrated in Figure 1. 

Laplace’s equation is the special case of the Helmholtz Equation (2) with 
0k = , which can be reformulated as the boundary integral Equation (3), with 

the Green’s function kG  replaced by 0G . The Green’s function for Laplace’s 
equation are defined as 

( ) ( )0
1, ln

2
G r−

=
π

p q                          (6) 

in two dimensions and 

( )0
1 1,

4
G

r
=

π
p q                            (7) 

in three dimensions. The Green’s functions determine the form of the weak sin-
gularity, as discussed earlier in this paper. 

2.2. Boundary Element Method and Singular Integrals 

The boundary element method is derived from the boundary integral equation 
by approximating and representing the boundary S as a set of n panels  

1 2, , , nS S S∆ ∆ ∆  and the boundary functions ϕ  and 
n
ϕ∂
∂

 are approximated  

using characteristic functions on each panel, defining the elements. The most 
straightforward integral equation method to apply is that of collocation. When 
this is applied to the collocation point lp , the discrete analogue of the boundary 
integral Equation (3), is as follows: 

( ) ( ) ( )
1 1

, 1d , d .
2

j j

n n
k l

j q j k q
j jqS S

G
S v G S

n
ϕ ϕ

= =∆ ∆

∂
− =

∂∑ ∑∫ ∫ l

p q
p p q        (8) 

where ( )j jϕ ϕ= p  and 
( )j

jv
n

ϕ∂
=

∂

p
. 

Forming the above equation for all collocation points returns a system of n 
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simultaneous linear equations that is written as a linear system of equations in 
matrix-vector form 

1
2k kM L vϕ − = 

 
                            (9) 

where [ ] ( ), d
j

k k qjl S
L G S

∆
= ∫ lp q , [ ] ( ),

d
j

k l
k qjl S

q

G
M S

n∆

∂
=

∂∫
p q

, 
1

n

ϕ
ϕ

ϕ

 
 =  
  

  and 

1

n

v
v

v

 
 =  
  

 , where kL  and kM  are matrices that are the discrete equivalent of  

the integral operators in (8). The vectors ϕ  and v  list the values of ϕ  and v 
at the collocation points, either predetermined by the boundary condition or an 
approximation to the same following the solution of the system (9). 

2.3. Practical Aspects of the BEM 

The components of the matrices kL  and kM  are normally determined by 
numerical integration. The integrands that make up the components of the kM  
matrix are regular functions. The integrands that make up all but the diagonal 
components of the kL  matrix are also regular. However, the integrands cor-
responding to the diagonal components of the kL  matrix have a ( )( )logO r  
singularity in 2D and ( )1O r  singularity in 3D at the corresponding colloca-
tion point. Hence the number of integrations typically required in the boundary 
element method is ( )2O n , where n is the number of elements, whereas the 
number of singular integrals is ( )O n . This is an important factor in the design 
of the boundary element method; efficient and accurate evaluation of the singu-
lar integrals is important, but the burden is unlikely to be significant in terms of 
the overall computational cost of the boundary element method. There are also 
codes that parallelise the numerical integration method [15], which could also 
reduce the computer time required to calculate the BEM matrices. 

It is well known that elementary boundary element methods for the solution 
on the exterior Helmholtz equation are unreliable for some values of k, depen-
dent on the domain and nature of the boundary condition [16]. Robust integral 
equation formulations have been derived, not least the Burton and Miller for-
mulation [17], based on a combination of the boundary integral Equation (7) 
and an its derivative. Unfortunately, this also introduces hypersingular integrals 
that also require special treatment [18]. Similarly, if the boundary element me-
thod is applied to thin structures then this also introduces the same hypersingu-
lar operator [19] [20] [21]. For the simple flat straight line and triangular panels 
used in the first author’s previous work, simple formulae were developed for the 
analytic integration of singular and hypersingular operators [11] [12]. However, 
it is the treatment of the weakly singular integrals that correspond to the diagon-
al components of the kL  (or 0L ) matrix in the boundary element system (9) 
that are considered in the main in this paper. 
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The singular integrals corresponding to the kL  (or 0L ) operator, with the 
singularity at the paramtric centre in 2D can be transformed onto [−1, 1] and 
they are then of the form (1). In axisymmetric 3D, the integrations are first car-
ried out in the azimuthal direction, leaving a singularity in the integral along the 
generator, at the parametric centre, and this can also be transformed on to a 
problem of the form (1). 

