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Abstract 
The extrapolation technique has been proved to be very powerful in improv-
ing the performance of the approximate methods by large time whether en-
gineering or scientific problems that are handled on computers. In this paper, 
we investigate the efficiency of extrapolation of explicit general linear me-
thods with Inherent Runge-Kutta stability in solving the non-stiff problems. 
The numerical experiments are shown for Van der Pol and Brusselator test 
problems to determine the efficiency of the explicit general linear methods 
with extrapolation technique. The numerical results showed that method with 
extrapolation is efficient than method without extrapolation. 
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1. Introduction 

The two traditional numerical methods such as linear multi-step and RK me-
thods had been studied separately to solve the problems in ordinary differential 
equations. General linear methods (GLMs) have been considered by Butcher as a 
unifying framework for both multi-value and multi-stage methods [1]. The re-
searchers approved that these methods have a nice balanced between stability 
and accuracy with lower computational cost. 

General linear methods are constructed by four coefficient matrices A, U, B 
and V utilized in partitioned ( ) ( )s r s r+ × +  matrix, given by 

s s s r

r s r r

A U
B V

× ×

× ×
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The coefficients of these matrices denote the connection between various nu-
merical quantities that arise in the computation. The coefficient matrix A denotes 
the implementation costs of GLM methods. 

Consider the initial-value problem given by 

( ) ( )( ) [ ]
( )

0

0 0

, ,y x f y x x x X

y x y

′ = ∈

=
                   (1) 

The general linear methods for N-dimensional differential Equations (1) are 
given as follows: 
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             (2) 

where iY  known as internal stage value, ( )jf Y  known as the identical stage 
derivatives, [ ]n

iy  and [ ]1n
iy −  are known as the incoming approximation and out-

going approximation respectively. 
For more convenience, the above formula can be written in compact form as 

follows: 
[ ] ( ) [ ]( ) ( ) [ ]1 ,n n n
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The components of input vector [ ]1n
iy −  of next step satisfied as follows 

[ ] ( ) ( ) ( )1 1
, 1

0
, 1, , ,

p
n kk p

i i k n
k

y q h y t O h i r− +
−

=

= + =∑   

given for some parameters ,i kq  where 1,2, ,i r=   and 0,1, ,k p=  . 
The GLMs have order conditions p if the components of output vector [ ]n

iy  
satisfied as follows 

[ ] ( ) ( ) ( )1
,

0
, 1, , ,

p
n kk p

i i k n
k

y q h y t O h i r+

=

= + =∑   

given also for same the parameters ,i kq . 
The quantities ( ) ( )1, ,n ny y Y−  and ( )f Y  of GLMs can be related as 

( )
( )
( )1n n

Y hf YA I U I
B I V Iy y −

   ⊗ ⊗ 
=     ⊗ ⊗      

 

There are some known methods that can be formulated as general linear me-
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thods given in the following [2]. 
First consider the RK methods given by 

0
1 1
2 2
1 10
2 2
1 0 0 1

1 1 1 1
6 3 3 6

 

are written as formula of GLMs as follows: 

0 0 0 0 1
1 0 0 0 1
2

10 0 0 1
2

0 0 1 0 1
1 1 1 1 1
6 3 3 6

 
 
 
 
 
 
 
 
 
 
  

 

Another example of Adams-Bashforth method that is given by 

( ) ( )1 1 2
3 1 ,
2 2n n n ny y h f y f y− − −

 = + − 
 

 

can be written as formula of GLMs as follows: 

3 10 1
2 2
3 10 1
2 2

1 0 0 0
0 0 1 0

 − 
 
 − 
 
 
  

 

The researchers have been trying many ways to construct the efficient GLMs 
in solving the ordinary differential equations (ODE), such as [3]. They extended 
the exponential GLMs for initial value problems in solving the ordinary diffe-
rential equations. They used feature of exponential, which allows deriving the 
order conditions of GLMs that in turn assisted in the construction of family of 
methods of higher order. The stability property is consistent with these methods 
but used the advantage of having smaller computational effort. Another example 
of using the effective of GLMs for solving the methods is explained by [4]. He used 
the GLMs for solving Volterra integro-differential equations. The article showed 
that GLMs are efficient in solving the nonlinear Volterra integro-differential eq-
uations. In [5], on the other hand had developed and generalized the Adams 
scheme which is known as Fuzzy GLMs for solving fuzzy differential problems 
under the generalized differentiable. They showed that the order of accuracy is 
more efficient than the novel scheme. 
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In this paper, the advantages of using the extrapolation technique with explicit 
GLMs methods are given for some non-stiff problems. The extrapolation tech-
nique provides one of the essential sorts of the numerical integrator to solve the 
ordinary differential equations within an efficient step-size control mechanism 
and uncomplicated variable order strategy. 

