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ABSTRACT 
Correct prediction of propensity of crystallization of proteins is important for cost- and 
time-saving in determination of 3-demensional structures because one can focus to crys-
tallize the proteins whose propensity is high through predictions instead of choosing pro-
teins randomly. However, so far this job has yet to accomplish although huge efforts have 
been made over years, because it is still extremely hard to find an intrinsic feature in a pro-
tein to directly relate to the propensity of crystallization of the given protein. Despite of this 
difficulty, efforts are never stopped in testing of known features in amino acids and proteins 
versus the propensity of crystallization of proteins from various sources. In this study, the 
comparison of the features, which were developed by us, with the features from well-known 
resource for the prediction of propensity of crystallization of proteins from Bacillus halo-
duran was conducted. In particular, the propensity of crystallization of proteins is consi-
dered as a yes-no event, so 185 crystallized proteins and 270 uncrystallized proteins from B. 
haloduran were classified as yes-no events. Each of 540 amino-acid features including the 
features developed by us was coupled with these yes-no events using logistic regression and 
neural network. The results once again demonstrated that the predictions using the features 
developed by us are relatively better than the predictions using any of 540 amino-acid fea-
tures. 

 

1. INTRODUCTION 
The prediction of propensity of crystallization of proteins from various bacteria is an important as-
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pect of our studies [1-8] because this research direction is still active [9-15], though, after years of investi-
gation. Statistically, the predictions are better than random chance throughout studies, even with very high 
successful rate. However, this is still a phenomenon based approach because it still cannot figure out the 
deeply-uncovered factors, which determine the propensity of crystallization.  

Of predictors, an important group of predictors is physicochemical features of amino acids. However, 
no solid and general conclusion could be easily reached on which physicochemical feature is better to pre-
dict the crystallization propensity [16]. Yet, the protein crystallization more and more becomes a routine 
work in many laboratories, which require simple and reliable methods to predict the propensity of crystal-
lization of proteins of interests. 

Clearly, much effort and many studies are still in need to approach this problem because the number 
of proteins is still increasing rapidly although the crystallization already is no longer the only technology to 
find the 3-dimensional structure of proteins. 

Accordingly, it necessarily tests each physicochemical feature against the propensity of crystallization 
for as many different proteins as possible although all known physicochemical features have been tested in 
different occasions under different circumstances. 

In this study, the three features, which combined features from amino acid and protein, were tested 
against the propensity of crystallization of proteins from B. haloduran, and compared with the results ob-
tained from each of 540-plus features possessed by amino acid. The results of this study once again dem-
onstrate the wide-ranged applicability of three features developed by us because they catch the intrinsic 
random characteristic from protein sequences. 

2. MATERIALS AND METHODS 
2.1. Data 

Four hundred fifty five proteins of B. haloduran were obtained from Target DB [17, 18] under the 
criterion of purified proteins including 185 under the criterion of crystallized protein as used in previous 
studies [1-8, 19, 20]. 

2.2. Features Possessed by both Amino Acid and Protein 

The amino acid distribution probability is the first feature possessed by both amino acid and protein. 
This feature comes from the occupancy of subpopulations and partitions describing the distribution of 
elementary particles in energy states according to three assumptions of whether or not to distinguish each 
particle and energy state, i.e. Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein assumptions in statis-
tical mechanism [21]. This feature has been used in many occasions, whose probability can be computed 
with the following equation, r!/(q0! × q1! × ··· × qn!) × r!/(r1! × r2! ×··· × rn!) × n−r, where ! is the factorial, r is 
the number of a type of amino acid, q is the number of partitions with the same number of amino acids 
and n is the number of partitions in the protein for a type of amino acid. For a type of amino acids, it has 
only one distribution probability in a protein (Columns 8 and 9, Table 1). 

The amino acid future composition is the second feature possessed by both amino acid and protein, 
which comes from the observation that there are 64 RNA codons but only 20 types of amino acids, so each 
type of amino acids corresponds to different number of RNA codons, e.g., methionine has one RNA codon 
(AUG), phenylalanine has two RNA codons (UUC and UUU) but leucine has six RNA codons (CUA, 
CUC, CUG, CUU, UUA and UUG). These naturally lead to different translation probabilities when a sin-
gle RNA code mutates, and consequently the probability that an amino acid mutates to another amino ac-
id is different (Columns 10 and 11 in Table 1). And this feature has been used in many occasions. 