3. Treatment of the Singular Integrals 

In this section, the various methods for evaluating the singular integrals are re-
viewed. Let us first consider the position of the singularity. In this work, we have 
placed the singularity at the centre of the domain, in this case the standard in-
terval [−1, 1]. In other contributions [22] the same domain is used but the sin-
gularities are placed at both ends and Gauss-Jacobi rules are applied. In the pre-
vious work of the first author [8]-[13] the domain [0, 1] is used and the singular-
ity is placed at zero. The work of Telles [14] generalises the concept in allowing 
the singularity to be anywhere within the domain. 

In variable integration, wherever the singularity is, it is only typically integra-
ble if it is of logarithmic type or of algebraic type with an index greater than −1. 
For example, in the case of the interval adopted in this work [−1, 1] with the 
singularity at the centre, typical integrable singularities are of the logarithmic 
type ( )logO x  or algebraic type ( )O x α  where 0 1α> > − . The logarithmic 
type of singularity is weaker than the algebraic type and hence, although the 
topic of this work is the treatment of logarithmic singularities, methods that 
have been developed for integrating algebraic singularities can also be applied in 
the context of logarithmic singularities. 

3.1. Ignoring the Singularity 

Given the general effectiveness in numerical integration methods such as Gaus-
sian quadrature, the singularities are generally of the weakest form and the fact 
that the computation time for computing the integrals is unlikely to be a critical 
factor in the boundary element method lends weight to the argument that the 
singularity should be ignored. 

The technique of ignoring the singularity in numerical integration has been 
the subject of research [23] [24]. In Kirkup [8] [9] it is shown that the integra-
tion of ln x  with 8, 16 and 32 point Gaussian quadrature rules gives quadrature 
errors of 8.8 (−3) (8.8 × 10-3), 2.3 (−3) and 6.0 (−4) respectively; doubling the 
number of quadrature points reduces the error by a factor of four. For the origi-
nal problem (1) it is found that applying the Gaussian quadrature straightfor-
wardly gives an error of 4.9 (−1) for the 4-point rule, 2.5 (−1) for the 8-point 
rule, 1.7 (−1) for the 12-point rule and 1.3 (−1) for the 16-point rule; very poor 
convergence. 

It can reasonably be concluded that ignoring the singularity is a technique that 
is worthy of consideration in the context of the boundary element method. 
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However, it should be expected that a rule with a high number of quadrature 
points would be required to maintain reasonable accuracy. If the singularity is 
within—rather than at the extremities of—the domain of integration, then split-
ting the domain at the singularity and applying a composite rule would also 
seem to be necessary. This approach would have a marginal impact on computer 
processing time in the BEM, but it would lack finesse. 

3.2. Product Integration 

If the singularities can be characterised by another function, e.g. ( ) ( )( )~f x O w x , 
where the singularity is located at 0x = , then a product integration method is 
appropriate, in which the characteristic singularity ( )w x  is effectively absorbed 
into the quadrature rule. For example, Gaussian-Jacobi quadrature rules are 
available and are applicable when there is an algebraic singularity at the extremes 
of the range of integration [22]. Anderson [25] derives quadrature formulas with 
a weighting function of ln x−  on [0, 1]. 