The organization of this paper is as follows. Section 2 discusses the order con-
ditions of GLMs with IRKs property, where the order conditions p considered is 
equal to stage order q. The construction of GLMs with IRKs property is given in 
Section 3. Section 4 explains the types of extrapolation technique such as active 
and passive. Although there are two modes in applying extrapolation, this article 
only considers passive extrapolation to solve some non-stiff problems such as 
Van der Pol and Brusselator test problems. The numerical results are given in 
Section 5. 

2. Order Conditions 

There are challenges between the researchers to construct and implement the 
GLMs in an easy way. Most of them consider two main assumptions in construct-
ing these methods. 

First assumption is by denoting the order condition p equal to the stage order 
q. The stage values satisfied as follows: 

[ ]
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                     (3) 

Second assumption denotes the quantities should have a simple structure passed 
from step to step in order to avoid the complicated of changing step-size. There-
fore, the Nordsiek form is required to present the input and output quanti-
ties. 
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In order to describe the order condition, then the following theorem is needed 
[6]. 

Theorem 1 GLMs with coefficient matrices A, U, B and V represented in Nord-
sieck representation, has p q=  if and only if 

( ) ( ) ( )1exp exp ,pcz zA cz UZ O z += + +  

( ) ( ) ( )1exp exp ,pz Z zB cz VZ O z += + +  

where ( )exp cz  indicates the vector for ith components which is equal to  
( )exp ic z . This means 
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3. Construction GLMs with Inherent RK Stability 
Construction GLMs with Inherent RK stability that was given by Will Wright [2] 
is by considering the stability of GLMs as same as RK methods, because RK me-
thods have a good stability than other methods, such as linear multistep methods. 
Wright constructed Inherent RK stability (IRKs) which is a subclass of GLMs. 

In order to make the stability of GLMs similar with RK methods, first consid-
er all the eigenvalue of the stability matrix ( )M z  equal to one, which is given 
by 

( ) ( ) 1 ,M z V zB I zA U−= + −  

and consider the stability function ( )M z  

( ) ( )( )
( ) ( )1

1

det

.r r
r

P I M z

P z P z

ω ω

ω ω −

= −

= + + +

 

The stability function can be solved by assuming ( ) 0P ω = , then the stability 
property of GLMs is similar with RK methods. Furthermore, the stability region 
( )R z  is defined as follows: 

( ) ( ){ }, : such that , 1 .
n

R z z C K M z K n= ∈ ∃ ≤ ∀ ≥  

The following definition is important to show the idea of IRKs for GLMs. 
Definition 1 [2] 
The general linear methods have stability as same as RK methods if its stability 

function ( )P ω  satisfy the following 

( ) ( )( ) ( )( )1det ,rP I M z R zω ω ω ω−= − = −  

where ( )R z  denotes the rational function, which has the same significance of 
RK methods. 

Moreover, there is another important definition necessary for the IRKS prop-
erty. 

Definition 2 
The general linear methods, which satisfy 1 1Ve e=  have IRKs property if 

,
,

BA XB
BU JV VJ

≡
≡ −

                          (5) 

where J denotes the shifting matrix, which is given by 
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The following theorem discusses the GLMs with IRKs in a more practical way 
[7]. 

Theorem 2 
If the general linear methods have IRKs property with stability matrix consi-

dered as 

( ) ( ) 1 .M z V zB I zA U−= + −  

Then the stability polynomial ( )P ω , is defined by 

( ) ( )( ) 1.rP R zω ω ω −= −  

Proof. 
Consider another stability matrix that have the same property of the old one 

that is given by 

( ) ( )
( ) ( ) ( )

1

1 1 .

M I zJ M I zJ

I zJ V zB I zA U I zJ

−

− −

− −

 = − + − − 



           (6) 

By applying to the system of Equations (5) into the right side of (6) 
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=

 

Then, the matrix V is similar to ( ) ( ) 1I zJ M I zJ −− −  except for the first row. 
Now, by assume the matrix V has only one non-zero eigenvalue to guarantee 

the methods is stable, then the stability matrix ( )M Z  has also one non-zero 
eigenvalue. 