The amino acid pair predictability is the third feature possessed by both amino acid and protein, 
which is based on permutation. And this feature has been used in many occasions. 

2.3. Amino Acid Features 

By contrast, a physicochemical feature is only related to a single aspect of individual amino acids,  
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Table 1. Comparison of BEGF750101 feature, which is an amino acid feature that describes the he-
lix-coil equilibrium, with features of amino-acid distribution probability and amino-acid future 
composition for two proteins, 359060 and 367736. 

Amino 
Acid 

Number BEGF750101 
BEGF750101 × 

Number 
Distribution  
Probability 

Future  
Composition, % 

359,060 367,736 359,060 367,736 359,060 367,736 359,060 367,736 359,060 367,736 

A 6 9 1 1 6.00 9.00 0.2315 0.1967 5.48 8.02 

R 9 4 0.52 0.52 4.68 2.08 0.1770 0.1875 8.12 6.05 

N 3 7 0.35 0.35 1.05 2.45 0.6667 0.1071 3.78 4.23 

D 9 8 0.44 0.44 3.96 3.52 0.1967 0.2243 5.30 5.89 

C 2 0 0.06 0.06 0.12 0.00 0.5000 0.0000 2.96 2.16 

E 17 20 0.44 0.44 7.48 8.80 0.1098 0.0422 4.26 4.63 

Q 7 2 0.73 0.73 5.11 1.46 0.1071 0.5000 4.21 2.98 

G 8 13 0.35 0.35 2.80 4.55 0.2243 0.1158 6.22 7.09 

H 9 2 0.6 0.6 5.40 1.20 0.1475 0.5000 3.77 2.46 

I 12 9 0.73 0.73 8.76 6.57 0.1241 0.1967 5.29 5.67 

L 16 7 1 1 16.00 7.00 0.1192 0.3213 9.81 6.80 

K 5 8 0.6 0.6 3.00 4.80 0.3840 0.0421 3.63 4.43 

M 4 4 1 1 4.00 4.00 0.5625 0.1406 1.82 1.67 

F 5 6 0.6 0.6 3.00 3.60 0.1920 0.2315 3.22 2.60 

P 3 5 0.06 0.06 0.18 0.30 0.6667 0.1920 4.42 4.42 

S 9 14 0.35 0.35 3.15 4.90 0.1770 0.0087 6.69 7.93 

T 6 15 0.44 0.44 2.64 6.60 0.3472 0.0981 4.67 7.58 

W 7 0 0.73 0.73 5.11 0.00 0.2142 0.0000 0.83 0.60 

Y 6 6 0.44 0.44 2.64 2.64 0.2315 0.1543 2.74 2.49 

V 7 11 0.82 0.82 5.74 9.02 0.1285 0.2020 7.26 8.07 

 
therefore there are more than 540 amino acid features documented in AA Index database [22], for exam-
ple, spatial features [23], electronic features [24], hydrophobic features [25], predictors for secondary 
structures [26]. 

2.4. Models 

Logistic regression was a major tool used to model the relationship between crystallization propensity 
of proteins and amino-acid/protein features for proteins from B. haloduran because whether a protein can 
be crystallized can be defined as a yes-no event as the output of logistic regression, whereas various ami-
no-acid/protein features can serve as the input of logistic regression. Similarly, the 10-1 feedforward back-
propagation neural network was also used to model the relationship between crystallization propensity of 
proteins and amino-acid/protein features for proteins from B. haloduran. MatLab was used to perform 
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both logistic regression and neural network [27, 28]. 

2.5. Statistics 

The results were grouped into true positive (TP), true negative (TN), false positive (FP) and false neg-
ative (FN), so the accuracy, sensitivity and specificity can be calculated as follows: (TP + TN)/(TP + FP + 
TN + FN) × 100, (TP)/(TP + FN) × 100, and (TN)/(TN + FP) × 100, respectively. The McNemar’s test was 
used to compare the classified results. The sensitivity and specificity were compared using receiver oper-
ating characteristic (ROC) analysis [29-31]. The Mann-Whitney U-test was used to compare predicted 
accuracies at different cutoff values. 