Test Problem 
By differentiating ( )ln sinx x , the integrand in the integral below is obtained 

(for sin 0x ≥ ) 

( ) ( )cot ln sin d ln sin ,x x x x x x c+ = +∫                 (10a) 

and noting that the function has an ( )lno x  singularity at 0x = . 
This gives a useful test problem in the domain [0, 1] 

( ) ( ) ( )
1

0

cot ln sin d ln sin1 0.1726037463 10 d.p. .x x x x+ = = −∫       (10b) 

Reflecting the integrand from the positive to the negative domain give as test 
problem on the original domain 

( ) ( ) ( )
1

1

cot ln sin d 2ln sin1 0.3452074925 10 d.p. ,x x x x
−

+ = = −∫     (10c) 

which also includes the ( )lno x  singularity, specified in the original problem 
(1). Applying the eight-point Gauss rule with the ln x−  weighting in [25] gives 
a relative error of 3%. Ideally, for the test problem (1) a product integration rule  

for ( )1

1
ln dx g x x

−
±∫  could be a useful way forward. In order to use the same  

points for the other operators, the integrands could be divided by ln x . 

3.3. Subtracting out the Singularity 

“Subtracting out” the singularity is a popular method of treating the singular in-
tegrals in the boundary element method. The technique simply involves splitting 
the integrand ( )f x , so that it is the sum of two functions, one that is singular 
and one that is regular. For example, let ( ) ( )f x xψ∼  near to the singularity; 
writing ( ) ( ) ( ) ( )f x x f x xψ ψ= + −    and the latter integral may be regular 
[26]. 

Clearly this in itself does not entirely solve the problem since one singular 
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integral has been replaced by another. However, there are two reasons for sub-
tracting out the singularity. The first is that ( )dx xψ∫  could be evaluated 
once-and-for-all and then re-used with different ( )f x  functions. The second 
reason is that it is sometimes possible to find an analytic expression for 

( )dx xψ∫ . In such cases the methods for treating singular functions considered 
in this section may need to be applied to evaluate ( )dx xψ∫ . 

Subtracting out the singularity with test problem (10b) 
The method of subtracting out a singularity that can be evaluated analytically 

can be illustrated on the test problem (10b): 

( ) ( )
1 1

0 0

cot ln sin d cot ln sin ln d 1,x x x x x x x x x+ = + − −∫ ∫  

where the final “1” is obtained by integrating the subtracted-out function ln x . 
Applying an eight-point Gaussian quadrature to the regular integral above gives 
less than 1 × 10-12 % error. Similarly, for the integral with the singularity at the 
centre (10c), the subtraction gives the following regular integral: 

( ) ( )
1 1

1 1

cot ln sin d cot ln sin ln d 2.x x x x x x x x x
− −

+ = + − −∫ ∫  

In this case the application of an 8-point Gaussian quadrature rule returns an 
error of 5 × 10−10%. A graph of the original integrand for the test function and 
the integrand with the singularity subtracted out is shown in Figure 3, indicat-
ing that the remaining function is regular. 

Returning to original form of the test problem (1), the typical boundary ele-
ment integrals (8), the integrands are functions of distance from the collocation 
point. A good example of this is with the Helmholtz operators considered earlier; 
if the discrete Laplace operators are computed once-and-for all, then this sub-
tracted out value could be use on the corresponding Helmholtz problems for 
each chosen value of k. For example, in (9), the singularity is subtracted out as 
follows: 

( ) ( ) ( ) ( )0 0, d , d , , d .
j j j

k k
S S S

G S G S G G S
∆ ∆ ∆

= + −∫ ∫ ∫l l l lp q p q p q p q  

For example there are analytic expressions for ( )0 , d
jS
G S

∆∫ jp q  in the case  

of straight-line or planar triangular panels [11] [12]. For the two-dimensional 
problem, 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

1
0 0

0 0

0 0

1, , ln
4 2

1 ln
4 2

1 1 ln ,
4 2 4

k
iG G H kr r

i J kr iY kr r

iY kr r J kr

−
− = −

π

= + +
π

= − + +
π

l lp q p q

 

where 0J  and 0Y  are Bessel functions. The Bessel functions are real-valued 
and hence the equation above gives the subtracted-out function in real and im-
aginary parts. The graphs in Figure 4 for 1k = , assuming the panel lies on  
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Figure 3. ( )cot ln sin dx x x x+ , ( )cot ln sin ln dx x x x x+ − . 

 

 

Figure 4. ( ) ( )0
1 1 ln
4 2

Y x x= − +
π

, ( )0
1
4

J x . 

