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Abstract

The purpose of this research is to investigate the efficiency of ex-
plicit diagonally implicit multi-stage integration methods with ex-
trapolation. The author gave detailed explanation of explicit di-
agonally implicit multi-stage integration method and compared the
base method with a technique known as extrapolation to improve
the efficiency. Extrapolation for symmetric Runge-Kutta method is
proven to improve the accuracy since with extrapolation the solu-
tions exhibit asymptotic error expansion, however for General linear
methods, it is not known whether extrapolation can improve the ef-
ficiency or not. Therefore this research focuses on the numerical
experimental results of the explicit diagonally implicit multistage
integration with and without extrapolation for solving some ordi-
nary differential equations. The numerical results showed that the
base method with extrapolation is more efficient than the method
without extrapolation.

Keywords
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1. Introduction

Although general linear methods (GLMs) have been introduced about
40 years ago, many researchers have not considered GLMs as prac-
tical numerical methods. The most complicated for these methods
is identifying the practical methods. For this reason, it is necessary
to introduce a subclass of GLMs known as diagonally implicit muti-
stage integration, abbreviated as (DIMSIMs) [1]. DIMSIMs have been
proven to be advantageous than RK methods and linear multi-step
methods. DIMSIMs also have been considered very potential for effi-
cient implementations.
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Consider the following initial-value problems

y'(x) = fy(@), = € [xo, X]
Yy (zo) = Yo

General linear methods (GLMs) is given by
Y, = Zauhf —&—Zu”y[n Hi=1,2-s,
s T
n n—1] .
yz[]:ZbZ]hf(}/])'i_Zvljy.E ],221,2,"'77"-
j=1 j=1

where Y; can be approximated as follows
}/i = y(xn—l + Cih) + O(hq+1)7 (3)

The incoming and outgoing quantities of GLMs can also approxi-
mates to

" - Za ky a:n DhE + O(hPHh,

(4)
Z ozlky J;n hk + O(hp+1)

The subclass of GLMs which is DIMSIMs has the leading coeffcient
matrix, A, that can have four different structures known as types,
depending on whether the intended application is non-stiff or stiff
and on whether the computer architecture is sequential or parallel [2].
DIMSIMs can be divided into four types such as follows:

e Type L.
The coefficient matrix A of this type considered as lower triangu-
lar matrix and its diagonals equal to zero. The type one required
to solve the non-stiff problem on a sequential computer.

e Type II.
The coefficient matrix A of this type considered as lower trian-
gular matrix and its diagonals equal to constant. The type two
required to solve the stiff problem on a sequential computer.

e Type III.
The coefficient matrix A given for this type as zero matrix. This
type required for non-stiff problem in a parallel environment.

o TypeIV.
The coefficient matrix A is assumed in this type as diagonal
matrix. This type required for stiff problem in a parallel envi-
ronment.

The class of GLMs include many special methods, as given in [2]
and [3]. In particular, these methods have subclass of DIMSIMs con-
sidered in [1] and further investigated in [4], [5] and [6], two-step RK
methods considered in [7] and further investigated in [8] and [9]. The
DIMSIMs particularly had been investigated by Will Wright in his
PhD thesis [10]. DIMSIMs have also been discussed in a monograph
given by Jackiewicz [11], Hairer and Wanner [12] and a review paper
by Butcher [13].
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In the recent years, it has been challenging to construct an effi-
cient methods that are more accurate and more efficient than original
methods. In [14], he described the construction of algebraically sta-
ble DIMSIMs by introducing a new idea such as e—algebraic stability
and study its consequences. In [15], they introduced a new class of
implicit-explicit DIMSIMs, where the non-stiff part is treated by an
explicit formula and the stiff part is treated by an implicit formula. In
the same year, Famelis and Jackiewicz [16] gave the new construction
of DIMSIMs based on Differential Evolution. In this paper, the ad-
vantages of using the extrapolation technique with explicit DIMSIMs
methods are given for some non-stiff problems.

2. Order Conditions

The order conditions of DIMSIMs can be considered by using the steps
between xz,,_1 and x,, with step-size h. The output approximations of
DIMSIMs is assumed to have the same order. The order p and stage
order q are considered to be the same.