3. RESULTS AND DISCUSSION 
Table 1 shows differences between amino acid features and combined features. As seen, the amino 

acid feature BEGF750101 that describes the helix-coil equilibrium has a invariable value for each type of 
amino acid (Columns 4 and 5) regardless of amino acid’s location, composition (Columns 2 and 3), and 
neighboring amino acids. A simple remedy is to multiply this amino acid feature by its corresponding 
composition (Columns 6 and 7, Table 1). In contrast, two combined features have different values for dif-
ferent amino acids for those two proteins (last four columns, Table 1). As can be seen, there are differenc-
es among these features, which can be used to correlate with the propensity of crystallization of proteins 
from B. haloduran, as well as for the comparison of their predictability. 

Figure 1 showed the comparisons of accuracy, sensitivity and specificity obtained using logistic re-
gression to correlate the propensity of protein crystallization with each of features. In this figure, every 
bar indicated how many features resulted in a similar accuracy, sensitivity or specificity. For example, 
the first bar from left-hand in the upper panel indicated that three amino acid features (CHAM830107, 
MITS020101 and FAUJ880112) had similar accuracies (0.588 ± 0.001). Interestingly, similar features 
(CHAM830108, FAUJ880111 and MITS020101) also have the worst performance in prediction of propen-
sity of crystallization of proteins from Mycobacterium tuberculosis [8] and from Lactobacillus [7]. Simi-
larly, the second bar indicated that two amino acid features (FAUJ880111 and KLEP840101) had the same 
accuracy (0.593), so the features, FAUJ880111 and FAUJ880112, should be completely eliminated for any 
prediction in this regard in future. Figure 1 strongly displayed that two combined features had relatively 
good relationship with the propensity of crystallization of protein. In particular, the prediction using ami-
no acid distribution probability was the best with respect to accuracy and sensitivity. 

Figure 2 displayed the comparisons of accuracy, sensitivity and specificity obtained using neural net-
work to correlate the propensity of crystallization of protein with each of features. The presentations in 
this figure had similar explanations as those in Figure 1. As shown in previous studies [1-8] and this 
study, the neural network can more accurately perceive difference between features. Compared against 
amino acid features, Figure 1 and Figure 2 suggested that two combined features not only are actively in-
volved in crystallization process, but also worked better for the predictions of propensity of protein crys-
tallization. Again, many amino acid features render similar results, being identical to the argument of ab-
undance in amino acid features [32]. Indeed, the prediction using amino acid distribution probability was 
the best with respect to accuracy and specificity in Figure 2. 

The database in the computation for both Figure 1 and Figure 2 was not regrouped, that is, the mod-
el parameters got from the 428 B. haloduran proteins were employed for predictions. This procedure is 
usually regarded as the initial stage of modeling, and then the database should be regrouped into two 
groups; one produces the model parameters whereas the other serves for the validation [33]. Figure 3 illu-
strated the accuracy, sensitivity and specificity got from delete-1 jackknife validation, which further dem-
onstrated the predictions using combined features were not worse than those using amino acid features. In 
fact, Figure 3 showed that the prediction using amino acid distribution probability and future composi-
tion had the best predictions in terms of accuracy and sensitivity. 

Table 2 listed predictive performance with respect to each feature in terms of accuracy, sensitivity  
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Figure 1. Accuracy, sensitivity and specificity obtained from logistic regression between the crystal-
lization propensity of proteins from B. haloduran and each of 535 features. 
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Figure 2. Accuracy, sensitivity and specificity obtained from fitting the relationship between the 
propensity of protein crystallization from B. haloduran and each of 535 features using 10-1 feed-
forward backpropagation neural network. 
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Figure 3. Accuracy, sensitivity and specificity of delete-1 jackknife validation obtained from model-
ing the relationship between crystallization propensity of proteins from B. haloduran and each of 
535 features using 10-1 feedforward backpropagation neural network. 
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Table 2. Predictive performance with respect to concrete features. 