 
[−1, 1] and the collocation point is at the centre. The graphs indicate that—once 
the singularity is subtracted out—the functions are regular. 

Subtracting out the singularity in the BEM for the axisymmetric Helm-
holtz Equation 

Two examples of axisymmetric problems are considered in order to observe 
the nature of the remaining function on the generator, once the Green’s function  

for the 3D Helmholtz equation ( e
4

ikr

kG
r

−

=
π

) is integrated over azimuthal angles  

using the H3ALC code [3] [11] [12], with 10k =  and with 0G  subtracted out. 
In Figure 5(a) the panel is parallel to the axis and in Figure 5(b) the panel is at 
right angles to the axis, and in both cases the remaining function is apparently 
regular. 

3.4. Substitution or Transformation 

The main purpose of this paper is to develop techniques based on power substi-
tution, as initiated in the Introduction. Generally, the main purpose of the subs-
titution is to transform the integrand from being a singular function to a regular  
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(a) 

 
(b) 

Figure 5. (a) Generator function for [1, 0] - [1, 1]: real part, imaginary part. (b) Genera-
tor function for [0, 0] - [1, 0]: real part, imaginary part. 
 
function, which is then amenable to standard quadrature. In this section the 
context of using substitution ahead of applying quadrature is reviewed. 

The fundamental basis of this method is substituting one function for x. In  

general let ( )x g t=  and hence ( )d
d
x g t
t

′= , and hence with suitable changes of 

limits we may write 

( ) ( )( ) ( )d d ,f x x f g t g t t
∗ ∗

∗ ∗
′=∫ ∫  

with the rationale that the transformed integrand is more suited to standard qu-
adrature. In this section we consider methods based on the transformation of the 
integral. 
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Erf rule 
The erf rule is based on the substituting the error function (erf) for x, with any 

possible singularities corresponding to the argument of the error function being 
either ±∞ and hence it is applicable to an end-point rather than a mid-point 
singularity. The method was put forward in the area of the boundary element 
solution of acoustic/Helmholtz problems by Burton [27]. Consider the problem 

( )
1

0

df x x∫  

with the singularity remaining at 0x = . The substitution ( )1 erfc
2

x t= , trans-

forms the singularity to −∞ where erfc is the complement of the error function. 

As 
2d 1  e

d
tx

t
−=

π
 it follows that 

( ) ( ) 21

0

1 1d erfc e d .
2

tf x x f t t
∞ −

−∞

 =  π  ∫ ∫  

The integrand is now regular and because of the fast decay of the Gaussian the 
integrand is only significant in a narrow interval of t, the integration range can 
be severely truncated in practice. This, alongside the finding that functions with 
a Gaussian envelope have been found to be approximates very accurately by the 
trapezium rule [28] results in the erf rule being an efficient method for integrat-
ing singular functions [29] [30]. For example with the test problem (10b) the erf 
rule with integration points at t = −3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 
and 3 (13 points) has a relative error of 1.1 (−4). 

Polynomial Transformation 
Most simply, a polynomial transformation is achieved by a substitution or 

power transformation of the form 

1d
d

,p pxx t pt
t

−= =                            (11) 

gives the following 

( ) ( )1 1 1
1 1

d d ,p
p pf x x pt f t t−

− −
=∫ ∫                     (12) 

in which the location of the former logarithmic singularity is now at 0t = , but 
for a large enough value for p (and for a logarithmic singularity this is for 1p > ) 
the new integrand is continuous. However, the lower limit is only practical if p is 
also an odd integer, so that the lower limit is −1, and in this case the domain of 
integration is usefully unchanged by the transformation, as shown in Equation 
(13): 

( ) ( )1 1 1
1 1

d dp pf x x pt f t t−

− −
=∫ ∫  (p is an odd integer, 3p ≥ ).   (13) 

The concept of transforming the integral so that both a regular integrand was 
returned and the domain was unchanged is developed in Telles [14], in which a 
cubic polynomial, rather than a simple power substitution, is applied. In the first 
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author’s previous work the weak singularities in three-dimensional axisymme-
tric case are handled by the splitting the integral at the singularity and applying 
the transformation 2 x t=  on the [0, 1] domain and applied either side of the 
singularity [8] [9] [11] [12]. 