Recall the form of GLMs for a single step

vl = ang (vi) + oyl

(5)
yi") = Bhf (y["]) L Vyln,

In order to satisfy the order condition of DIMSIMs, it is necessary
to consider the following

exp(cz) = zAexp(cz) + UZ + O (RPT)

exp(2)Z = zBexp(cz) + VZ + O (hPT), (6)

where
exp (c12) 1
exp (c22) z
exp(cz) = . s L= . (7)
exp (¢s2) ZP.

3. Construction of Type I DIMSIMs

Explicit solvers have updated the type I DIMSIMs which has been
considered firstly by [1]. The methods considered are with conditions
p = q =r = s. The stability function during these methods considered

by

p(w, z) = w* Hw = R(2)), (8)
where
R(z):1+z+§+-~+§, (9)

which is approximate to the exponential function exp(z). This meth-
ods have similar stability as the RK methods of order s. By follow-
ing [4], the stability function is given by

p(w,2) =w® —p1(2)w ™+ (D) a1 (2)w + (—1)*ps(2)w,
(10)
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where
p1(2) =14+ puiz +p122® + -+ prszt,
p2(2) = p212 +p2222 + 4 paszt,

psfl(z) = psfl,sf2zs_2 +Ps—1,s—128_1 +psfl,szs7
ps(z) = ps,s—171871 ersszs,

where p;; are coeflicients of polynomial p;(z) relying on a;;,i =

1,2,---,8,5 =1,2,---,4—land v;;t = 1,2,---,,s — 1. By solving
the form of (s — 1)(s + 2)/2 for non-linear problems
p=0, k=235 l=k—1k- s, (11)

with respect to the value (s — 1)(s + 2)/2. The coefficient matrix B
can be obtained by using the following condition:

B=By— AB, — VB, + VA, (12)

The coefficients p;; on the other hand can be computed by using
the Fourier series approach.

A Fourier series approach can be summarized as follows. Consider
that w, pn=1,2,..., Ny, are complex numbers spanned uniformly on
the unit circle, where Ny denotes a sufficiently large integer. Multi-
plying the following relation

p(wy, z) = wy, — pl(z)wf’[l 4t (_1)371]78_1(2)10” + (=1)°ps(2)

(13)
by wﬁ’s, k=1,2,--- s, and using the summation with respect to p,
then
IREL
(=1)*pr(z) = N > wh T p(wp, 2). (14)
pn=1

In the same way, multiplying
Pe(20) = Prp—120 "+ PRy + -+ Peszs,  k=2,3,--- s, (15)
by 2z, !, and using the summation with respect to v, then
1
-1
= — z Zv),
Pkl N2 1;2::1 v Pr(z)

N1 N

1 s
- (71)kN N- Zzwﬁ 2y lp(w#,zv).
14¥2 p=1lv=1
This system can be numerically solved as
N1 No
DD Wi e plws,) =0, (16)
p=1v=1

Therefore, the polynomial of type I DIMSIMs can be obtained from
the following equation

p(w, 2) = det(Q(w, 2)), (17)
where
Qw,z) =w({ — zA) =V — 2By + 2AB; + 2V Bs. (18)

and the determinant det is a scalar value that can be computed from
the elements of a square matrix and encodes certain properties of the
linear transformation.
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4. Extrapolation Technique

Extrapolation technique is a powerful computational technique that
can be successfully applied in the efforts to improve the accuracy of
the approximate solutions in solving ordinary differential equations.
Extrapolation was first been introduced by Richardson in 1911. It
is an approximation method in the numerical solution of differential
equations. Richardson showed that the approximations arising from
finite difference scheme can be expressed in the form of

T(h) =10 + 12h* + sh* + ...+ O (h®), (19)

where h is stepsize, T'(0) = 7¢ is an adjustable parameter and 7o, 74
are independent of h.

The extrapolation formula by the Aitken-Neville formula is given
by
Tij1—Ti—1,-1 me19

, 2,
_m ) 9
mMi—jt1
where i = j =2,...,n.