Classification 
The highest 

value 
Accession 
number 

Description Characteristic 

Fitting with logistic regression 
Accuracy 0.6945  Current composition Combined feature 
Sensitivity 0.5081  19 features Second structure feature 
Specificity 0.9815 KLEP840101 Net charge Amino acid composition 

Fitting with neural network 

Accuracy 0.8591  Distribution probability Combined feature 

Sensitivity 0.7827  Distribution probability Amino acid composition 

Specificity 1  45 features Combined feature 
Delete-1 validation with neural network 

Accuracy 0.9997 BEGF750101 
Conformational  

parameter of inner helix 
Physicochemical feature 

Sensitivity 0.7225 WOLS870102 Principal property value z2 Physicochemical feature 

 0.7225 MIYS990105 
Optimized relative  

partition energies—method D 
Physicochemical feature 

 0.7225 KARP850103 
Flexibility parameter  

for two rigid neighbors 
Second structure feature 

Specificity 0.9997 BEGF750101 
Conformational  

parameter of inner helix 
Physicochemical feature 

 
and specificity. As shown, the delete-1 validation with neural network produces different features sensitive 
to predictions. This difference between delete-1 validation and other methods of validation is still unclear, 
suggesting more studies in need. 

Figure 4 displayed the results of ROC analysis with respect to logistic regression, fitting and delete-1 
jackknife validation using 20-1 feedforward backpropagation neural network. As expected: all the predic-
tion features generate their classifications distributing above diagonal, so the predictions are not a random 
event because the McNemar’s test showed that the classified results were significantly different from those 
of random guess (P < 0.01). Still, the combined features worked quite well in comparison with others.  

Table 3 showed the third combined feature, unpredictable portion of amino acid pairs, and predictive 
accuracy in all, crystallized and non-crystallization proteins from B. haloduran. In Table 3, this feature 
had difference between crystallized and non-crystallized proteins from B. haloduran, and predictive accu-
racy was different between crystallized and non-crystallized proteins, too. In particular, the predictable 
portion is statistically higher in crystallized proteins than in non-crystallized ones (40.07% vs. 38.37%), 
which suggests the difference between crystallized and uncrystallized proteins in terms of the predictable 
portion, while other physicochemical features cannot show such difference. This difference perhaps ex-
plains the reason in the accuracy of predictions. 

In conclusion, the present study once again demonstrated that the predictions using the features de-
veloped by us are relatively better than the predictions using any of 540 amino-acid features because they 
catch the intrinsic random characteristic from protein sequences so they have a wide-ranged applicability. 
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Figure 4. Comparison of sensitivity versus specificity obtained from logistic regression and from 
fitting and delete-1 jackknife validation in neural network in ROC analysis. Each gray circle is a re-
sult obtained using an individual amino acid feature while each black circle is a result obtained using 
one of two combined features. The diagonal line is the line of indiscrimination indicating a com-
pletely random guess. The text labels are the combined features. 
 
Table 3. Predictable portion of amino acid pairs and accuracy of crystallization prediction in pro-
teins from B. haloduran (The data were presented as median with 25% - 75% interquartile range, and 
the Mann-Whitney Rank Sum test was used to determine the difference between non-crystallized 
and crystallized groups). 

Characteristic Group Number Median (25% - 75%) P value 

Predictable portion (%) 
Non-crystallized 270 40.07 (33.33 - 44.21) 0.032 

Crystallized 185 38.37 (33.79 - 42.78)  
All proteins 455 39.39 (33.61 - 43.32)  

Accuracy in fitting 
Non-crystallized 270 0.97 (0.89 - 0.99) <0.001 

Crystallized 185 0.54 (0.31 - 0.70)  
All proteins 455 0.79 (0.59 - 0.98)  

Accuracy in delete-1 
Non-crystallized 270 0.90 (0.70 - 0.96) <0.001 

Crystallized 185 0.36 (0.11 - 0.69)  
All proteins 455 0.71 (0.39 - 0.92)  

 
Although many studies have been carried with respect to the prediction of propensity of crystalliza-

tion of various proteins [1-15, 19, 20, 34-50], this issue is definitely unsolved. Therefore, effects are needed. 
In particular, how to find the features, which really represent the propensity of crystallization of various 
proteins is still unsolved. 
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