Notes 
The transformations of the integral outlined are the ones that are most often 

used in the boundary element method. Clearly there are a range of substitutions 
that can be applied for the same purpose. If the singularity is within the domain 
then the methods based on the erf rule requires the interval to be split at the 
singularity and a method to be applied either side. This was also the case with 
the power method in some cases, such as the 2 x t=  substitution discussed 
earlier. If the domain needs to be split then this means that a composite qua-
drature is effectively being applied, and this is often going to be less efficient 
than a quadrature rule designed for the full domain. Telles [14] suggests the 
substitution of a cubic and maintaining the same domain of [−1, 1] following 
transformation. If the singularity is in the centre of the domain, as in the objec-
tive problem in this paper, then this is achieved by simplifying the method in 
Telles to 3x t= . 

4. Results for x = tp 

In this section numerical integration methods that arise through the power subs-
titution px t=  in the integral (1) with Gauss-Legendre quadrature rules applied 
to the transformed integral. These methods are employed to find approximations 
to the integrals of the test problems of ( ) lnf x x=  and  
( ) ( )cot ln sinf x x x x= + . Both test problems have an ( )logo x  singularity 

in the centre of the domain of integration [−1, 1]. All Gauss-Legendre rules were 
generated using the Keisan on-line calculator [31]. 

Gaussian quadrature rules with an even number of points avoid having a 
point at the centre of the domain (where the singularity is located) and so stan-
dard 8, 12 and 16 point Gauss-Legendre rules and a range of odd values of p are 
applied in the first case. Given that the transformed integrand is zero at the cen-
tre (for 3p ≥ ) the central point can be ignored and hence 5-, 9-, 13- and 
17-point rules can be applied as 4-, 8-, 12- and 16-point rules. A spectrum of re-
sults are obtained, from which decisions about the choice of the near-optimal 
value of the power p may be explored. 

Let the Gauss-Legendre with m points be defined on [−1, 1] and have weights 

jw  and abscissae jt  for 1,2, ,j m=  . Transforming the integral through the 
substitution px t=  (13) and applying the Gauss-Legendre quadrature rule to 
the transformed integral returns the following method of approximation: 

( ) ( ) ( )1 1 1 1
11 1

d d .mp p p p
j j jjf x x pt f t t pw t f t− −

=− −
= ≈ ∑∫ ∫  

The quadrature rule is now in the standard form with weights 1p
j j jW pw t −=  

and p
j jT t= .  
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4.1. Gauss-Legendre Rules with an Even Number of Points 

The results from applying the method to the test problems are listed in Table 1 
and Table 2 for various values of p and for 4-, 8-, 12- and 16-point Gaussian 
Legendre rules applied to the resulting integral. The smallest error for each 
Gaussian rule with the various p-values is given in bold, indicating the optimum 
value for p. 

4.2. Discussion 

The most important point to be taken from the results in the tables above is that 
the optimal power substitution is significantly larger than those that have been 
used previously (i.e. p = 2 or 3, as discussed). The optimal value of p increases 
significantly with the number of Gauss points for the ln x  test problem, but 
much more steadily for the more-realistic test problem in Table 2. In Table 1 
the p = 1 is equivalent to ignoring the singularity, as discussed in Subsection 3.1. 

The Gauss-Legendre points jt  for 1,2, ,j m=   are spread fairly evenly on 
[−1, 1]. The effect of the power transformation is to cluster the quadrature 
points jT  closer to the singularity at zero as p becomes larger and the weights 

jW  corresponding to the clustering points are correspondingly smaller with 
proximity to the singularity. For example, for one of the methods that performs 
well is the 16-point rule with p = 9 and the data associated with this method is 
shown in Table 3. 