There are two modes of extrapolation that can be applied in nu-
merical approach. They are passive and active extrapolations. When
extrapolated values are not used in any subsequent computation of
other extrapolated values, the process is called passive extrapolation
whereas if the extrapolated values are used at the end of a step as
the starting value for the next step, it is called active extrapolation.
Since the extrapolation can increase the accuracy and efficiency of
the approximate solutions, many researchers during these recent years
are still finding and developing the best ways to use this technique.
Gorgey [17] showed that passive extrapolation by the two stage Gauss
method is more efficient than the active extrapolation in solving the
linear and nonlinear stiff problems. Besides, the paper in [18] ex-
pressed the computing time spent by the Richardson extrapolation
for both types active and passive is more than ten times smaller than
the corresponding computing time by the Backward Euler Formula.
By following the research by Mona, Lagzi and Havasi as given in [18],
it is concluded that extrapolation is a powerful tool for increasing the
accuracy and efficiency with regard to the computational cost espe-
cially when the accuracy requirement is not extremely low. In [19], it
is shown that a new procedure to build stabilized explicit RK methods
based on Richardson extrapolation with higher order is studied. The
strategy was easy and allows deriving stabilized explicit RK methods
with order as high as desired. However, for low order, the stability
property were a little shorter than other methods without this tech-
nique.

In [20], the advantages of using extrapolation are given as follows:

Tiyj=Tij-1+ (20)

e It is possible to use the extrapolation technique in order to im-
prove the accuracy of the numerical experiments.

e The active type of extrapolation technique combining with
Trapezoidal role can make the computations becomes unstable.

e The computational cost of extrapolation technique is less than
the underlying numerical methods for prescribing the accuracy.

e The application with applying the Backward Euler formula with
active active type of extrapolation is leading to a stable proce-
dure.
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In this paper, passive extrapolation technique is applied to improve
the accuracy of the approximate solutions by the explicit DIMSIMs
methods of higher order in solving non-stiff problems. In the next sec-
tion, we will consider the numerical experiments of explicit DIMSIMs
with extrapolation technique.

5. Numerical Results

In this section, we discuss the results of numerical experiments ob-
tained by the MATLAB code dim18-extrap.m. This code is based
on explicit DIMSIMs with extrapolation technique of higher order
Pmax = 8.. To compare, we also present the results obtained by the
MATLAB code dim18.m. This code is based on explicit DIMSIM-
s without extrapolation of high order pm.x = 8, as being described
in [21].

The decision about determining the new order within 1 < p < 8
relaying on the following form

HeSt (xmpn)H

ratio =
lest (zn, pn — |

(21)

where
est (xn;pn - 1) =C (pn - 1) 2! (pnm +1: (pn + 1) m) (22)

Now if the previous step was not rejected and ratio < ryi,, pn <
Pmax, the new order will be choose as p,+1 = p, + 1. Besides, if the
ratio > rmax and p, > 1, then the new order in this case leads to
Pnt1 = pn — 1. By contract with this case, the order will be not
changed. During the above codes dim18-extrap.m and dim18.m, the
parameters chosen as rmin = 0.9, 7max = 1.1 and the maximal orer is
Pmax = 8.

The results will show which one of these methods is efficient in
solving non-stiff problems such as Van der Pol (VDP) and Brusselator
(BRUS) problems. The first test problem is Van der Pol (VDP) which
is defined as follows:

(23)

where the first equation denotes the non-stiff equation while the second
equation denotes stiff equation with including small €. In order to
solve the non-stiff problem, then e considered here is equal to one.
The initial values of VDP are given as follows

Y1 (0) = 27
2 10 292 1814
0)= -+ —e———e— —— 4+ 0().
v2(0) = =3+ §1¢~ 2187¢ ~ To6s3¢ T O
The problem is integrated to x, = 3.
The second test problem is Brusselator (BRUS) which is an auto
catalytic oscillating chemical reaction problem. It is a system of two
ordinary differential equations that are given by

(24)

yi =14 yiys — 4y, (25)
Yy = 3y1 — Y1y

where y1(0) = 1.5 and y2(0) = 3. The problem is integrated to =, = 1
by using h = 0.05.
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For the two problems, four figures are given. These figures give
the numerical results of stepsize and CPU-time versus global errors
for order 8 DIMSIMs with and without extrapolation technique. All
the numerical computational are performed by using MATLAB. The
CPU-time is measured by applying tic and toc as given in MATLAB.
The starting absolute and relative tolerances are tol = 107.