In [8], they gave an improved explicit type of GLMs using inherent RK me-
thods. They gave an algorithm for the construction, described as follows: 
 Choose the constant η  in the stability function 

( ) ( ) ( )
2 1

; : 1 ,
2! ! 1 !

p p

p
z z zR z R z z

p p
η η

+

= = + + + + +
+

  

so that the initial value problem with stability function  
( ) ( )( ), ;p

pp w z w w R z η= −  has stability properties and desirable accuracy; 
 Choose the vector c as ( ) ( )1 1 , 1, 2, ,ic i s i s= − − =  ; 
 Choose the parameters 1, , pβ β  are accours in the doubly companion ma-

trix X . They are assumed that 1 p Eβ β= = = , where E is the error con-
stant of the existing method; 

 Define the following coefficients 
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 Find LU decomposition of the coefficient Ω  

( ) ( ).Ω = Ω ΩL U  

 Consider the matrix B  via 

( )( ) ( )1 1 .− −= ∆ Γ Ω ΩB U L  

Therefore, they are considered the basic coefficients of explicit GLMs with in-
herent RK methods as follows: 

1

,

,
,
.

−

= Ψ

=
= −
= −

B B
A B XB
U C ACK
V E BCK





 

4. Extrapolation Technique 

Richardson [9] [10] introduced extrapolation as a powerful technique to im-
prove the accuracy of time integration methods of numerical analysis and to ac-
celerate the convergence of a sequence of approximation. Extrapolation tech-
nique applied to compute quantities which relied on a parameter like a step-size 
or mesh. This means, the extrapolation has been successfully applied to numeri-
cal ordinary differential equations and numerical quadrature equations. Chan 
[11] extended the theoretical analysis of extrapolation to arbitrary RK methods 
for stiff ordinary differential equations. He investigated the class of symmetric 
RK methods which contains h2-asymptotic error expansions and generalized the 
concept of symmetry to composite RK methods that preserve the h2-error ex-
pansion and also create the necessary damping. These methods have same up-
side to increase the order by two at a time on successive extrapolations. Later, 
Gorgey in [12] showed that passive extrapolation of the two stage Gauss method 
is more efficient than the active extrapolation for solution the linear problems. 

In [13], a new procedure to build stabilized explicit RK methods based on 
Richardson extrapolation with high order is studied. The strategy was easy and 
allowed deriving stabilized explicit RK methods with order as high as desired. 
However, for low order, the stability properties were a little shorter than other 
methods without this technique. They showed that methods do not suffer from 
propagation of errors nor internal instabilities. 

Therefore, the extrapolation technique has an efficient way to improve the ac-
curacy of GLMs with inherent RK stability. We use MATLAB code irks14-extrap.m 
that has extrapolation implementation of explicit GLMs with inherent RK stability. 

5. Numerical Results 

In this section, the results of numerical experiments obtained by the MATLAB 
code irks14-extrap.m are discussed. This code based on GLMs with inherent RK 
stability of order max 4p =  with extrapolation. To compare, it is also present the 
results obtained by the MATLAB code irks14.m. This code is based on GLMs 
with inherent RK stability of order max 4p = , which is described in [8]. 
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Figure 1. Numerical results for BRUS problem by order-4 (GLMs with inherent RK stability) with and without extrapolation. 

 

 
Figure 2. Numerical results for VDP problem by order-4 (GLMs with inherent RK stability) with and without extrapolation. 

 
These results will show which one the most efficient methods to solve the 

non-stiff problems such as brusselator and Van der Pol test problems. 
The first test problem is Brusselator (BRUS) which is an autocatalytic oscil-

lating chemical reaction equation. It is a system of two ordinary differential equ-
ations which is assumed as follows 

2
1 1 2 11 4 ,y y y y′ = + −  

2
2 1 1 23 ,y y y y′ = −  

where ( )1 0 1.5y =  and ( )2 0 3y = ; it is integrated into 1nx =  by using  
0.05h = . 

The second test problem is Van der Pol (VDP) which is defined as follows: 

1 2 ,y y′ =  

( )( )2
2 1 2 11 ,y y y y′ = − −   

where the first equation denotes the non-stiff equation while the second equa-
tion denotes stiff equation with including small  . In order to solve the non-stiff 
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problem, then   considered here equal to one. The initial values of VDP given 
as follows: 

( )1 0 2,y =  

( ) ( )2 3 4
2

2 10 292 18140 .
3 81 2187 19683

y O= − + − − +     

Figure 1 shows the numerical results on BRUS test problem. From the figure, 
we can see the extrapolation of GLMs with inherent RK stability of order four 
gives better efficiency than same methods without extrapolation. Furthermore, 
the numerical results given in Figure 2 show the extrapolation of GLMs with 
inherent RK stability of order four gives also better efficiency than same me-
thods without extrapolation for VDP test problem. 

6. Conclusions 

In this paper, we discuss some issues related to developing the construction of 
Explicit general linear methods with inherent Runge-stability for numerical so-
lution of non-stiff differential equations. These issues include the application of 
extrapolation technique to this base method. As we can see from the results in 
this paper, the extrapolation technique with explicit GLMs with inherent RK 
stability of order four on BRUS and VDP test problems, both give better effi-
ciency than explicit GLMs without extrapolation. 