As the weights associated with the points close to the singularity are “small” 
then a further adjustment to the method is to delete these points since they con-
tribute very little to the integral and they require function evaluations. This is 
particularly effective when the power substitution p is large. For example, simply 
 
Table 1. Numerical error in 

1

1
ln dx x

−∫  following px t=  substitution and Gauss rule. 

p 4-point 8-point 12-point 16-point 

1 4.9 (−1) 2.5 (−1) 1.7 (−1) 1.3 (−1) 

3 1.6 (−1) 2.1 (−2) 6.6 (−3) 2.9 (−3) 

5 1.0 (−1) 2.9 (−3) 4.0 (−4) 9.7 (−5) 

7 1.8 (−1) 7.2 (−4) 4.1 (−5) 5.6 (−6) 

9 5.6 (−1) 3.2 (−4) 7.0 (−6) 5.1 (−7) 

11 8.3 (−1) 2.5 (−4) 1.9 (−6) 7.1 (−8) 

13 9.2 (−1) 3.9 (−4) 7.6 (−7) 1.4 (−8) 

15 8.9 (−1) 1.5 (−3) 4.6 (−7) 4.0 (−9) 

17 7.5 (−1) 1.3 (−2) 4.2 (−7) 1.5 (−9) 

19 5.5 (−1) 3.9 (−2) 6.1 (−7) 8.1 (−10) 

21 3.0 (−1) 8.2 (−2) 1.5 (−6) 5.8 (−10) 

23 5.2 (−2) 1.4 (−1) 8.8 (−6) 5.7 (−10) 

25 2.0 (−1) 2.1 (−1) 1.3 (−4) 8.0 (−10) 
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Table 2. Numerical error in ( )1

1
cot ln sin dx x x x

−
+∫  following px t=  substitution and 

even Gauss rule. 

p 4-point 8-point 12-point 16-point 

1 4.9 (−1) 2.6 (−1) 1.7 (−1) 1.3 (−1) 

3 1.4 (−1) 2.1 (−2) 6.6 (−3) 2.9 (−3) 

5 2.3 (−1) 3.2 (−3) 4.0 (−4) 9.7 (−5) 

7 3.7 (−2) 2.4 (−3) 2.1 (−5) 5.4 (−6) 

9 3.9 (−1) 1.4 (−2) 1.3 (−4) 2.4 (−6) 

11 8.0 (−1) 3.2 (−2) 4.9 (−4) 1.0 (−5) 

13 1.1 (−1) 5.7 (−2) 1.5 (−3) 3.8 (−5) 

15 1.3 8.4 (−2) 3.7 (−3) 1.1 (−4) 

17 1.3 1.0 (−1) 7.4 (−3) 2.5 (−4) 

19 1.3 1.0 (−1) 1.3 (−2) 5.3 (−4) 

 
Table 3. The 16 point rule. 

Gauss-Legendre rule Transformed rule following 9x t=  substitution 

points jt  weights jw  points jT  weights jW  

±0.09501250984 0.1894506105 ±0.0000000006309967386 0.00000001132360842 

±0.2816035508 0.182603415 ±0.00001113635686 0.0000649914786 

±0.4580167777 0.1691565194 ±0.0008870181019 0.002948372458 

±0.6178762444 0.1495959888 ±0.01312542828 0.02860055385 

±0.7554044084 0.1246289713 ±0.08009688646 0.1189317034 

±0.8656312024 0.09515851168 ±0.272895342 0.2699935385 

±0.9445750231 0.06225352394 ±0.5985881541 0.3550570253 

±0.989400935 0.02715245941 ±0.9085542159 0.2244038037 

 
deleting the two points closest to the singularity returns an error of 2.8 (−6), 
compared to the error of 2.4 (−6) when the points are included; a marginal loss 
of accuracy. In order that the weights sum to 2 the weights for deleted points 
may be added with the ones nearest to them: in this case the error is 2.6 (−6). 

4.3. Gauss-Legendre Rules with an Odd Number of Points 

Following on from the discussion in the previous Subsection and the introduc-
tion to this Section, if the quadrature rule has a point in the centre of the domain 
then for weighting is zero for 3p ≥  and that point can be deleted. In Table 4, 
5-, 9-, 13- and 17-point Gauss-Legendre rules are applied, deleting the mid-point 
so that the actual numbers of points are 4, 8, 12 and 16. 