Figure 1 gives the numerical results for VDP test problem. From the
figure, we can see the extrapolation technique with explicit DIMSIMs
of order-8 gives better efficiency than explicit DIMSIMs without ex-
trapolation. Furthermore, the numerical results given in Figure 2 show
that the extrapolation technique with explicit DIMSIMs of order-8 also
gives greater efficiency than explicit DIMSIMs without extrapolation
for BRUSS test problem.

; ’ 10° —
H o-dim18 +d_lm1 8 |3
\ o dim18xtrap| o-dim18xtrap
104 b 10 e
s B
NN e o
10 > 10 i
g e 5 b ;
o
ulO . \\\\ E 6. —
e 10°¢ o
o o
107 107
10% 10°
10° 4 6 8 10 12 14
x10*
cputime stepsize

Figure 1. Numerical results for VDP problem by order-8 DIMSIM with
and without extrapolation.

T T e T P’
o dim18xtrap o dim18xirap
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10 \\ 10 7
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g U 5 o .
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10°¢ Ny 10.%/// o
o &
107 107,
s &
102 100 10° i i Pelie !
0.4 0.6 0.8 1 121416
%102
cputime stepsize

Figure 2. Numerical results for BRUS problem by order-8 DIMSIMs with
and without extrapolation.

6. Conclusions

In this paper, we discuss some issues related the development of explic-
it DIMSIMs for the numerical solution of non-stiff differential equa-
tions. This paper also gives the application of passive extrapolation
by the order-8 explicit DIMSIMs. As we can see from numerical re-
sults, the extrapolation technique with explicit DIMSIMs of order-8
gives better efficiency than explicit DIMSIMs without extrapolation
in solving VDP and BRUS test problems.

Future work will involve verifying the efficiency of implicit DIMSIMs
of higher order with extrapolation in solving stiff differential equations.

DOLI: 10.4236/jamp.2019.712212

3028 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2019.712212

A. J. Kadhim, A. Gorgey

Acknowledgements

The authors would like to extend their gratitude to the Ministry of
Higher Education in Malaysia for providing the research grant FRGS,
Vote No: 2015-0158-104-02.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication
of this paper.

References

1]

[10]

Butcher, J.C. (1993) Diagonally-Implicit Multi-Stage Integration
Methods. Applied Numerical Mathematics, 11, 347-363.
https://doi.org/10.1016/0168-9274(93)90059-Z

Jackiewicz, J. (2009) General Linear Methods for Ordinary Dif-
ferential Equations. John Wiley & Sons, Hoboken, NJ.
https://doi.org/10.1002/9780470522165

Butcher, J.C. (1987) The Numerical Analysis of Ordinary Dif-
ferential Equations: Runge-Kutta and General Linear Methods.
John Wiley & Sons, Chichester, New York.

Butcher, J.C. and Jackiewicz J. (1998) Construction of High
Order Diagonally Implicit Multistage Integration Methods for
Ordinary-Differential Equations. Applied Numerical Mathemat-
ics, 27, 1-12. https://doi.org/10.1016/S0168-9274(97)00109-8

Butcher, J.C. and Jackiewicz, J. (1996) Construction of Diagonal-
ly Implicit General Linear Methods of Type 1 and 2 for Ordinary
Differential Equations. Applied Numerical Mathematics, 21, 385-
415. https://doi.org/10.1016/S0168-9274(96)00043-8

Butcher, J.C., Chartier, P. and Jackiewicz, J. (1997) Nordsieck
Representation of DIMSIMs. Numerical Algorithms, 16, 209-230.
https://doi.org/10.1023/A:1019195215402

Jackiewicz, Z. and Tracogna, S. (1995) A General Class of Two-
Step Runge-Kutta Methods for Ordinary Differential Equations.
SIAM Journal on Numerical Analysis, 32, 1390-1427.
https://doi.org/10.1137/0732064

Cholloma, J. and Jackiewicz, Z. (2003) Construction of Two-Step
Runge-Kutta Methods with Large Regions of Absolute Stability.
Journal of Computational and Applied Mathematics, 157, 125-
137. https://doi.org/10.1016/S0377-0427(03)00382-0

Conte, D., D’Ambrosio, R. and Jackiewicz, Z. (2010) Two-Step
Runge-Kutta Methods with Quadratic Stability Functions. Jour-
nal of Scientific Computing, 44, 191-218.
https://doi.org/10.1007/s10915-010-9378-x

Wright, W. (2002) General Linear Methods with Inherent Runge-
Kutta Stability. Ph.D. Thesis, The University of Auckland, Auck-
land, New Zealand.