Future work will involve verifying the efficiency of extrapolation of explicit 
GLMs with inherent RK stability for higher order for numerical solution of non 
stiff differential equations as well as the implicit GLMs for stiff equations.  

Acknowledgements 

The authors would like to extend their gratitude to the Sultan Idris Education 
University especially the Research Management and Innovation Center for pro-
viding the research grant GPU, Vote No: 2018-0149-102-01. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Butcher, J.C. (2009) General Linear Methods for Ordinary Differential Equations. 

Mathematics and Computers in Simulation, 79, 1834-1845. 
https://doi.org/10.1016/j.matcom.2007.02.006 

[2] Wright, W. (2002) General Linear Methods with Inherent Runge-Kutta Stability. 
Ph.D. Thesis, the University of Auckland, New Zealand. 

[3] Bazuaye, F.E. and Osisiogu, U.A. (2017) A New Approach to Constructing Extended 
Exponential General Linear Methods for Initial Value Problems in Ordinary Diffe-
rential Equations. International Journal of Advances in Mathematics, 5, 44-54. 

[4] Mahdi, H., Abdi, A. and Hojjati, G. (2018) Efficient General Linear Methods for a 

https://doi.org/10.4236/ajcm.2019.94019
https://doi.org/10.1016/j.matcom.2007.02.006


A. J. Kadhim, A. Gorgey 
 

 

DOI: 10.4236/ajcm.2019.94019 260 American Journal of Computational Mathematics 
 

Class of Volterra Integro-Differential Equations. Applied Numerical Mathematics, 
127, 95-109. https://doi.org/10.1016/j.apnum.2018.01.001 

[5] Farzi, J. and Mordai, A. (2018) Fuzzy General Linear Methods. arXiv:1812.03394. 

[6] Cardone, A., Jackiewicz, Z., Verner J.H. and Welfert, B. (2015) Order Conditions 
for General Linear Methods. Journal of Computational and Applied Mathematics, 
290, 44-64. https://doi.org/10.1016/j.cam.2015.04.042 

[7] Butcher, J.C. (2001) General Linear Methods for Stiff Differential Equations. BIT 
Numerical Mathematics, 41, 240-264. https://doi.org/10.1023/A:1021986222073 

[8] Abdi, A. and Jackiewicz, Z. (2019) Towards a Code for Nonstiff Differential Systems 
Based on General Linear Methods with Inherent Runge-Kutta Stability. Applied Nu-
merical Mathematics, 136, 103-121. https://doi.org/10.1016/j.apnum.2018.10.001 

[9] Richardson, L.F. (1911) The Approximate Arithmetical Solution by Finite Differ-
ences of Physical Problems Involving Differential Equations, with an Application to 
the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society A, 
210, 307-357. https://doi.org/10.1098/rsta.1911.0009 

[10] Richardson, L.F. (1927) The Deferred Approach to the Limit. Philosophical Trans-
actions of the Royal Society A, 226, 299-349. https://doi.org/10.1098/rsta.1927.0008 

[11] Chan, R.P.K. (1996) A-Stability of Implicit Runge-Kutta Extrapolations. Applied 
Numerical Mathematics, 22, 179-203.  
https://doi.org/10.1016/S0168-9274(96)00031-1 

[12] Gorgey, A. (2012) Extrapolation of Symmetrized Runge-Kutta Methods. Ph.D. The-
sis, the University of Auckland, New Zealand.  

[13] Martín-Vaquero, J. and Kleefeld, B. (2016) Extrapolated Stabilized Explicit Runge-Kutta. 
Methods Journal of Computational Physics, 326, 141-155. 
https://doi.org/10.1016/j.jcp.2016.08.042 

 
 

https://doi.org/10.4236/ajcm.2019.94019
https://doi.org/10.1016/j.apnum.2018.01.001
https://doi.org/10.1016/j.cam.2015.04.042
https://doi.org/10.1023/A:1021986222073
https://doi.org/10.1016/j.apnum.2018.10.001
https://doi.org/10.1098/rsta.1911.0009
https://doi.org/10.1098/rsta.1927.0008
https://doi.org/10.1016/S0168-9274(96)00031-1
https://doi.org/10.1016/j.jcp.2016.08.042

	Extrapolation of GLMs with IRKS Property to Solve the Ordinary Differential Equations
	Abstract
	Keywords
	1. Introduction
	2. Order Conditions
	3. Construction GLMs with Inherent RK Stability
	4. Extrapolation Technique
	5. Numerical Results
	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