4.4. Test Problem 

In order to demonstrate the improvements in efficiency through using the rules  
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Table 4. Numerical error in ( )1

1
cot ln sin dx x x x

−
+∫  following px t=  substitution and 

odd Gauss rule. 

p (5-1)-point (9-1)-point (13-1)-point (17-1)-point 

3 1.1 (−1) 2.0 (−2) 7.0 (−3) 3.2 (−3) 

5 7.7 (−3) 1.6 (−3) 2.8 (−4) 7.6 (−5) 

7 1.4 (−1) 1.1 (−3) 3.0 (−5) 3.8 (−6) 

9 1.2 (−1) 3.9 (−3) 4.1 (−5) 1.0 (−6) 

11 5.5 (-2) 1.2 (−2) 1.8 (−4) 4.1 (−6) 

13 3.1 (−1) 2.5 (−2) 5.6 (−4) 1.6 (−5) 

 
a test problem is set up comparing the power transformation with 3p =  with 
those suggested by the results in Table 4. The test problem is that of calculating  

( )0 , d
S
G S

∆∫ p q  for an axisymmetric three-dimensional problem ( ( )0
1,

4
G

r
=

π
p q , 

where r = −p q ). The panel S∆  is generated by (r, z) end-point coordinates  

(0, 1) and (1, 1). The point ( )0.5,1=p  is at the centre of the generator, the lo-
cation of the singularity. The results with the optimal values of power p are 
compared with 3p = , in Table 5. 

5. Conclusions 

The handling of singular integrals is a continual area of enquiry in the imple-
mentation of the boundary element method. This paper explores this again, but 
for integrating over panels in two-dimensional and axisymmetric three-dimen- 
sional problems and with the singularity lying at the parametric centre of the 
panel in 2D and of the generator in axisymmetric 3D. The issue of singular inte-
gration in the boundary element method is therefore considered in one of the 
simplest forms; with a logarithmic singularity ( ~ ln r ) for 2D problems, or when 
the integral is resolved onto the generator in axisymmetric 3D. Hence the subject 
of this paper; the numerical integration of functions with a mid-point logarith-
mic singularity is one of the most typical problems within the boundary element 
method. 

The boundary element method is considered in the context of its solution of 
Laplace’s equation and the Helmholtz equation. It was discussed that within the 
BEM, generally there are ( )2O n  regular integrals and ( )O n  singular integrals 
and so in that context the computational cost of the evaluating singular integrals 
is unlikely to have a significant impact on the running time of the BEM. Howev-
er, it is still useful to have practical, robust and reasonably efficient methods for 
evaluating the singular integrals [32] [33] [34]. 

The boundary element method normally requires the evaluation of the dis-
crete form of a number of integral operators, of which at most one will have the 
logarithmic singularity of this enquiry. However, the integrands in all required 
integral operators that occur are functions of r, the distance of the integration  
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Table 5. Results from integrating 0
1

4
G

r
=

π
 over an axisymmetric panel using the px t=

substitution with 3p =  compared to its “optimal” value. 

Number of points p = 3 P = “optimal” 

4 0.458521 0.471231 (p = 5) 

8 0.465498 0.467126 (p = 7) 

12 0.466553 0.467107 (p = 7) 

16 0.466854 0.467107 (p = 9) 

32 0.467072 0.467107 (p = 9) 

 
point from the singularity, and hence there is significant merit (in terms of 
computational cost) in using the same quadrature rule for all the integral opera-
tors that are required. Pursuing the optimal integration method for one integral 
operator, as we are in this work, without reference to the other integral operators 
will not necessarily return the best overall integration rule for the BEM. In prac-
tice, the aim is to achieve a numerical integration method that works well for all 
required operators in the boundary element method. 