DOLI: 10.4236/jamp.2019.712212

3029 Journal of Applied Mathematics and Physics


https://doi.org/10.1016/0168-9274(93)90059-Z
https://doi.org/10.1002/9780470522165
https://doi.org/10.1016/S0168-9274(97)00109-8
https://doi.org/10.1016/S0168-9274(96)00043-8
https://doi.org/10.1023/A:1019195215402
https://doi.org/10.1137/0732064
https://doi.org/10.1016/S0377-0427(03)00382-0
https://doi.org/10.1007/s10915-010-9378-x
https://doi.org/10.4236/jamp.2019.712212

A. J. Kadhim, A. Gorgey

[11]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

Jackiewicz, Z. (2005) Construction and Implementation of Gener-
al Linear Methods for Ordinary Differential Equations: A Review.
Journal of Scientific Computing, 25, 29-49.
https://doi.org/10.1007/s10915-004-4631-9

Hairer, E. and Wanner, G. (1996) Solving Ordinary Differential
Equations II. Stiff and Differential-Algebraic Problems. Springer,
Berlin. https://doi.org/10.1007/978-3-642-05221-7

Butcher, J.C. (2006) General Linear Methods. Acta Numerica,
15, 157-256. https://dot.org/10.1017/S0962492906220014

Izzo, G. and Jackiewicz, Z. (2014) Construction of Algebraically
Stable DIMSIMs. Journal of Computational and Applied Mathe-
matics, 261, 72-84. https://doi.org/10.1016/j.cam.2013.10.037

Jackiewicz, Z. and Mittelmann, H. (2017) Construction of IMEX
DIMSIMs of High Order and Stage Order. Applied Numerical
Mathematics, 121, 234-248.
https://doi.org/10.1016/j.apnum.2017.07.004

Famelis, I.T. and Jackiewicz, Z. (2017) A New Approach to the
Construction of DIMSIMs of High Order and Stage Order. Ap-
plied Numerical Mathematics, 119, 79-93.
https://doi.org/10.1016/j.apnum.2017.03.015

Gorgey, A. (2012) Extrapolation of Symmetrized Runge-Kutta
Methods. Ph.D. Thesis, The University of Auckland, New
Zealand.

Mona, T., Lagzi, I. and Havasi, A. (2015) Solving Reaction-
Diffusion and Advection Problems with Richardson Extrapola-
tion. Journal of Chemistry, 2015, Article ID: 350362.
https://doi.org/10.1155/2015/350362

Martin-Vaquero, J. and Kleefeld, B. (2016) Extrapolated Stabi-
lized Explicit Runge-Kutta Methods. Journal of Computational
Physics, 326, 141-155. https://doi.org/10.1016/j.jcp.2016.08.042

Farago, I., Havasi, A. and Zlatev, Z. (2010) Efficient Implementa-
tion of Stable Richardson Extrapolation Algorithms. Computers
and Mathematics with Applications, 60, 2309-2325.
https://doi.org/10.1016/j.camwa.2010.08.025

Butcher, J.C., Chartier, P. and Jackiewicz, Z. (1999) Experiments
with a Variable-Order Type 1 DIMSIM Code. Numerical Algo-
rithms, 22, 237-261. https://doi.org/10.1023/A:1019135630307

DOLI: 10.4236/jamp.2019.712212

3030 Journal of Applied Mathematics and Physics


https://doi.org/10.1007/s10915-004-4631-9
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1017/S0962492906220014
https://doi.org/10.1016/j.cam.2013.10.037
https://doi.org/10.1016/j.apnum.2017.07.004
https://doi.org/10.1016/j.apnum.2017.03.015
https://doi.org/10.1155/2015/350362
https://doi.org/10.1016/j.jcp.2016.08.042
https://doi.org/10.1016/j.camwa.2010.08.025
https://doi.org/10.1023/A:1019135630307
https://doi.org/10.4236/jamp.2019.712212

	Abstract
	Keywords
	1 Introduction
	2 Order Conditions
	3 Construction of Type I DIMSIMs
	4 Extrapolation Technique
	5 Numerical Results
	6 Conclusions