Various methods for handling singularities are discussed in Section 3. “Sub-
tracting out” the singularity is a generally useful method, for example with solv-
ing the Helmholtz Equation (2) for a range of values for the wavenumber, the 
subtracted out integral may be evaluated “once and for all” and then used for 
each value of k. For the cases of 2D and axisymmetric 3D problems, once the 
singularity is subtracted out, the remaining integral is regular. However, “sub-
tracting out” the singularity does not completely avoid the issue of singular inte-
grals. 

An appropriate substitution can transform a singular integral into a regular 
one. The two main substitutions that have been employed in the BEM were out-
lined in Section 3; the erf rule or a polynomial or power substitution. The poly-
nomial or power substitution is generally attractive because of its relative sim-
plicity. For the problem considered in this paper (1), with the singularity at the 
centre, the power transformation px t=  (with 3p ≥  and an odd number) is a 
simple method for regularising the integral, and usefully maintains the same 
domain of integration; standard quadrature rules can be applied directly. 

The results from applying the px t=  substitution, followed by Gaussian qu-
adrature, are given in Section 4. Gauss-Legendre rules are applied with an even 
number of points, so that evaluation at the centre could be avoided. In Table 1 
and Table 2 the numerical error resulting from applying 4, 8, 12 and 16-point 
Gauss-Legendre rules to the transformed test integrals are tabulated for a range 
of values of the power p. It is noted that as p increased the transformed quadra-
ture points clustered closer to the singularity, with smaller transformed weight-
ing, and an example of this is given in Table 3. Hence there is a potential for de-
leting the transformed quadrature points that are very close to the singularity 
with a marginal loss of accuracy and a shortened processing time. Table 4 shows  
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Table 6. Near-optimal quadrature rules for functions with a mid-point logarithmic singularity. 

4-point rule (p = 5)_ 8-point rule (p = 7)_ 12-point rule (p = 7)_ 16-point rule (p = 9)_ 

± points weights ± points weights ± points weights ± points weights 

0.04526940 0.20119285 0.00037687 0.00254122 0.00003453 0.00023730 1.83822E−07 1.63659E−06 

0.61104331 0.79880715 0.03266366 0.09714748 0.00364996 0.01183885 8.13475E−05 0.000350197 

 

0.28546776 0.43178366 0.04512310 0.08759953 0.002447359 0.00661812 

0.79731641 0.46852763 0.21262820 0.25786505 0.02301861 0.04256819 

 

0.54773253 0.38492394 0.10875040 0.14012126 

0.89439875 0.25753532 0.31725330 0.27583638 

 
0.63429430 0.33302527 

0.91830753 0.20147896 

 
the results of the px t=  substitution followed by a Gauss Legendre rule with an 
odd number of points with the central point deleted (with no effect on accuracy). 
The results in Table 4 generally compare favourably with the results in Table 2, 
the corresponding results requiring the same processing time. 

A notable conclusion from this work is in the guidance it suggests for the op-
timal value for p. From the results of the more realistic test problem in Table 2 
and Table 4, the optimal values of p are 5 or 7 for the 4-point rules, p = 7 for the 
8 or 12-point rules and p = 9 for the 16-point rule. The extent of the transforma-
tion of the integral runs with the power p, but the effects of this are offset by the 
improved continuity properties. 

The near-optimal quadrature rules for integrating functions with a logarith-
mic mid-point singularity, based on this method and the test results are given in 
Table 6. The resulting “optimal” methods have been applied to a test problem of 
integrating over an axisymmetric panel with a 1/r singularity, typically found in 
the boundary element method. 

In this paper the solution of integrals on [−1, 1] with a midpoint logarithmic 
singularity have been explored, with a particular focus on the px t=  transfor-
mation followed by Gauss-Legendre quadrature, where p is an odd number and 

3p ≥ . Based on the results, the recommendation is to choose a high value of p 
of 5 or 7 for quadrature rules with few points and use larger values of p as the 
number of points increases, as indicated in the results. Standard quadrature rules 
with a point at the centre (e.g. Gauss-Legendre rules with an odd number of points) 
are useful, as the central point may be deleted. The results are compared with the 

3p =  substitution in Table 4 and Table 5, the outcome of Telles work, and the 
superior convergence and significant improvements in accuracy are evident. 
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